首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Airway ciliary activity is influenced by [Ca2+]i, but this mechanism is not fully understood. To investigate this relationship, ciliary activity and [Ca2+]i were measured simultaneously from airway epithelial ciliated cells. Ciliary beat frequency was determined, for each beat cycle, with phase-contrast optics and high-speed video imaging (at 240 images s-1) and correlated with [Ca2+]i determined, at the ciliary base, by fast imaging (30 images s-1) of fura-2 fluorescence. As a mechanically induced intercellular Ca2+ wave propagated through adjacent cells, [Ca2+]i was elevated from a baseline concentration of 45 to 100 nM, to a peak level of up to 650 nM. When the Ca2+ wave reached the ciliary base, the beat frequency rapidly increased, within a few beat cycles, from a basal rate of 6.4 to 11.6 Hz at 20-23 degrees C, and from 17.2 to 26.7 Hz at 37 degrees C. Changes in [Ca2+]i, above 350 nM, had no effect on the maximum beat frequency. We suggest that airway ciliary beat frequency is 1) controlled by a low range of [Ca2+]i acting directly at an axonemal site at the ciliary base and 2) that a maximum frequency is induced by a change in [Ca2+]i of approximately 250-300 nM.  相似文献   

2.
Cytoplasmic Ca2+ signals are transferred to the mitochondria and activate the Krebs cycle. We have compared the efficiency of this process for two Ca2+ mobilising agonists, PGF2alpha and ATP (acting at metabotropic P2 receptors) in rat luteal cells. [Ca2+]c, [Ca2+]m and mitochondrial NAD(P)H were monitored by means of microspectrofluorimetry and confocal microscopy. While both agonists caused similar elevations of [Ca2+]c, changes in NAD(P)H were larger in response to PGF2alpha than to ATP. PGF2alpha more effectively increased NAD(P)H level also in mouse luteal cells. PGF2alpha caused a faster rate of rise of NAD(P)H fluorescence than ATP when reoxidation was prevented with rotenone, suggesting a faster rate of NAD(P)+ reduction. The NAD(P)H response to both agonists was dependent on the mobilisation of stored Ca2+. We found no difference in the efficacy of transmission of the [Ca2+]c signal to mitochondria in response to PGF2alpha and ATP. Raising [Ca2+]c with ionomycin increased the NAD(P)H signal, which was further raised by PGF2alpha but not by ATP. These data suggest that PGF2alpha potentiates the Ca2+-induced stimulation of mitochondrial metabolism by a Ca2+-independent mechanism and shows that agonists may modulate mitochondrial function differentially through a novel process beyond the simple transfer of Ca2+ from ER to mitochondria.  相似文献   

3.
The effects of prostaglandin (PG) F2 alpha and 9,11-epithio-11,12-methanothromboxane A2 (STA2), a stable analogue of thromboxane A2, on the cytosolic free calcium concentration ([Ca2+]i) in vascular smooth muscle cells were studied with a new fluorescent Ca2+ indicator fura 2. PGF2 alpha and STA2, which are strong vasoconstrictors, caused rapid phasic and subsequent tonic increases in [Ca2+]i. PGF2 alpha caused dose-dependent elevation of [Ca2+]i not only in control solution but also in the calcium-free solution. A first stimulation with PGF2 alpha caused dose-dependent decrease in the response of [Ca2+]i to a second stimulation with PGF2 alpha. Pretreatment with 13-Azaprostanoic acid, a receptor level antagonist of thromboxane A2 inhibited the increase of [Ca2+]i induced by STA2. These results suggest that PGF2 alpha induces calcium mobilization followed by smooth muscle contraction through its specific receptors.  相似文献   

4.
Changes in the intracellular concentration of calcium [( Ca2+]i) have been shown to mediate the physiological effects of certain agonists. Ca2+ mobilization occurs through multiple mechanisms which involve both influx and internal release of Ca2+. Prostaglandin F2 alpha (PGF2 alpha) caused a transient mobilization of intracellular Ca2+ in 3T3-L1 fibroblasts. This effect was characterized by fluorescence measurements of trypsin-treated cells loaded with fura-2/AM. In the absence of extracellular Ca2+, the peak amount of Ca2+ mobilized by PGF2 alpha was decreased by 70%, a lag time before the onset of [Ca2+]i increase was observed, and the rate of rise of [Ca2+]i was slowed. Addition of NaF (10 mM) to fura-2-loaded 3T3-L1 cells caused a dose-dependent increase in [Ca2+]i after a brief (approximately 10 s) lag. Maximal effects (approximately 300 nM) were observed at 5-10 mM-NaF. This effect was dependent on the presence of extracellular Ca2+ and appeared to be independent of inositol phosphate production. After reaching a peak at around 40 s after fluoride addition, [Ca2+]i returned to near-baseline within 120 s. This return of [Ca2+]i to near-baseline after fluoride stimulation and the inability of the cells to respond to a subsequent addition of fluoride indicated that the response to fluoride underwent desensitization. Similarly, the pathway used by PGF2 alpha to mobilize Ca2+ underwent desensitization. Exposure of the cells to a maximally effective concentration of fluoride and subsequent addition of PGF2 alpha produced a [Ca2+]i response to PGF2 alpha which was similar in magnitude and kinetics to that seen for PGF2 alpha in the absence of extracellular Ca2+. Conversely, prior exposure of cells to PGF2 alpha diminished the ability of fluoride to mobilize Ca2+. PGF2 alpha also increased inositol phosphate formation, with a time course and dose-response consistent with its ability to increase [Ca2+]i. Prior exposure of cells to fluoride did not change the time course or dose-response characteristics of PGF2 alpha-induced generation of inositol phosphates. These data suggest that PGF2 alpha and fluoride share a common mechanism of activating Ca2+ influx in 3T3-L1 cells.  相似文献   

5.
Evans JH  Sanderson MJ 《Cell calcium》1999,26(3-4):103-110
The effect of ATP-induced Ca2+ oscillations on ciliary activity was examined in airway epithelial cells by simultaneously measuring the ciliary beat frequency (CBF) and the intracellular Ca2+ concentration ([Ca2+]i) near the base of the cilia. Exposure to extracellular ATP (ATPo) induces a rapid and large increase in both [Ca2+]i and CBF, followed by oscillations in [Ca2+]i and a sustained elevation in CBF. After each Ca2+ oscillation, the [Ca2+]i returned to near basal values. By contrast, the CBF remained elevated during these Ca2+ oscillations, although each Ca2+ oscillation induced small variations in CBF. During Ca2+ oscillations, increases in CBF closely followed the rising phase of increases in [Ca2+]i, but declines in CBF lagged behind declines in [Ca2+]i. Higher frequency Ca2+ oscillations reduced variations in CBF, producing a stable and sustained elevation in CBF. The maximal CBF was induced by Ca2+ oscillations and was 15% greater than the CBF induced by the substantially larger initial [Ca2+]i increase. These data demonstrate that the rate of CBF is not directly dependent on the absolute [Ca2+]i, but is dependent on the differential changes in [Ca2+]i and suggest that CBF in airway epithelial cells is regulated by frequency-modulated Ca2+ signaling.  相似文献   

6.
Prostaglandins (PGs) are autocrine or paracrine hormones that may interact with circulating hormones such as parathyroid hormone (PTH) in bone. We examined the interaction of the PGs, PGF2 alpha, PGE2, and 6-keto-PGF1 alpha with PTH to enhance the rapid, initial transient rise in free cytosolic calcium ([Ca2+]i) and cAMP levels stimulated by PTH. Pretreatment of UMR-106, MC3T3-E1, and neonatal rat calvarial osteoblast-like cells by PGs resulted in an enhancement of the early transient rise in [Ca2+]i stimulated by PTH. PGF2 alpha was approximately 100 times more potent than PGE2. PGE2 itself was more potent than 6-keto-PGF1 alpha in enhancing PTH-stimulated rise in [Ca2+]i. Near-maximal augmentation was achieved at PGF2 alpha doses of 10 nM and PGE2 of 1 microM. The degree of augmentation in [Ca2+]i by PGF2 alpha was independent of preincubation time. PGF2 alpha pretreatment did not alter the EC50 for the PTH-induced [Ca2+]i increase but only the extent of rise in [Ca2+]i at each dose of PTH. The augmented increase in [Ca2+]i was mostly due to enhanced PTH-mediated release of Ca2+ from intracellular stores. PGF2 alpha did not stimulate an increase in PTH receptor number as assessed by [125I]-PTH-related peptide binding. PG pretreatment partially reversed PTH inhibition of cell proliferation, suggesting that an increase in [Ca2+]i may play a role in tempering the anti-proliferative effect of PTH mediated by cAMP. These studies suggest a new mode by which PGs can affect cellular activity.  相似文献   

7.
Adenosine 5'-triphosphate (ATP) which is released from neuronal and non-neuronal tissues interacts with cell surface receptors to produce a broad range of physiological responses. The present study addressed the issue of whether the cells of the superior cervical ganglia (SCG) respond to ATP. To this end, the dynamics of the intracellular calcium ion concentration ([Ca2+]i) of neurons and satellite cells in intact SCG was analyzed by laser scanning confocal microscopy. ATP produced an increase of [Ca2+]i in both neurons and satellite cells; initially, ATP elicited [Ca2+]i increase in satellite cells and, subsequently, a [Ca2+]i change in neurons was observed. P1 purinoceptor agonists had no effect on this process, but P2 purinoceptor agonists induced [Ca2+]i increase and suramin totally inhibited ATP-induced [Ca2+]i dynamics in both neurons and satellite cells. In satellite cells, Ca2+ channel blockers and the removal of extracellular Ca2+, but not thapsigargin pretreatment, abolished ATP-induced [Ca2+]i dynamics. In contrast, thapsigargin pretreatment abolished ATP-induced [Ca2+]i dynamics in neurons. Reactive blue-2 inhibited the ATP-induced reaction on neurons alone. Uridine 5'-triphosphate caused a [Ca2+]i increase in neurons and alpha,beta-methylene ATP caused a [Ca2+]i increase in satellite cells. We concluded that neurons respond to extracellular ATP mainly via P2Y purinoceptors and that satellite cells respond via P2X purinoceptors.  相似文献   

8.
The effect of prostaglandins (PG) on free cytosolic calcium concentrations [( Ca2+]i) and cAMP levels was studied in the osteosarcoma cell line UMR-106. PGF2 alpha and PGE2, but not 6-keto-PGF1 alpha, induced an increase in [Ca2+]i which was mainly due to Ca2+ release from intracellular stores. The EC50 for PGF2 alpha was approximately 7 nM, whereas that for PGE2 was approximately 1.8 microM. Maximal doses of PGF2 alpha increased [Ca2+]i to higher levels than PGE2. Both active PGs also stimulated phosphatidylinositol turnover in UMR-106 cells. The effects of the two PGs were independent of each other and appear to involve separate receptors for each PG. PGE2 was a very potent stimulator of cAMP production and increased cAMP by approximately 80-fold with an EC50 of 0.073 microM. PGF2 alpha was a very poor stimulator of cAMP production; 25 microM PGF2 alpha increased cAMP by 5-fold. The increase in cellular cAMP levels activated a plasma membrane Ca2+ channel which resulted in a secondary, slow increase in [Ca2+]i. High concentrations of both PGs (10-50 microM) inhibited this channel independent of their effect on cAMP levels. Pretreatment of the cells with the phorbol ester 12-O-tetradecanoylphorbol-13-acetate inhibited the PG-mediated increase in phosphatidylinositol turnover and the increase in [Ca2+]i. However, pretreatment with 12-O-tetradecanoyl-13-acetate had no effect on the PGE2-mediated increase in cAMP. The latter finding, together with the dose responses for PGE2-mediated increases in [Ca2+]i and cAMP levels, suggests the presence of two subclasses of PGE2 receptors: one coupled to adenylate cyclase and the other to phospholipase C. With respect to osteoblast function, the cAMP signaling system is antiproliferative, whereas the Ca2+ messenger system, although having no proliferative effect by itself, tempers cAMP's antiproliferative effect.  相似文献   

9.
Carbachol, through a muscarinic receptor, thyrotropin-releasing hormone (TRH), prostaglandin F2 alpha (PGF2 alpha), bradykinin, and adenosine triphosphate (ATP) increased the apparent [Ca2+]i (intracellular free Ca2(+)-concentration) of dog thyrocytes in primary culture. The [Ca2+]i measured by the Quin-2 technique rose immediately after the addition of the agonists and reached a maximal value after less than 30 seconds. Afterwards, the [Ca2+]i declined to a plateau higher than the basal level when the cells were triggered with carbachol. By contrast, in most experiments with PGF2 alpha and in the case of bradykinin, TRH, and ATP, the [Ca2+]i returned to the basal value. If the extracellular Ca2+ was chelated by excess of EGTA, the addition of all agents caused a sharp reduced transient rise in the [Ca2+]i followed by a decline of the [Ca2+]i often below the basal level (especially in the case of carbachol). It is suggested that the first transient phase of these responses is due at least in part to the mobilisation of Ca2+ from intracellular stores whereas the second sustained phase of the response to carbachol mainly originates from an increased Ca2+ influx into the thyrocytes. Carbachol, bradykinin, TRH, PGF2 alpha, and ATP also increased generation of inositol phosphates in dog thyrocytes. This effect was sustained when the cells were triggered with carbachol and was more transient with bradykinin, TRH, PGF2 alpha, or ATP. All these agents and the phorbdester TPA as well as forskolin enhanced to various extent the thyrocyte H2O2 generation. This enhancement was severely reduced in the absence of extracellular Ca2+ and was mimicked by Ca2+ ionophores in the presence of extracellular Ca2+ especially in synergy with protein kinase C activators. These data suggest that the dog thyrocyte H2O2 generation, the limiting step of the thyroid hormone synthesis, is modulated by carbachol, TRH, PGF2 alpha, bradykinin, and ATP through their action on the Ca2(+)-phosphatidylinositol cascade.  相似文献   

10.
Adenosine-5'-triphosphate (ATP) released from damaged cells can affect functions of adjacent cells. Injuries of peripheral tissue stimulate nerves, but effect of ATP on the nerve bundles is still speculative. Peripheral nerves are surrounded by perineurium, therefore the response of perineurium may be a first event of nerve stimulation at tissue injuries. The aim of the present study is to clarify whether the perineurium responds to ATP. To this end, we analyzed the dynamics of the intracellular calcium concentration ([Ca2+]i) of perineurial cells by confocal microscopy. ATP induced a [Ca2+]i increase of perineurial cells. Ca2+ channel blockers and removing of extracellular Ca2+, but not thapsigargin pretreatment, abolished ATP-induced [Ca2+]i dynamics. This indicated that the [Ca2+]i increase was due to an influx of extracellular Ca2+. Adenosine-5'-diphosphate also elicited an increase of [Ca2+]i, but P1 receptor agonists had few effects on [Ca2+]i dynamics. Suramin (an antagonist of P2X and P2Y receptors) totally inhibited ATP-induced [Ca2+]i dynamics, but reactive blue 2 (a P2Y receptor antagonist) did not. Uridine-5'-triphosphate (a P2Y receptor agonist) induced no significant change in [Ca2+]i, but alpha,beta-methylene ATP (a P2X receptor agonist) caused a [Ca2+]i increase. In conclusion, perineurial cells respond to extracellular ATP mainly via P2X receptors.  相似文献   

11.
We have reported previously that PGE2 evoked an increase in intracellular calcium level ([Ca2+]i) in mouse osteoblastic cells (1). Here, we investigated the effects of PGE1 and PGF2 alpha on cAMP production and [Ca2+]i in comparison with those of PGE2. In osteoblastic clone, MC3T3-E1 cells, PGE1 stimulated cAMP production, but had no effect on [Ca2+]i, whereas PGF2 alpha evoked only [Ca2+]i increase. In contrast, PGE2 not only stimulated cAMP production, but also increased [Ca2+]i. From the Scatchard plot analysis of PGE2 it was confirmed that there were two classes of PGE2 binding sites (Kd value, 9.2 nM; binding site, 29 fmole/mg protein, and Kd value, 134 nM; binding site, 148 fmole/mg protein). As the increase in [Ca2+]i was caused by PGF2 alpha and PGE2, but not by PGE1, we investigated the displacement of [3H]-PGF2 alpha binding. The displacement capacity of unlabeled PGE2 was about 110 of that of PGF2 alpha, while that of PGE1 was very low even at 500-fold excess. These data indicate the possibility that the dual action of PGE2 is mediated by distinct receptor systems.  相似文献   

12.
Agonist induced increases in intracellular free calcium, [Ca2+]i, were measured in single Fura-2 loaded bovine aortic endothelial (BAE) cells by dual wavelength microspectrofluorimetry. Low doses of ATP (less than 10 microM) induced complex changes in [Ca2+]i. These changes usually consisted of a large initial transient peak with subsequent fluctuations superimposed upon a maintained rise in [Ca2+]i. Higher doses of ATP (greater than 50 microM) produced much simpler biphasic increases in [Ca2+]i in individual cells. Acetylcholine and bradykinin also elicited increases in [Ca2+]i in single cells in confluent monolayers of endothelial cells. However, only acetylcholine produced complex fluctuations. High doses of acetylcholine evoked simple rises in [Ca2+]i similar to those seen with high doses of ATP. In contrast, bradykinin evoked relatively simple rises in [Ca2+]i at all doses used. These results indicate that the mechanisms responsible for generating agonist induced increases in [Ca2+]i in BAE cells are not homogeneous. ATP and acetylcholine produced more complex Ca2+ changes or 'signatures' in single confluent bovine aortic endothelial cells than bradykinin. All three agonists appeared to release Ca2+ from intracellular stores as well as stimulating Ca2+ influx. The possible mechanisms underlying these phenomena are discussed.  相似文献   

13.
Isolated hepatocytes from fed rats were used to study the effects of the opioid peptide [Leu]enkephalin on intracellular free cytosolic Ca2+ ([Ca2+]i) and inositol phosphate production. By measuring the fluorescence of the intracellular Ca2+-selective indicator quin-2, [Leu]enkephalin was found to increase [Ca2+]i rapidly from a resting value of 0.219 microM to 0.55 microM. The magnitude of this response was comparable with that produced by maximally stimulating concentrations of either vasopressin (100 nM) or phenylephrine (10 microM). The opioid-peptide-mediated increase in [Ca2+]i showed a dose-dependency comparable with the activation of phosphorylase, but it preceded the increase in phosphorylase alpha activity. Addition of [Leu]enkephalin to hepatocytes prelabelled with myo-[2-3H(n)]inositol resulted in a significant stimulation of inositol phosphate production. At 10 min after hormone addition, there were increases in the concentrations of inositol mono-, bis- and tris-phosphate fractions of 12-, 9- and 14-fold respectively. No effect was apparent on the glycerophosphoinositol fraction. The effect of 10 microM-[Leu]enkephalin on inositol phosphate production was significantly greater than that obtained with 10 microM-phenylephrine, but marginally smaller than that induced by 100 nM-vasopressin. However, at these concentrations all three agonists gave a comparable increase in [Ca2+]i and activation of phosphorylase a. These data provide evidence for [Leu]enkephalin acting via a mechanism involving a mobilization of Ca2+ as a result of increased phosphatidylinositol turnover.  相似文献   

14.
Single-cell fluorescence image analysis has been used to characterize the mitogen-induced increases in intracellular free [Ca2+] ([Ca2+]i) in control and protein kinase C-depleted Swiss 3T3 cells. More than 80% of the control cells exhibited fast, transient responses to bombesin, vasopressin, or prostaglandin F2 alpha (PGF2 alpha). In contrast, the [Ca2+]i responses induced by platelet-derived growth factor (PDGF) were markedly more heterogeneous, slower, and often biphasic, with fewer cells (60-70%) responding. The peak [Ca2+]i values obtained in response to each mitogen showed substantial variation between cells. Brief pretreatment of the cells with 12-O-tetradecanoyl phorbol 13-acetate (TPA) reduced the [Ca2+]i responses to bombesin, but did not affect the responses to PDGF. Long-term pretreatment of the cells with TPA to down-modulate protein kinase C resulted in substantially prolonged [Ca2+]i responses to bombesin, vasopressin, and PGF2 alpha, but had no such effect on the responses to PDGF. We conclude that differences between the [Ca2+]i responses to bombesin and PDGF, previously reported using cell populations, reflect differences occurring in individual cells, and that the [Ca2+]i responses to bombesin, vasopressin, and PGF2 alpha (but not PDGF) are subject to feedback inhibition via protein kinase C.  相似文献   

15.
Intercellular communication of epithelial cells was examined by measuring changes in intracellular calcium concentration ([Ca2+]i). Mechanical stimulation of respiratory tract ciliated cells in culture induced a wave of increasing Ca2+ that spread, cell by cell, from the stimulated cell to neighboring cells. The communication of these Ca2+ waves between cells was restricted or blocked by halothane, an anesthetic known to uncouple cells. In the absence of extracellular Ca2+, the mechanically stimulated cell showed no change or a decrease in [Ca2+]i, whereas [Ca2+]i increased in neighboring cells. Iontophoretic injection of inositol 1,4,5-trisphosphate (IP3) evoked a communicated Ca2+ response that was similar to that produced by mechanical stimulation. These results support the hypothesis that IP3 acts as a cellular messenger that mediates communication through gap junctions between ciliated epithelial cells.  相似文献   

16.
Ciliated epithelial cells from rabbit trachea were employed to examine the role of Ca2+ in the regulation of ciliary motility. Tracheal explants and outgrowths were maintained in culture, and ciliary frequency was determined using a photomultiplier interfaced with a spectrum analyzer capable of Fast Fourier transform analysis. Relative cellular Ca2+ levels were determined by measuring 45Ca2+ uptake and efflux. Elevated cellular Ca2+, from exposure to 10(-5) M calcium ionophore A23187, led to an increase in ciliary frequency followed by inhibition of motility after prolonged treatment. A decrease in ciliary frequency was observed upon lowering intracellular Ca2+ by exposing the epithelium to 1 mM EGTA. Exposure of ciliated cells to 10(-4) M trifluoperazine resulted in inhibition of ciliary motility, a result suggesting a possible role for calmodulin- or phospholipid-sensitive Ca2+-dependent protein kinases in ciliary function. These results support the hypothesis that intracellular Ca2+ is actively involved in modulating the frequency of ciliary beat.  相似文献   

17.
We examined the roles of Ca2+ and protein kinase C (PKC) in the cilio-excitatory response to serotonin in pedal ciliary cells from Helisoma trivolvis embryos. Serotonin (5-hydroxytryptamine; 5-HT; 100 micromol/L) induced an increase in ciliary beat frequency (CBF) was abolished by microinjected BAPTA (50 mmol/L), but was only partially inhibited by the phospholipase C inhibitor U-73122 (10 micromol/L). The diacylglycerol analogs 1-oleoyl-2-acetyl-sn-glycerol (100 micromol/L) and 1,2-dioctanoyl-sn-glycerol (100 micromol/L) caused increases in [Ca2+]i that were smaller than those induced by serotonin. In the absence of extracellular Ca2+, 1,2-dioctanoyl-sn-glycerol (100 micromol/L) failed to elicit an increase in both CBF and [Ca2+]i. In contrast, the serotonin-induced increase in CBF persisted in the absence of extracellular Ca2+, although the increase in [Ca2+]i was abolished. PKC inhibitors bisindolylmaleimide (10 and 100 nmol/L) and calphostin C (10 nmol/L) partially inhibited the serotonin-induced increase in CBF, but didn't affect the serotonin-induced change in [Ca2+]i. These findings suggest that an intracellular store-dependent increase in [Ca2+]i mediates the cilio-excitatory response to serotonin. Furthermore, although PKC is able to cause an increase in [Ca2+]i through calcium influx, it contributes to the cilio-excitatory response to 5-HT through a different mechanism.  相似文献   

18.
H Sugiya  S Furuyama 《FEBS letters》1991,286(1-2):113-116
In fura-2-loaded parotid acinar cells, 50-200 microM sphingosine induced an increase in cytosolic Ca2+ ([Ca2+]i). When extracellular Ca2+ was chelated by EGTA, 50 microM sphingosine failed to increase [Ca2+]i, but 100 or 200 microM sphingosine induced a slight and transient increase in [Ca2+]i. The addition of LaCl3 to the medium resulted in the same effect as chelation of extracellular Ca2+. When cells were incubated in low Ca2+ medium containing sphingosine, and extracellular Ca2+ was subsequently added, a rapid increase in [Ca2+]i depending on the concentration of sphingosine was shown. In low Ca2+ medium, a slight increase in [Ca2+]i induced by high concentrations of sphingosine was not shown after the transient increase in [Ca2+]i elicited by methacholine. Inhibitors of protein kinase C, H-7 and K252a, did not mimic the effect of sphingosine on [Ca2+]i. These results suggest that sphingosine stimulates Ca(2+)-influx and further stimulates the release of Ca2+ from agonist-sensitive intracellular pools by a mechanism that is independent of protein kinase C.  相似文献   

19.
We studied the effects of arachidonic acid and its metabolites on intracellular free calcium concentrations ([Ca2+]i) in highly purified bovine luteal cell preparations. Corpora lutea were collected from Holstein heifers between days 10 and 12 of the estrous cycle. The cells were dispersed and small and large cells were separated by unit gravity sedimentation and flow cytometry. The [Ca2+]i was determined by spectrofluorometry in luteal cells loaded with the fluorescent Ca2+ probe, Fura-2. Arachidonic acid elicited a dose-dependent increase in [Ca2+]i in both small and large luteal cells, having an effect at concentrations as low as 5 microM; and was maximally effective at 50 microM. Several other fatty acids failed to exert a similar response. Addition of nordihydroguaiaretic acid (NDGA) or indomethacin failed to suppress the effects of arachidonic acid. In fact, the presence of both inhibitors resulted in increases of [Ca2+]i, with NDGA exerting a greater stimulation of [Ca2+]i than indomethacin. Prostaglandin F2 alpha (PGF2 alpha) as well as prostaglandin E2 (PGE2) increased [Ca2+]i in the small luteal cells. These results support the idea that arachidonic acid exerts a direct action in mobilizing [Ca2+]i, in the luteal cells. Furthermore, they demonstrate that the cyclooxygenase (PGF2 alpha and PGE2) and lipoxygenase products of arachidonic acid metabolism also play a role in increasing [Ca2+]i in bovine luteal cells. Since the bovine corpus luteum contains large quantities of arachidonic acid, these findings suggest that this compound may regulate calcium-dependent functions of the corpus luteum, including steroid and peptide hormone production and secretion.  相似文献   

20.
Extracellular ATP and UTP caused increases in the concentration of cytoplasmic free calcium ([Ca2+]i) and the intracellular level of inositol 1,4,5-trisphosphate (IP3), a second messenger for calcium mobilization, prior to the release of prostacyclin (PGI2) from cultured bovine pulmonary artery endothelial (BPAE) cells. The agonist specificity and dose-dependence were similar for nucleotide-mediated increases in IP3 levels, [Ca2+]i and PGI2 release. An increase in [Ca2+]; and PGI2 release was observed after addition of ionomycin, a calcium ionophore, to BPAE cells incubated in a calcium-free medium. The addition of ATP to the ionomycin-treated cells caused no further increase in [Ca2+]i or PGI2 release. The inability of ATP to cause an increase in [Ca2+]i or PGI2 release in ionomycin-treated cells was apparently due to the ionomycin-dependent depletion of intracellular calcium stores since the subsequent addition of extracellular calcium caused a significant increase in both [Ca2+]i and PGI2 release. Introduction of BAPTA, a calcium buffer, into BPAE cells inhibited ATP-mediated increases in [Ca2+]i and PGI2 release, further evidence that PGI2 release is dependent upon an increase in [Ca2+]i. The increase in [Ca2+]i elicited by ATP apparently caused the activation of a calmodulin-dependent phospholipase A2 since trifluoperazine, an inhibitor of calmodulin, and quinacrine, an inhibitor of phospholipase A2, prevented the stimulation of PGI2 release by ATP. Furthermore, ATP caused the specific hydrolysis of [14C]arachidonyl-labeled phosphatidylcholine and the generation of free arachidonic acid, the rate-limiting substrate for PGI2 synthesis, prior to the release of PGI2 from BPAE cells. These findings suggest that the increase in PGI2 release elicited by ATP and UTP is at least partially dependent upon a phospholipase C-mediated increase in [Ca2+]i and the subsequent activation of a phosphatidylcholine-specific phospholipase A2. ATP analogs modified in the adenine base or phosphate moiety caused PGI2 release with a rank order of agonist potency of adenosine 5'-O-(2-thiodiphosphate) (ADP beta S) greater than 2-methylthioATP (2-MeSATP) greater than ATP, whereas alpha, beta methyleneATP and beta, gamma methyleneATP had no effect on PGI2 release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号