首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract Formate dehydrogenase (EC 1.2.1.2) was purified about 38-fold with an overall yield of 76% from a methanol-utilizing yeast, Candida methanolica (ATCC26175), in 4 steps and, by adding polyethylene glycol, the enzyme was crystallised for the first time. The final preparation appeared to be homogeneous by the criteria of polyacrylamide electrophoresis and analytical centrifugation. Compared with the yeast formate dehydrogenases so far reported, the purified enzyme exhibited higher specific activity (7.52 U/mg).  相似文献   

2.
Initial velocity studies and product inhibition studies were conducted for the forward and reverse reactions of formaldehyde dehydrogenase (formaldehyde: NAD oxidoreductase, EC 1.2.1.1) isolated from a methanol-utilizing yeast Candida boidinii. The data were consistent with an ordered Bi-Bi mechanism for this reaction in which NAD+ is bound first to the enzyme and NADH released last. Kinetic studies indicated that the nucleoside phosphates ATP, ADP and AMP are competitive inhibitors with respect to NAD and noncompetitive inhibitors with respect to S-hydroxymethylglutathione. The inhibitions of the enzyme activity by ATP and ADP are greater at pH 6.0 and 6.5 than at neutral or alkaline pH values. The kinetic studies of formate dehydrogenase (formate:NAD oxidoreductase, EC 1.2.1.2) from the methanol grown C. boidinii suggested also an ordered Bi-Bi mechanism with NAD being the first substrate and NADH the last product. Formate dehydrogenase the last enzyme of the dissimilatory pathway of the methanol metabolism is also inhibited by adenosine phosphates. Since the intracellular concentrations of NADH and ATP are in the range of the Ki values for formaldehyde dehydrogenase and formate dehydrogenase the activities of these main enzymes of the dissimilatory pathway of methanol metabolism in this yeast may be regulated by these compounds.  相似文献   

3.
The flavoprotein lipoamide dehydrogenase was purified, by an improved method, from commercial baker's yeast about 700-fold to apparent homogeneity with 50-80% yield. The enzyme had a specific activity of 730-900 U/mg (about twice the value of preparations described previously). The holoenzyme, but not the apoenzyme, possessed very high stability against proteolysis, heat, and urea treatment and could be reassociated, with fair yield, with the other components of yeast pyruvate dehydrogenase complex to give the active multienzyme complex. The apoenzyme was reactivated when incubated with FAD but not FMN. As other lipoamide dehydrogenases, the yeast enzyme was found to possess diaphorase activity catalysing the oxidation of NADH with various artificial electron acceptors. Km values were 0.48 mM for dihydrolipoamide and 0.15 mM for NAD. NADH was a competitive inhibitor with respect to NAD (Ki 31 microM). The native enzyme (Mr 117000) was composed of two apparently identical subunits (Mr 56000), each containing 0.96 FAD residues and one cystine bridge. The amino acid composition differed from bacterial and mammalian lipoamide dehydrogenases with respect to the content of Asx, Glx, Gly, Val, and Cys. The lipoamide dehydrogenases of baker's and brewer's yeast were immunologically identical but no cross-reaction with mammalian lipoamide dehydrogenases was found.  相似文献   

4.
1. Alcohol oxidase (alcohol:oxygen oxidoreductase) was purified 22-fold from the brown rot fungus Poria contigua. The final enzyme preparation was homogeneous as judged by polyacrylamide gel electrophoresis, and by sedimentation in an ultracentrifuge. The molecular weight was calculated to be 610000 +/- 5000 from sedimentation equilibrium experiments. Electrophoresis in sodium dodecylsulfate gels and electron microscopic analysis indicate that the enzyme is an octamer composed of eight probably identical subunits, each having a molecular weight of 79 000. The enzyme contains eight mol FAD/mol as the prosthetic group. 2. This alcohol oxidase oxidizes not only methanol but also lower primary alcohols (C2-C4), 2-propin-1-ol and formaldehyde. The apparent Km value for methanol is 0.2 mM, and that for formaldehyde 6.1 mM. Sodium azide was found to be a competitive inhibitor with respect to methanol. 3. The enzyme from the fungus Poria contigua is immunologically different from the alcohol oxidase isolated from the methanol-utilizing yeast Candida boidinii. Furthermore antiserum raised against this enzyme did not cross-react with the alcohol oxidase from the white rot fungus Polyporus obtusus.  相似文献   

5.
Mycobacterium vaccae 10 growing in methanol medium synthesizes two inducible alternative NAD(+)-dependent formate dehydrogenases (FDH). In the presence of molybdenum, the dominating form of the enzyme is FDHI with Mr 440 kDa and Km 0.32 mM for sodium formate. FDHI reduced ferricyanide as well as NAD+, and it was reversibly inactivated by formate. NAD+ stabilized FDHI against this inactivation. Under conditions of artificial molybdenum deficiency (tungsten in the medium), the second enzyme (FDHII) appeared with Mr about 93 kDa and Km 8.3 mM for sodium formate, and no FDHI activity was detected. FDHII did not reduce ferricyanide and was not inactivated by formate. The activity of FDHI was restored in tungsten-grown cells by pulse addition of molybdenum under conditions of blocked protein synthesis, suggesting the pre-existence of inactive apo-FDHI.  相似文献   

6.
The formate dehydrogenase from the yeast Pichia pastoris IFP 206 was purified to homogeneity. The protein showed a molecular weight of 68,000 daltons and was composed of two identical subunits. Its amino acid composition was similar to those of other formate dehydrogenases and was characterized by a high content of acidic residues. The N-terminal end of the molecule was probably blocked.

The enzyme activity was NAD+ dependent (NADP+ could not replace NAD+). Its optimum temperature was 47°C and the activation energy 10.8 kcal/mol. The enzyme was active from pH 3.5 to 10.5 with a maximum at pH 7.5. The Michaelis constant for NAD+ and formate were respectively 0.27 and 15mM. The purified enzyme had no S-formylglutathione hydrolase activity, strongly suggesting that the true substrate was formate. NADH, cyanide and azide were strong inhibitors of the enzyme.  相似文献   

7.
A comparative study of the effect of pyrazol, an inhibitor of the coenzyme-binding site of alcohol dehydrogenases, on the activity of enzymes of the alcohol/polyol dehydrogenase group has been carried out. Commercial preparations of alcohol dehydrogenases from the cytoplasm of horse liver cells and yeast cells, as well as the enzyme from the cytoplasm of Trichosporon pullulans cells was completely inhibited by 1 mM pyrazol, while alcohol dehydrogenases from Candida utilis and Saccharomyces carlsbergensis were inhibited only by 25% and the enzymes from Saccharomyces cerevisiae and Torulopsis candida by 30 and 38%, respectively. The inhibition degree of alcohol dehydrogenases from the cytoplasm of liver cells of various mammals (bull, calf, rat, gopher) and birds (hen, pheasant, duck) varied from 12 to 42% in the presence of 1 mM pyrazol. The activity of sorbitol dehydrogenase from the liver cytoplasm of these mammals and birds changed neither in the presence of 1 mM pyrazol, nor in the case of a 15-fold increase of the inhibitor concentration. Possible structural differences in the coenzyme-binding site of the active center of the enzymes under study are discussed.  相似文献   

8.
The expression of the recombinant wild-type NAD+- and mutant NADP+-dependent formate dehydrogenases (EC 1.2.1.2., FDH) from the methanol-utilizing bacterium Pseudomonas sp. 101 in Escherichia coli cells has been improved to produce active and soluble enzyme up to the level of 50% of total soluble proteins. The cultivation process for E. coli/pFDH8a and E. coli/pFDH8aNP cells was optimized and scaled up to a volume of 100 L. A downstream purification process has been developed to produce technical grade NAD+- and NADP+-specific formate dehydrogenases in pilot scale, utilizing extraction in aqueous two-phase systems.  相似文献   

9.
The lactate dehydrogenase of Lactobacillus casei, like that of streptococci, requires fructose-1,6-diphosphate (FDP) for activity. The L. casei enzyme has a much more acidic pH optimum (pH 5.5) than the streptococcal lactate dehydrogenases. This is apparently due to a marked decrease in the affinity of the enzyme for the activator with increasing pH above 5.5; the concentration of FDP required for half-maximal velocity increase nearly 1,000-fold from 0.002 mM at pH 5.5 to 1.65 mM at 6.6. Manganous ions increase the pH range of activity particularly on the alkaline side of the optimum by increasing the affinity for FDP. This pH dependent metal ion activation is not specific for Mn2+. Other divalent metals, Co2+, Cu2+, Cd2+, Ni2+, Fe2+, Fe2+, and Zn2+ but not Mg2+, will effectively substitute for Mn2+, but the pH dependence of the activation differs with the metal ion used. The enzyme is inhibited by a number of commonly used buffering ions, particularly phosphate, citrate, and tris (hydroxymethyl) aminomethane-maleate buffers, even at low buffer concentrations (0.02 M). These buffers inhibit by affecting the binding of FDP.  相似文献   

10.
Cell-free extracts of methanol-grown Amycolatopsis methanolica contain dye-linked dehydrogenase activities for formate and methyl formate. Fractionation of the extracts revealed that the (unstable) activity for formate resides in membrane particles, while that for methyl formate belongs to a soluble enzyme that was purified and characterized. The enzyme, indicated as formate-ester dehydrogenase, appeared to be a molybdoprotein (4 Fe, 3 or 4 S, 1 Mo and 1 FAD were found for each enzyme molecule), with a molecular mass of 186 kDa and consisting of two subunits of equal size. Product identification suggests that the formate moiety in the ester becomes hydroxylated to a carbonate group after which the unstable alkyl carbonate decomposes into CO2 and the alcohol moiety. Based on structural and catalytic characteristics, the enzyme appears to be very similar to an enzyme isolated from Comamonas testosteroni [Poels, P. A., Groen, B. W. & Duine, J. A. (1987) Eur. J. Biochem. 166, 575-579] which was at that time considered to be an aldehyde dehydrogenase. Formate-ester dehydrogenase activity appeared to be present in several other bacteria. Possible roles for the A. methanolica enzyme in C1 dissimilation (oxidation of methyl formate to methanol and CO2 or a factor-formate adduct to factor plus CO2) or in general aldehyde oxidation, are discussed.  相似文献   

11.
Treatment of cells of a methanol yeast, Candida boidinii, with the cationic detergent cetyldimethylbenzyl-ammonium chloride (Cation M2) improved the production of formaldehyde. Formaldehyde production was improved twofold with respect to the initial amount of formaldehyde and 1.61-fold with respect to the final amount of formaldehyde after a 12-h reaction under optimized detergent treatment conditions. The treatment caused formaldehyde and formate dehydrogenases to leak out of the cells more rapidly than catalase, but there was no leakage of alcohol oxidase. The improvement in formaldehyde production was considered to be due to the increased permeability of yeast cell membranes and to lower activities of formaldehyde and formate dehydrogenases in Cation M2-treated cells than in intact cells. Changes in the ultrastructure of the cells were observed upon Cation M2 treatment. Several developed peroxisomes were observed in intact cells. After Cation M2 treatment, the cells were obviously damaged, and several peroxisomes seemed to have fused with each other.  相似文献   

12.
A cAMP-independent protamine kinase has been purified from extracts of the yeast Candida lipolytica by ion-exchange and affinity chromatography. Two subunits with apparent Mr's of 52,000 and 36,000 were resolved by SDS-PAGE. The purified kinase exhibited about 20% activity with casein and histone Type VII-S as substrates relative to protamine. The enzyme was inactive against other protein substrates tested, and was essentially insensitive to AMP, cAMP, cGMP up to 0.2 mM, the polyamines spermine and spermidine up to 1 mM, N-ethylmaleimide (5 mM), 2-mercaptoethanol (20 mM), or dithiothreitol (2 mM), and several cations like Zn2+, N1+, or Co2+ at 0.1 mM each. Ca2+ at 3 mM inhibited protamine kinase activity by 50%, which was reversed by EGTA.  相似文献   

13.
N-Acetylglucosamine kinase (ATP:2-acetamido-2-deoxy-D-glucose 6-phosphotransferase, EC 2.7.1.59) catalyzes the first reaction in the inducible N-acetylglucosamine catabolic pathway of Candida albicans, an obligatory aerobic yeast. As a part of continuing biochemical studies concerning the regulation of gene expression in a simple eukaryote, N-acetylglucosamine kinase has been purified and characterized biochemically. The enzyme has been purified about 300-fold from the crude extract and its molecular weight of 75 000 has been determined by Sephadex G-100 gel filtration. Isolation and analysis procedures are described. The kinase reaction is optimal within a pH range of 7--8. The enzyme is strictly specific for GlcNAc as phosphate acceptor; ATP is the phosphoryl group donor for the kinase reaction and to a lesser extent dATP and CTP. Km values for GlcNAc and ATP are 1.33 mM and 1.82 mM, respectively. The enzyme required Mg2+, which may be replaced by other bivalent metal ions such as Mn2+, Ca2+, Ba2+ and Co2+ for a lesser degree of effectiveness. The purified enzyme is extremely sensitive to thermal denaturation and becomes completely inactive by heating at 65% C for 2 min. The enzyme is also inactivated by sulphydryl reagents such as p-chloromercuribenzene sulfonic acid and N-ethylmaleimide.  相似文献   

14.
A thermophilic isolate Bacillus coagulans BTS-3 produced an extracellular alkaline lipase, the production of which was substantially enhanced when the type of carbon source, nitrogen source, and the initial pH of culture medium were consecutively optimized. Lipase activity 1.16 U/ml of culture medium was obtained in 48 h at 55 degrees C and pH 8.5 with refined mustard oil as carbon source and a combination of peptone and yeast extract (1:1) as nitrogen sources. The enzyme was purified 40-fold to homogeneity by ammonium sulfate precipitation and DEAE-Sepharose column chromatography. Its molecular weight was 31 kDa on SDS-PAGE. The enzyme showed maximum activity at 55 degrees C and pH 8.5, and was stable between pH 8.0 and 10.5 and at temperatures up to 70 degrees C. The enzyme was found to be inhibited by Al3+, Co2+, Mn2+, and Zn2+ ions while K+, Fe3+, Hg2+, and Mg2+ ions enhanced the enzyme activity; Na+ ions have no effect on enzyme activity. The purified lipase showed a variable specificity/hydrolytic activity towards various 4-nitrophenyl esters.  相似文献   

15.
K B Li  K Y Chan 《Applied microbiology》1983,46(6):1380-1387
Lactobacillus acidophilus IFO 3532 was found to produce only intracellular alpha-glucosidase (alpha-D-glucoside glucohydrolase; EC 3.2.1.20). Maximum enzyme production was obtained in a medium containing 2% maltose as inducer at 37 degrees C and at an initial pH of 6.5. The enzyme was formed in the cytoplasm and accumulated as a large pool during the logarithmic growth phase. Enzyme production was strongly inhibited by 4 microM CuSO4, 40 microM CoCl2, and beef extract; MnSO4 and the presence of proteose peptone and yeast extract in the medium greatly enhanced enzyme production. A 16.6-fold purification of alpha-glucosidase was achieved by (NH4)2SO4 fractionation and DEAE-cellulose column chromatography. The enzyme showed high specificity for maltose. The Km for alpha-p-nitrophenyl-beta-D-glucopyranoside was 11.5 mM, and the Vmax for alpha-p-nitrophenyl-beta-D-glucopyranoside hydrolysis was 12.99 mumol/min per mg of protein. The optimal pH and temperature for enzyme activity were 5.0 and 37 degrees C, respectively. The enzyme activity was inhibited by Hg2+, Cu2+, Ni2+, Zn2+, Ca2+, Co2+, urea, rose bengal, and 2-iodoacetamide, whereas Mn2+, Mg2+, L-cysteine, L-histidine, Tris, and EDTA stimulated enzyme activity. Transglucosylase activity was present in the partially purified enzyme, and isomaltose was the only glucosyltransferase product. Amylase activity in the purified preparation was relatively weak, and no isomaltase activity was detected.  相似文献   

16.
A novel extra-cellular lipase from Bacillus coagulans MTCC-6375 was purified 76.4-fold by DEAE anion exchange and Octyl Sepharose chromatography. The purified enzyme was found to be electrophoretically pure by denaturing gel electrophoresis and possessed a molecular mass of approximately 103 kDa. The lipase was optimally active at 45 degrees C and retained approximately 50% of its original activity after 20 min of incubation at 55 degrees C. The enzyme was optimally active at pH 8.5. Mg2+, Cu2+, Ca2+, Hg2+, Al3+, and Fe3+ at 1mM enhanced hydrolytic activity of the lipase. Interestingly, Hg2+ ions resulted in a maximal increase in lipase activity but Zn2+ and Co2+ ions showed an antagonistic effect on this enzyme. EDTA at 150 mM concentration inhibited the activity of lipase but Hg2+ or Al3+ (10mM) restored most of the activity of EDTA-quenched lipase. Phenyl methyl sulfonyl fluoride (PMSF, 15 mM) decreased 98% of original activity of lipase. The lipase was more specific to p-nitrophenyl esters of 8 (pNPC) and 16 (pNPP) carbon chain length esters. The lipase had a Vmax and Km of 0.44 mmol mg(-1)min(-1) and 28 mM for hydrolysis of pNPP, and 0.7 mmol mg(-1)min(-1) and 32 mM for hydrolysis of pNPC, respectively.  相似文献   

17.
NAD+-dependent formate dehydrogenase was screened in various bacterial strains. Facultative methanol-utilizing bacteria isolated from soil samples, acclimated to a medium containing methanol and formate at pH 9.5, were classified as members of the genus Moraxella. From a crude extract of Moraxella sp. strain C-1, formate dehydrogenase was purified to homogeneity, as judged by disc gel electrophoresis. The enzyme has an isoelectric point of 3.9 and a molecular weight of approximately 98,000. The enzyme is composed of two identical subunits with molecular weights of about 48,000. The apparent Km values for sodium formate and NAD+ were calculated to be 13 mM and 0.068 mM, respectively.  相似文献   

18.
Formate dehydrogenase (EC 1.2.1.2) prepared from peas (Pisum sativum) was a two-subunit enzyme. The enzyme accelerated the formation of an NAD+-cyanide compound having an adsorption band at 330 nm. The enzyme was able to bind one NAD+ molecule per each subunit but only 1 mole of NAD+-cyanide compound was formed per two subunits. The complex of NAD+, cyanide, and the enzyme was very stable and had no catalytic activity. Azide inhibited the formate dehydrogenase reaction in two different ways. By incubation of the enzyme with azide in the presence of NAD+, half of its catalytic activity was lost. The remaining activity was also inhibited by azide but this inhibition was removed competively by formate. Contrary to the case of cyanide the inhibition by azide could be removed by dialysis and no spectral species due to the addition compound of NAD+ and azide could be observed. The data from double recipricol plots of the initial velocity and the formate concentration led to a conclusion that formate dehydrogenase has two sites with about equal catalytic activity. The Km for formate was different for the two catalytic sites (1.67 and 6.25 mM) but the difference was not noticeable in the case of the Km for NAD+.  相似文献   

19.
20.
Abstract The methylotrophic yeasts, Hansenula polymorpha and Candida boidinii , and the methylotrophic Gram-negative bacteria, Paracoccus denitrificans and Thiobacillus versutus (but not Methylophaga marina ), contain NAD/GSH-dependent formaldehyde dehydrogenase when grown on C1-compounds. The enzymes appeared to be similar to each other and to the mammalian counterparts with respect to substrate specificity, including the ability to act as an alcohol dehydrogenase class III. The Gram-positive bacteria, Amycolatopsis methanolica and Rhodococcus erythropolis , possess NAD/Factor-dependent formaldehyde dehydrogenase when grown on C1-compounds or on C1-unit-containing substrates, respectively. These enzymes also exhibit alcohol dehydrogenase class III activity. Thus, like the mammalian ones, methylotrophic formaldehyde dehydrogenases show dual substrate specificity, suggesting that this is an inherent property of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号