首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary A bacterial chitinase gene from Serratia marcescens (chiA) was fused to (i) a promoter of the ribulose bisphosphate carboxylase small subunit (rbcS) gene and (ii) two different chlorophyll a/b binding protein (cab) gene promoters from petunia. The resulting constructions were introduced into Agrobacterium Ti plasmid-based plant cell transformation vectors and used to generate multiple independent transgenic tobacco plants. ChiA mRNA and protein levels were measured in these plants. On average, the rbcS/chiA fusion gave rise to threefold more chiA mRNA than either cab/chiA fusion. We investigated the influence of sequences around the translational initiation ATG codon on the level of ChiA protein. The rbcS/chiA and cab/chiA fusions in which the sequence in the vicinity of the translational initiation codon is ACC ATGGC gave rise to transformants with higher levels of ChiA protein than those carrying a cab/chiA fusion with the sequence CAT ATGCG in the same region. This difference in translational efficiency is consistent with previous findings on preferred sequences in this region of the mRNA. In those transformants showing the highest level of ChiA expression, ChiA protein accumulated to about 0.25% of total soluble leaf protein. These plants contained significantly higher chitinase enzymatic activity than control plants.  相似文献   

2.
草莓叶片光合作用对强光的响应及其机理研究   总被引:41,自引:9,他引:32  
用便携式调制叶绿素荧光仪和光合仪研究了强光下草莓叶片荧光参数及表观量子效率的变化.结果表明,Fm、Fv/Fm、PSⅡ无活性反应中心数量和QA的还原速率在强光下降低,在暗恢复时升高;而PSⅡ反应中心非还原性QB的比例在强光下增加,在暗恢复时降低.上述荧光参数的变化幅度均以强光胁迫或暗恢复的前10 min最大.强光下ΦPSII、ETR和qP先升高后降低,但qN先大幅度降低,然后小幅回升.强光处理4 h后,丰香和宝交早生的表观量子效率(AQY)分别降低了20.9%和37.5%;qE(能量依赖的非光化学猝灭)为NPQ(非光化学猝灭)的最主要成分.强光胁迫下丰香的Fo、Fm、Fv/Fm、ΦPSII、ETR和AQY的变化幅度均明显比宝交早生小.DTT处理后,草莓叶片的Fm和Fv/Fm明显降低,Fo显著升高.可以认为,依赖叶黄素循环和类囊体膜质子梯度两种非辐射能量耗散在草莓叶片防御光损伤方面起着重要作用,丰香的光合机构比宝交早生更耐强光.  相似文献   

3.
The yeast Hog1 protein is both functionally and structurally similar to the mammalian p38, belonging to the same family of mitogen-activated protein (MAP) kinases and responding to extracellular changes in osmolarity. Since p38 mediates lipopolysaccharide (LPS) effects in mammalian cells, we now tested the responsiveness of Hog1 upon exposure of the yeast Saccharomyces cerevisiae to bacterial LPS. In the presence of Escherichia coli LPS (100 ng/ml) and an endotoxically active, hexaacylated, synthetic lipid A (compound 506; 100 ng/ml), Hog1 becomes phosphorylated with a maximum of phosphorylation between 3 and 6 h, whereas a tetraacylated, inactive form of lipid A (compound 406) did not cause any modification in the phosphorylation state of Hog1. A triple labeling immunocytochemical study showed that phosphorylated Hog1 translocates into the nucleus after a 90-min incubation and becomes sparsely located in the cytoplasm. The translocation of the phospho-Hog1 is preceded by an increased expression of the HOG1 gene and concomitant with the expression of the Hog1 target gene, GPD1. We also observed that cells unable to synthesize Hog1 do not resist LPS as efficiently as wild-type cells. We conclude that the yeast S. cerevisiae is able to respond to the presence of Gram-negative bacteria endotoxin and that Hog1 is involved in this response.  相似文献   

4.
A pollen-specific sequence, NeIF-4A8, has been isolated from a cDNA library from mature pollen of Nicotiana tabacum cv. Samsun. NeIF-4A8 is a full-length cDNA whose deduced amino acid sequence exhibits high homology to the eucaryotic translation initiation factor eIF-4A from mouse, Drosophila and tobacco. eIF-4A is an RNA helicase which belongs to the supergene family of DEAD-box proteins. Northern blot analysis with a gene-specific probe showed strict anther-specific expression of NeIF-4A8 starting at microspore mitosis. With antibodies raised against tobacco eIF-4A the presence of abundant eIF-4A-related proteins in developing anthers and pollen grains was demonstrated. The genomic analysis shows that the coding region is split by three introns whereas a large, fourth intron is situated in the 5-untranslated region. A promoter construct with 2137 bp of upstream sequence fused to the GUS reporter gene was used to confirm that the expression is confined to the haploid cells within the anther. NeIF-4A8 is a prime candidate for mediating translational control in the developing male gametophyte.  相似文献   

5.
Wang  Xiaolin  Yan  Huifeng  Wu  Bingjie  Ma  Xinghua  Shi  Yi 《Journal of plant research》2020,133(1):35-48
Journal of Plant Research - Plants can change leaf forms, adjusting light conditions on their adaxial and abaxial surfaces, to adapt to light environments and enhance their light use efficiencies....  相似文献   

6.
The electron transport rates and coupling factor activity in the chloroplasts; adenylate contents, rates of photosynthesis and respiration in the leaves as well as activity of isolated mitochondria were investigated in Pisum sativum L. leaves of plants grown under low or high light intensity and exposed after detachment to 5 mM Pb(NO(3))(2). The presence of Pb(2+) reduced rate of photosynthesis in the leaves from plants grown under the high light (HL) and low light (LL) conditions, whereas the respiration was enhanced in the leaves from HL plants. Mitochondria from Pb(2+) treated HL-leaves oxidized glycine at a higher rate than those isolated from LL leaves. ATP content in the Pb-treated leaves increased to a greater extend in the HL than LL grown plants. Similarly ATP synthase activity increased markedly when chloroplasts isolated from control and Pb-treated leaves of HL and LL grown plants were subjected to high intensity light. The presence of Pb ions was found inhibit ATP synthase activity only in chloroplasts from LL grown plants or those illuminated with low intensity light. Low light intensity during growth also lowered PSI electron transport rates and the Pb(2+) induced changes in photochemical activity of this photosystem were visible only in the chloroplasts isolated from LL grown plants. The activity of PSII was influenced by Pb ions on similar manner in both light conditions. This study demonstrates that leaves from plants grown under HL conditions were more resistant to lead toxicity than those obtained from the LL grown plants. The data indicate that light conditions during growth might play a role in regulation of photosynthetic and respiratory energy conservation in heavy metal stressed plants by increasing the flexibility of the stoichiometry of ATP to ADP production.  相似文献   

7.
Leaves of Nicotiana tabacum L. cv. Xanthi necroticum plants form local necrotic lesions at the site of infection by tobacco mosaic virus. During the first seven days post-inoculation, endogenous levels of 1-aminocyclopropane-1-carboxylic acid (ACC) and N-malonyl-ACC increased in the lesion area. The time course of ACC accumulation coincided with an increase in the endogenous cyanide level which began within two days after inoculation. Concomitantly, the activity of -cyanoalanine synthase, the main HCN detoxifying enzyme, decreased. Likewise, treatment of leaf discs of uninfected plants with ACC led to cyanide accumulation. Exogenously applied KCN caused necrotic spots on tobacco leaves very similar to the whitish centers of virus-induced local lesions. Possible implications of cyanide in cell death during TMV-induced lesion development are discussed.  相似文献   

8.
Poly(A)-binding protein (PABP) stimulates translation initiation by binding simultaneously to the mRNA poly(A) tail and eukaryotic translation initiation factor 4G (eIF4G). PABP activity is regulated by PABP-interacting (Paip) proteins. Paip1 binds PABP and stimulates translation by an unknown mechanism. Here, we describe the interaction between Paip1 and eIF3, which is direct, RNA independent, and mediated via the eIF3g (p44) subunit. Stimulation of translation by Paip1 in vivo was decreased upon deletion of the N-terminal sequence containing the eIF3-binding domain and upon silencing of PABP or several eIF3 subunits. We also show the formation of ternary complexes composed of Paip1-PABP-eIF4G and Paip1-eIF3-eIF4G. Taken together, these data demonstrate that the eIF3-Paip1 interaction promotes translation. We propose that eIF3-Paip1 stabilizes the interaction between PABP and eIF4G, which brings about the circularization of the mRNA.  相似文献   

9.
J. Feierabend  Silvia Dehne 《Planta》1996,198(3):413-422
The apoprotein of the enzyme catalase (EC 1.11.1.6) was shown to exhibit a light-dependent turnover in leaves. Present results indicate that photoinactivation of the enzyme was not accompanied by a synchronous destruction and new synthesis of its heme moiety. In rye (Secale cereale L.) leaves the catalase content was not depleted in light when porphyrin synthesis was inhibited by gabaculine. Photoinactivation of purified bovine liver or rye leaf catalase in vitro was not accompanied by concomitant damage to the heme groups. Both the incorporation of -[3H]aminolevulinic acid ([3H]ALA) into catalase-heme and its apparent turnover increased with irradiance. However, the apparent half-life of the catalase-heme was much longer than that of its apoprotein. It is probable that not only degradation but also an exchange with the free heme pool contributed to the apparent turnover of radioactivity of the catalase-heme. Part of the chlorophyll (Chl) associated with photosystem II (PS II) had a preferential light-induced turnover, and repair of PS II appeared to require new Chl synthesis also in mature green rye leaves. The activity of PS II, indicated by the ratio of variable to maximal fluorescence (Fv/Fm), rapidly declined in the presence of gabaculine in light and the reaction-center proteins D1 and D2 were depleted. When segments of mature green rye leaves were labeled with [3H]ALA and incorporation into Chl-protein complexes analysed after electrophoretic separation in the presence of Deriphat, the highest radioactivity was observed in the core complex of PS II, while PS I and the light-harvesting complex of PS II (LHC II) were unlabeled. In greening etiolated leaves highest incorporation was observed in LHC II. Both the incorporation of [3H]ALA into the PS II core complex of green rye leaves and its turnover increased with irradiance. However, the apparent half-life of the PS II-bound labeled porphyrin compounds (mainly Chl) was considerably longer than that of the reaction-center protein D1 under identical conditions.Abbreviations ALA -aminolevulinic acid - CII Core complex of PS II - Chl chlorophyll - DMSO dimethyl sulfoxide - Fv/Fm ratio of variable to maximal chlorophyll fluorescence - LHC light-harvesting complex - PAR photosynthetically active radiation We thank the Deutsche Forschungsgemeinschaft for financial support. Technical assistence by B. Kramer and Ch. van Oijen is greatly appreciated. We are grateful to Dr. Johanningmeier and Dr. Godde (Lehrstuhl für Biochemie der Pflanzen, Universität Bochum, Germany) for providing antisera against the D1 and D2 proteins and Dr. M. Schmidt (Botanisches Institut, Universität Frankfurt am Main, Germany) for valuable advice. Deriphat 160 was kindly supplied by Henkel Corp., Hoboken, N.J., USA.  相似文献   

10.
The function of chloroplast ferredoxin quinone reductase (FQR)-dependent flow was examined by comparing a wild type tobacco and a tobacco transformant (ΔndhB) in which the ndhB gene had been disrupted with their antimycin A (AA)-fed leaves upon exposure to chilling temperature (4 °C) under low irradiance (100 μmol m−2 s−1 photon flux density). During the chilling stress, the maximum photochemical efficiency of photosystem (PS) 2 (Fv/Fm) decreased markedly in both the controls and AA-fed leaves, and P700+ was also lower in AA-fed leaves than in the controls, implying that FQR-dependent cyclic electron flow around PS1 functioned to protect the photosynthetic apparatus from chilling stress under low irradiance. Under such stress, non-photochemical quenching (NPQ), particularly the fast relaxing NPQ component (qf) and the de-epoxidized ratio of the xanthophyll cycle pigments, (A+Z)/(V+A+Z), formed the difference between AA-fed leaves and controls. The lower NPQ in AA-fed leaves might be related to an inefficient proton gradient across thylakoid membranes (ΔpH) because of inhibiting an FQR-dependent cyclic electron flow around PS1 at chilling temperature under low irradiance.  相似文献   

11.
Nanotechnologies promise new means for drug delivery. ICAM-1 is a good target for vascular immunotargeting of nanoparticles to the perturbed endothelium, although endothelial cells do not internalize monomeric anti-ICAM-1 antibodies. However, coupling ICAM-1 antibodies to nanoparticles creates multivalent ligands that enter cells via an amiloride-sensitive endocytic pathway that does not require clathrin or caveolin. Fluorescence microscopy revealed that internalized anti-ICAM nanoparticles are retained in a stable form in early endosomes for an unusually long time (1-2 h) and subsequently were degraded following slow transport to lysosomes. Inhibition of lysosome acidification by chloroquine delayed degradation without affecting anti-ICAM trafficking. Also, the microtubule disrupting agent nocodazole delayed degradation by inhibiting anti-ICAM nanoparticle trafficking to lysosomes. Addition of catalase to create anti-ICAM nanoparticles with antioxidant activity did not affect the mechanisms of nanoparticle uptake or trafficking. Intracellular anti-ICAM/catalase nanoparticles were active, because endothelial cells were resistant to H2O2-induced oxidative injury for 1-2 h after nanoparticle uptake. Chloroquine and nocodazole increased the duration of antioxidant protection by decreasing the extent of anti-ICAM/catalase degradation. Therefore, the unique trafficking pathway followed by internalized anti-ICAM nanoparticles seems well suited for targeted delivery of therapeutic enzymes to endothelial cells and may provide a basis for treatment of acute vascular oxidative stress.  相似文献   

12.
The kinetics of response to strong light have been examined in deeply shaded leaves of the tropical tree legume (Inga sp.) which have extraordinarily high levels of the alpha-xanthophyll lutein-epoxide that are co-located in pigment-protein complexes of the photosynthetic apparatus with the beta-xanthophyll violaxanthin. As in other species, rapidly reversible photoprotection (measured as non-photochemical chlorophyll fluorescence quenching) is initiated within the time frame of sun-flecks (minutes), before detectable conversion of violaxanthin to antheraxanthin or zeaxanthin. Photoprotection is stabilized within hours of exposure to strong light by simultaneously engaging the reversible violaxanthin cycle and a slowly reversible conversion of lutein-epoxide to lutein. It is proposed that this lutein 'locks in' a primary mechanism of photoprotection during photoacclimation in this species, converting efficient light-harvesting antennae of the shade plant into potential excitation dissipating centres. It is hypothesized that lutein occupies sites L2 and V1 in light-harvesting chlorophyll protein complexes of photosystem II, facilitating enhanced photoprotection through the superior singlet and/or triplet chlorophyll quenching capacity of lutein.  相似文献   

13.
Although the superoxide anion radical (O) has been implicated in the phytotoxicity of ozone, (O3), its role has been inferred from indirect evidence based on the activity of oxyradical scavenging systems in the leaf, particularly superoxide dismutase (SOD). Direct observations of radical signals obtained by electron paramagnetic resonance spectrometry (EPR) of intact, attached leaves of bluegrass (Poa pratensis L.) and ryegrass (Lolium perenne L.) and leaf pieces of radish (Raphanus sativus L.) during exposure to 240 μg m?3 O3 in air flowing through the spectrometer cavity have revealed the appearance of a signal with the characteristics of O. The exposures used were insufficient to cause any necrotic injury to the leaves. The appearance of the signal is light-dependent, suggesting that it originates in the chloroplast, and its appearance is reduced in leaves in which the apoplastic pool of ascorbic acid has been enriched by prior vacuum infiltration. In each species, the signal only appeared after about 1 h of exposure to O3, and then increased steadily over the next 4 h. The lability of the species responsible for the signal is such that it can no longer be reliably detected about 15 min after cessation of the exposure to O3. These observations are interpreted as indicating that apoplastic ascorbate initially reduces the production of O, probably by reducing the penetration of O3 into the cell, with any O produced being scavenged by the chloroplastic SOD-per-oxidase system, but its formation from O3 then begins to exceed the capacity of the scavenging systems to remove it.  相似文献   

14.
Irreversible photoinhibition of photosystem II (PSII) occurred when Synechocystis sp. PCC 6803 cells were exposed to very strong light for a prolonged period. When wild-type cells were illuminated at 20 degrees C for 2 h with light at an intensity of 2,500 micromol photons m(-2) s(-1), the oxygen-evolving activity of PSII was almost entirely and irreversibly lost, whereas the photochemical reaction center in PSII was inactivated only reversibly. The extent of irreversible photoinhibition was enhanced at lower temperatures and by the genetically engineered rigidification of membrane lipids. Western and Northern blotting demonstrated that, after cells had undergone irreversible photoinhibition, the precursor to D1 protein in PSII was synthesized but not processed properly. These observations may suggest that exposure of Synechocystis cells to strong light results in the irreversible photoinhibition of the oxygen-evolving activity of PSII via impairment of the processing of pre-D1 and that this effect of strong light is enhanced by the rigidification of membrane lipids.  相似文献   

15.
It is known that the coffee (Coffea arabica L.) plant which is originally from shade habitats would have a limited ability to grow under full sun. Previous work has shown that nitrogen fertilisation can reduce the leaf damage when the plants are exposed to high light intensities during several days. In the present work we aimed to study the effects of the high irradiance during the first hours and evaluate the positive contribution of nitrogen fertilisation in the case of short-term exposure to strong light. Young plants (1.5–2 years old) grown in 1.5 kg of a mixed soil were supplemented with a nutrient solution containing 15 mM nitrogen in the form of NH4NO3, every 7 days (2N treatment), 15 days (1N treatment) and 45 days (0N treatment). Top mature leaves were exposed to a photosynthetic photon flux density of 1 500 μmol m?2 s?1 for a maximal period of 8 h, and changes in photosynthesis and pigment composition were monitored along the period of high light exposure. Photosynthetic capacity, leaf conductance to water vapour, electron transport capacity and maximum carboxylation activity, as well as some leaf fluorescence parameters (minimal fluorescence, photochemical efficiency of PSII and quantum yield of photosynthetic electron transport) were reduced by the stress, with a generally stronger impact observed in the 0N plants. The photochemical quenching was affected only in the 0N plants, while the non-photochemical quenching increased in 2N plants but decreased in the 0N ones. The results showed that 2N plants presented a better initial status of the photosynthetic parameters and of the content of photoprotective pigments. Those plants showed ability to trigger some protective mechanisms, as observed by the tendency to increase the xanthophyll pool content, specially in zeaxanthin and in non-photochemical quenching. Also, protein content presented a tendency to increase after 1.5 h, which was maintained until the end of the high light period. We conclude that nitrogen availability is a key factor in the acclimation process to high light.  相似文献   

16.
17.
Ethylene formation by loaves of the central stem zone of the short-day tobacco cv. Maryland Mammoth and long-davNicntiana sylvestris was followed for 40 days during in duction and transition to flowering. In SD tobacco Mammoth, ethylene formation rose between days 0-10, remained unchanged for the next 10 davs, rose slightly between days 20 - 30 and sharply within the last 10 days. The time-course of ethylene formation by the leaves of LD tobacco N.silvestris resembled that of Mammoth, but tho changes were less pronounced, especially at the beginning of the period. Generally, ethylene formation is much higher in SD tobacco Mammoth than in LDN. silvestris. Ethephon (0.02 %) application during flower induction significantly reduced flowering in SD tobacco Mammoth (by 47.5 %) and also reduced apical meristem length. In N.silvestris ethephon application did not reduce flowering, but most of the treated plants (62.5 %) did not attain the stage of inflorescence. Apical meristem (or inflorescence) and stem length were also reduced. The possible role of ethylene in regulation of transition to flowering is discussed.  相似文献   

18.
Illumination of intact pumpkin leaves with high light led to severe photoinhibition of photosystem II with no net degradation of the D1 protein. Instead, however, a modified form of D1 protein with slightly slower electrophoretic mobility was induced with corresponding loss in the original form of the D1 protein. When the leaves were illuminated in the presence of chloramphenicol the modified form was degraded, which led to a decrease in the total amount of the D1 protein. Subfractionation of the thylakoid membranes further supported the conclusion that the novel form of the D1 protein was not a precursor but a high-light modified form that was subsequently degraded.  相似文献   

19.
The genetic information in DNA is transcribed to mRNA and then translated to proteins, which form the building blocks of life. Translation, or protein synthesis, is hence a central cellular process. We have developed a gene-sequence-specific mechanistic model for the translation machinery, which accounts for all the elementary steps of the translation mechanism. We performed a sensitivity analysis to determine the effects of kinetic parameters and concentrations of the translational components on protein synthesis rate. Utilizing our mathematical framework and sensitivity analysis, we investigated the translational kinetic properties of a single mRNA species in Escherichia coli. We propose that translation rate at a given polysome size depends on the complex interplay between ribosomal occupancy of elongation phase intermediate states and ribosome distributions with respect to codon position along the length of the mRNA, and this interplay leads to polysome self-organization that drives translation rate to maximum levels.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号