首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Actin polymerization at the immune synapse is required for T cell activation and effector function; however, the relevant regulatory pathways remain poorly understood. We showed previously that binding to antigen presenting cells (APCs) induces localized activation of Cdc42 and Wiskott-Aldrich Syndrome protein (WASP) at the immune synapse. Several lines of evidence suggest that Tec kinases could interact with WASP-dependent actin regulatory processes. Since T cells from Rlk-/-, Itk-/-, and Rlk-/- x Itk-/- mice have defects in signaling and development, we asked whether Itk or Rlk function in actin polymerization at the immune synapse. We find that Itk-/- and Rlk-/- x Itk-/- T cells are defective in actin polymerization and conjugate formation in response to antigen-pulsed APCs. Itk functions downstream of the TCR, since similar defects were observed upon TCR engagement alone. Using conformation-specific probes, we show that although the recruitment of WASP and Arp2/3 complex to the immune synapse proceeds normally, the localized activation of Cdc42 and WASP is defective. Finally, we find that the defect in Cdc42 activation likely stems from a requirement for Itk in the recruitment of Vav to the immune synapse. Our results identify Itk as a key element of the pathway leading to localized actin polymerization at the immune synapse.  相似文献   

2.
Protein kinase C theta (PKC theta) is unique among PKC isozymes in its translocation to the center of the immune synapse in T cells and its unique downstream signaling. Here we show that the hematopoietic protein tyrosine phosphatase (HePTP) also accumulates in the immune synapse in a PKC theta-dependent manner upon antigen recognition by T cells and is phosphorylated by PKC theta at Ser-225, which is required for lipid raft translocation. Immune synapse translocation was completely absent in antigen-specific T cells from PKC theta-/- mice. In intact T cells, HePTP-S225A enhanced T-cell receptor (TCR)-induced NFAT/AP-1 transactivation, while the acidic substitution mutant was as efficient as wild-type HePTP. We conclude that HePTP is phosphorylated in the immune synapse by PKC theta and thereby targeted to lipid rafts to temper TCR signaling. This represents a novel mechanism for the active immune synapse recruitment and activation of a phosphatase in TCR signaling.  相似文献   

3.
4.
Engagement of the T cell receptor leads to the accumulation of filamentous actin, which is necessary for the formation of the immunological synapse and subsequent T cell activation. In the December issue of Molecular Cell, Sasahara et al. provide new insights into the link between the T cell receptor and actin assembly in the immunological synapse, and reveal a critical regulatory role for PKC theta in this process.  相似文献   

5.
6.
The Wiskott-Aldrich syndrome protein (WASP) is a product of the gene defective in an Xid disorder, Wiskott-Aldrich syndrome. WASP expression is limited to hemopoietic cells, and WASP regulates the actin cytoskeleton. It has been reported that monocytes/macrophages from WASP-deficient Wiskott-Aldrich syndrome patients are severely defective in chemotaxis, resulting in recurrent infection. However, the molecular basis of such chemotactic defects is not understood. Recently, the WASP N-terminal region was found to bind to the three mammalian verprolin homologs: WASP interacting protein (WIP); WIP and CR16 homologous protein (WICH)/WIP-related protein (WIRE); and CR16. Verprolin was originally found to play an important role in the regulation of actin cytoskeleton in yeast. We have shown that WASP, WIP, and WICH/WIRE are expressed predominantly in the human monocyte cell line THP-1 and that WIP and WICH/WIRE are involved in monocyte chemotaxis. When WASP binding to verprolins was blocked, chemotactic migration of monocytes was impaired in both THP-1 cells and primary human monocytes. Increased expression of WASP and WIP enhanced monocyte chemotaxis. Blocking WASP binding to verprolins impaired cell polarization but not actin polymerization. These results indicate that a complex of WASP with mammalian verprolins plays an important role in chemotaxis of monocytes. Our results suggest that WASP and mammalian verprolins function as a unit in monocyte chemotaxis and that the activity of this unit is critical to establish cell polarization. In addition, our results also indicate that the WASP-verprolin complex is involved in other functions such as podosome formation and phagocytosis.  相似文献   

7.
The migration of cells and the movement of some intracellular pathogens, such as Shigella and Vaccinia, are dependent on the actin-based cytoskeleton. Many proteins are involved in regulating the dynamics of the actin-based microfilaments within cells and, among them, WASP and N-WASP have a significant role in the regulation of actin polymerisation. The activity and stability of WASP is regulated by its cellular partner WASP-interacting protein (WIP) during the formation of actin-rich structures, including the immune synapse, filopodia, lamellipodia, stress fibres and podosomes. Here, we review the role of WIP in regulating WASP function by stabilising WASP and shuttling WASP to areas of actin assembly in addition to reviewing the WASP-independent functions of WIP.  相似文献   

8.
T cells deficient in the Tec kinases Itk or Itk and Rlk exhibit defective TCR-stimulated proliferation, IL-2 production, and activation of phospholipase C-gamma. Evidence also implicates Tec kinases in actin cytoskeleton regulation, which is necessary for cell adhesion and formation of the immune synapse in T lymphocytes. In this study we show that Tec kinases are required for TCR-mediated up-regulation of adhesion via the LFA-1 integrin. We also demonstrate that the defect in adhesion is associated with defective clustering of LFA-1 and talin at the site of interaction of Rlk-/-Itk-/- and Itk-/- T cells with anti-TCR-coated beads. Defective recruitment of Vav1, protein kinase Ctheta, and Pyk2 was also observed in Rlk-/-Itk-/- and Itk-/- T cells. Stimulation with ICAM-2 in conjunction with anti-TCR-coated beads enhanced polarization of Vav1, protein kinase Ctheta, and Pyk2 in wild-type cells, demonstrating a role for integrins in potentiating the recruitment of signaling molecules in T cells. Increased recruitment of signaling molecules was most pronounced under conditions of low TCR stimulation. Under these suboptimal TCR stimulation conditions, ICAM-2 could also enhance the recruitment of signaling molecules in Itk-/-, but not Rlk-/-Itk-/- T cells. Thus, Tec kinases play key roles in regulating TCR-mediated polarization of integrins and signaling molecules to the site of TCR stimulation as well as the up-regulation of integrin adhesion.  相似文献   

9.
Wiskott-Aldrich syndrome (WAS) is an X-linked recessive disorder characterized by thrombocytopenia with small platelets, severe eczema, and recurrent infections due to defects in the immune system. The disease arises from mutations in the gene encoding the WAS protein (WASP), which plays a role as an adaptor molecule in signal transduction accompanied by cytoskeletal rearrangement in T cells. To investigate the functional domain of WASP, we developed transgenic mice overexpressing the WASP N-terminal region (exon 1-5) including the Ena/VASP homology 1 (pleckstrin homology/WASP homology 1) domain, in which the majority of mutations in WAS patients have been observed. WASP transgenic mice develop and grow normally under the specific pathogen-free environment, and showed normal lymphocyte development. However, proliferative responses and cytokine production induced by TCR stimulation were strongly inhibited in transgenic mice, whereas Ag receptor capping and actin polymerization were normal. These findings suggest that overexpressed Ena/VASP homology 1 (pleckstrin homology/WASP homology 1) domain of WASP inhibits the signaling from TCR without coupling of cytoskeletal rearrangement. WASP transgenic mice shown here could be valuable tools for further understanding the WASP-mediated processes.  相似文献   

10.
Cdc42 is a key regulator of the actin cytoskeleton and activator of Wiskott-Aldrich syndrome protein (WASP). Although several studies have separately demonstrated the requirement for both Cdc42 and WASP in Fcγ receptor (FcγR)-mediated phagocytosis, their precise roles in the signal cascade leading to engulfment are still unclear. Reduction of endogenous Cdc42 expression by using RNA-mediated interference (short hairpin RNA [shRNA]) severely impaired the phagocytic capacity of RAW/LR5 macrophages, due to defects in phagocytic cup formation, actin assembly, and pseudopod extension. Addition of wiskostatin, a WASP/neural-WASP (N-WASP) inhibitor showed extensive inhibition of phagocytosis, actin assembly, and cell extension identical to the phenotype seen upon reduction of Cdc42 expression. However, using WASP-deficient bone marrow-derived macrophages or shRNA of WASP or N-WASP indicated a requirement for both WASP and N-WASP in phagocytosis. Cdc42 was necessary for WASP/N-WASP activation, as determined using a conformation-sensitive antibody against WASP/N-WASP and partial restoration of phagocytosis in Cdc42 reduced cells by expression of a constitutively activated WASP. In addition, Cdc42 was required for proper WASP tyrosine phosphorylation, which was also necessary for phagocytosis. These results indicate that Cdc42 is essential for the activation of WASP and N-WASP, leading to actin assembly and phagocytic cup formation by macrophages during FcγR-mediated phagocytosis.  相似文献   

11.
CD4+T cells from aged humans or mice show significant reductions in IL-2 production upon activation. The resulting decreased proliferation is linked to higher risks of infection in the elderly. Several lines of evidence indicate that intrinsic defects preferentially affecting the naïve subset of CD4+T cells contribute to this reduced IL-2 production. Comparison of the biochemical pathways that transduce activation signals from the T cell receptor to the IL-2 promoter in young and old CD4+T cells has demonstrated age-related impairments at initial molecular events, in particular the phosphorylation of kinases and adapter proteins involved in the formation of signalosomes - complex multiprotein assemblies that provide the framework for effective signal transduction. Confocal microscopy has demonstrated a series of age-related impairments in effective immune synapse formation. Vitamin E can reverse many of these CD4+T cell age-associated defects, including reduced levels of phosphorylation of critical signaling/adapter proteins as well as defective immune synapse formation. Vitamin E also enhances IL-2 production, expression of several cell cycle control proteins, and proliferation. Although the precise mechanisms underlying this effect are not understood, it is possible that this antioxidant lipophilic vitamin can prevent the propagation of polyunsaturated fatty acid peroxidation in the cell membrane, influence the biochemical characteristics of specific lipid bilayer microdomains involved in signal transduction, modulate the activity of kinases/phosphatases, or interact with intracellular receptors.  相似文献   

12.
Wiskott-Aldrich syndrome protein (WASP) and its homologue neural-WASP (N-WASP) are nucleation promoting factors that integrate receptor signaling with actin cytoskeleton rearrangement. While hematopoietic cells express both WASP and N-WASP, WASP deficiency results in altered cell morphology, loss of podosomes and defective chemotaxis. It was determined that cells from a mouse derived monocyte/macrophage cell line and primary cells of myeloid lineage expressed approximately 15-fold higher levels of WASP relative to N-WASP. To test whether N-WASP can compensate for the loss of WASP and restore actin cytoskeleton integrity, N-WASP was overexpressed in macrophages, in which endogenous WASP expression was reduced by short hairpin RNA (shWASP cells). Many of the defects associated with the loss of WASP, such as podosome-dependent matrix degradation and chemotaxis were corrected when N-WASP was expressed at equimolar level to that of the wild-type WASP. Furthermore, the ability of N-WASP to partially compensate for the loss of WASP may be physiologically relevant since activated murine WASP-deficient peritoneal macrophages, which show enhanced N-WASP expression, also show an increase in matrix degradation. Our study suggests that expression levels of WASP and N-WASP may influence their roles in actin cytoskeleton rearrangement and shed light to the complex intertwining roles WASP and N-WASP play in macrophages.  相似文献   

13.
The protein kinase C theta (PKC theta) serine/threonine kinase has been implicated in signaling of T cell activation, proliferation, and cytokine production. However, the in vivo consequences of ablation of PKC theta on T cell function in inflammatory autoimmune disease have not been thoroughly examined. In this study we used PKC theta-deficient mice to investigate the potential involvement of PKC theta in the development of experimental autoimmune encephalomyelitis, a prototypic T cell-mediated autoimmune disease model of the CNS. We found that PKC theta-/- mice immunized with the myelin oligodendrocyte glycoprotein (MOG) peptide MOG(35-55) were completely resistant to the development of clinical experimental autoimmune encephalomyelitis compared with wild-type control mice. Flow cytometric and histopathological analysis of the CNS revealed profound reduction of both T cell and macrophage infiltration and demyelination. Ex vivo MOG(35-55) stimulation of splenic T lymphocytes from immunized PKC theta-/- mice revealed significantly reduced production of the Th1 cytokine IFN-gamma as well as the T cell effector cytokine IL-17 despite comparable levels of IL-2 and IL-4 and similar cell proliferative responses. Furthermore, IL-17 expression was dramatically reduced in the CNS of PKC theta-/- mice compared with wild-type mice during the disease course. In addition, PKC theta-/- T cells failed to up-regulate LFA-1 expression in response to TCR activation, and LFA-1 expression was also significantly reduced in the spleens of MOG(35-55)-immunized PKC theta-/- mice as well as in in vitro-stimulated CD4+ T cells compared with wild-type mice. These results underscore the importance of PKC theta in the regulation of multiple T cell functions necessary for the development of autoimmune disease.  相似文献   

14.
T cell-APC contact initiates T cell activation and is maintained by the integrin LFA-1. Talin1, an LFA-1 regulator, localizes to the immune synapse (IS) with unknown roles in T cell activation. In this study, we show that talin1-deficient T cells have defects in contact-dependent T cell stopping and proliferation. Although talin1-deficient T cells did not form stable interactions with APCs, transient contacts were sufficient to induce signaling. In contrast to prior models, LFA-1 polarized to T cell-APC contacts in talin1-deficient T cells, but vinculin and F-actin polarization at the IS was impaired. These results indicate that T cell proliferation requires sustained, talin1-mediated T cell-APC interactions and that talin1 is necessary for F-actin polarization and the stability of the IS.  相似文献   

15.
Intracellularly expressed antibodies (intrabodies) have been used to inhibit the function of various kinds of protein inside cells. However, problems with stability and functional expression of intrabodies in the cytosol remain unsolved. In this study, we show that single-chain variable fragment (scFv) intrabodies constructed with a heavy chain variable (V(H)) leader signal sequence at the N-terminus were translocated from the endoplasmic reticulum into the cytosol of T lymphocytes and inhibited the function of the target molecule, Wiskott-Aldrich syndrome protein (WASP). WASP resides in the cytosol as a multifunctional adaptor molecule and mediates actin polymerization and interleukin (IL)-2 synthesis in the T-cell receptor (TCR) signaling pathway. It has been suggested that an EVH1 domain in the N-terminal region of WASP may participate in IL-2 synthesis. In transgenic mice expressing anti-EVH1 scFvs derived from hybridoma cells producing WASP-EVH1 mAbs, a large number of scFvs in the cytosol and binding between anti-EVH1 scFvs and native WASP in T cells were detected by immunoprecipitation analysis. Furthermore, impairment of the proliferative response and IL-2 production induced by TCR stimulation which did not affect TCR capping was demonstrated in the scFv transgenic T cells. We previously described the same T-cell defects in WASP transgenic mice overexpressing the EVH1 domain. These results indicate that the EVH1 intrabodies inhibit only the EVH1 domain function that regulates IL-2 synthesis signaling without affecting the overall domain structure of WASP. The novel procedure presented here is a valuable tool for in vivo functional analysis of cytosolic proteins.  相似文献   

16.
Aging is associated with reduced IL-2 production and T cell proliferation. Vitamin E supplementation, in aged animals and humans, increases cell division and IL-2 production by naive T cells. The immune synapse forms at the site of contact between a T cell and an APC and participates in T cell activation. We evaluated whether vitamin E affects the redistribution of signaling proteins to the immune synapse. Purified CD4(+) T cells, from the spleens of young and old mice, were treated with vitamin E before stimulation with a surrogate APC expressing anti-CD3. Using confocal fluorescent microscopy, we observed that CD4(+) T cells from old mice were significantly less likely to recruit signaling proteins to the immune synapse than cells from young mice. Vitamin E increased the percentage of old CD4(+) T cells capable of forming an effective immune synapse. Similar results were found following in vivo supplementation with vitamin E. When compared with memory cells, naive T cells from aged mice were more defective in immune synapse formation and were more responsive to vitamin E supplementation. These data show, for the first time, that vitamin E significantly improves age-related early T cell signaling events in naive CD4(+) T cells.  相似文献   

17.
EWI motif-containing protein 2 (EWI-2) is a member of the Ig superfamily that links tetraspanin-enriched microdomains to the actin cytoskeleton. We found that EWI-2 colocalizes with CD3 and CD81 at the central supramolecular activation cluster of the T cell immune synapse. Silencing of the endogenous expression or overexpression of a cytoplasmic truncated mutant of EWI-2 in T cells increases IL-2 secretion upon Ag stimulation. Mass spectrometry experiments of pull-downs with the C-term intracellular domain of EWI-2 revealed the specific association of EWI-2 with the actin-binding protein α-actinin; this association was regulated by PIP2. α-Actinin regulates the immune synapse formation and is required for efficient T cell activation. We extended these observations to virological synapses induced by HIV and found that silencing of either EWI-2 or α-actinin-4 increased cell infectivity. Our data suggest that the EWI-2-α-actinin complex is involved in the regulation of the actin cytoskeleton at T cell immune and virological synapses, providing a link between membrane microdomains and the formation of polarized membrane structures involved in T cell recognition.  相似文献   

18.
BACKGROUND: The molecular reorganization of signaling molecules after T cell receptor (TCR) activation is accompanied by polymerization of actin at the site of contact between a T cell and an antigen-presenting cell (APC), as well as extension of actin-rich lamellipodia around the APC. Actin polymerization is critical for the fidelity and efficiency of the T cell response to antigen. The ability of T cells to polymerize actin is critical for several steps in T cell activation including TCR clustering, mature immunological synapse formation, calcium flux, IL-2 production, and proliferation. Activation of the Rac GTPase has been linked to regulation of actin polymerization after TCR stimulation. However, the molecules required for TCR-mediated actin polymerization downstream of activated Rac have remained elusive. Here we identify a novel role for the Abi/Wave protein complex, which signals downstream of activated Rac, in the regulation of actin polymerization and T cell activation in response to TCR stimulation. RESULTS: Here we show that Abi and Wave rapidly translocate from the T cell cytoplasm to the T cell:B cell contact site in the presence of antigen. Abi and Wave colocalize with actin at the T cell:B cell conjugation site. Moreover, Wave and Abi are necessary for actin polymerization after T cell activation, and loss of Abi proteins in mice impairs TCR-induced cell proliferation and IL-2 production in primary T cells. Significantly, the impairment in actin polymerization in cells lacking Abi proteins is due to the inability of Wave proteins to localize to the T cell:B cell contact site in the presence of antigen, rather than the destabilization of the components of the Wave protein complex. CONCLUSIONS: The Abi/Wave complex is a novel regulator of TCR-mediated actin dynamics, IL-2 production, and proliferation.  相似文献   

19.
T-cell-receptor (TCR)-mediated integrin activation is required for T-cell-antigen-presenting cell conjugation and adhesion to extracellular matrix components. While it has been demonstrated that the actin cytoskeleton and its regulators play an essential role in this process, no mechanism has been established which directly links TCR-induced actin polymerization to the activation of integrins. Here, we demonstrate that TCR stimulation results in WAVE2-ARP2/3-dependent F-actin nucleation and the formation of a complex containing WAVE2, ARP2/3, vinculin, and talin. The verprolin-connecting-acidic (VCA) domain of WAVE2 mediates the formation of the ARP2/3-vinculin-talin signaling complex and talin recruitment to the immunological synapse (IS). Interestingly, although vinculin is not required for F-actin or integrin accumulation at the IS, it is required for the recruitment of talin. In addition, RNA interference of either WAVE2 or vinculin inhibits activation-dependent induction of high-affinity integrin binding to VCAM-1. Overall, these findings demonstrate a mechanism in which signals from the TCR produce WAVE2-ARP2/3-mediated de novo actin polymerization, leading to integrin clustering and high-affinity binding through the recruitment of vinculin and talin.  相似文献   

20.
Protein kinase C (PKC)-θ, a serine/threonine protein kinase and novel PKC subfamily member, has been recently identified as an essential component of the T cell synapse which activates the NF-kB signaling cascade leading to expression of the IL-2 gene during T cell activation. By RNA in situ hybridization to whole-body embryo sections it is shown that the murine PKCθ is specifically expressed in tissues with hematopoietic and lymphopoietic activity. Expression is also evident in skeletal muscle. A further highly specific expression was observed in the peripheral and central nervous system which is described in detail. Expression in the brain persists up to adult stages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号