首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Staphylococcal toxic shock syndrome toxin-1 (TSST-1) as well as staphylococcal enterotoxin A (SEA) and B (SEB) have recently been shown to bind directly to the class II major histocompatibility antigen, HLA-DR. Whereas others have characterized TSST-1 and SEA binding to HLA-DR on transfected L cells or B lymphoma cell lines, we sought evidence for direct binding of TSST-1 and SEA to HLA-DR on purified human monocytes. A single class of high-affinity receptors was found for both TSST-1 (dissociation constant (Kd) 40 nM, 3.4 x 10(4) receptors per cell) and SEA (Kd 12 nM, 3.2 x 10(4) receptors per cell) on normal human monocytes. Affinity cross-linking of 125I-labeled toxins to monocytes revealed the presence of two membrane protein subunits with molecular masses consistent with the alpha and beta chains of human HLA-DR (35 and 28 kDa, respectively). The anti-HLA-DR monoclonal antibody L243, but not L203 or 2.06, inhibited radiolabeled toxin binding to human monocytes and neutralized the mitogenic response of human T lymphocytes to both toxins. However, L243 was consistently more effective in blocking radiolabeled TSST-1 than SEA binding to human monocytes from the same donors, suggesting that TSST-1 and SEA may be binding to overlapping epitopes rather than to the same epitope on HLA-DR. Because TSST-1 and SEB bind to distinct epitopes on HLA-DR and because SEA cross competes with both TSST-1 and SEB on the HLA-DR receptor, we postulate that SEA occupies a binding site within HLA-DR that overlaps both TSST-1 and SEB.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Epidemiological evidence indicates infants immunised against diphtheria, pertussis and tetanus (DPT) are at decreased risk of sudden infant death syndrome (SIDS). Asymptomatic whooping cough and pyrogenic toxins of Staphylococcus aureus have been implicated in the aetiology of SIDS. The objectives of the present study were: (1) to determine if the DPT vaccine induced antibodies cross-reactive with the staphylococcal toxins; (2) to determine if antibodies to the pertussis toxin (PT) and the staphylococcal toxins were present in the sera of women during late pregnancy; (3) to examine the effects of infant immunisation on levels of antibodies to PT and the staphylococcal toxins; (4) to assess the effects of changes in immunisation schedules in the UK on the incidence and age distribution of SIDS. Enzyme-linked immunosorbent assays (ELISA) were used to measure binding of rabbit or human IgG to the DPT vaccine, PT, toxic shock syndrome toxin-1 (TSST-1) and staphylococcal enterotoxins A (SEA), B (SEB) and C (SEC). Neutralisation activity of anti-DPT serum was assessed by a bioassay for induction of nitric oxide from human monocytes by the staphylococcal toxins. Anti-DPT serum bound to the DPT vaccine, PT and each of the staphylococcal toxins. It also reduced the ability of the four toxins to induce nitric oxide from monocytes. In pregnant women, levels of IgG to PT, SEC and TSST-1 decreased significantly in relation to increasing weeks of gestation while antibodies to SEA and SEB increased. In infants' sera there were significant correlations between levels of IgG bound to DPT and IgG bound to PT, TSST-1 and SEC but not SEA or SEB. Antibody levels to the toxins in infants declined with age; sera from infants < or = 2 months of age had higher levels of IgG bound to the toxins than those older than 2 months. This pattern was observed for infants whose immunisation schedules began at 2 months of age or 3 months of age. The decrease in IgG bound to the toxins was, however, less for those immunised at 2 months. The decrease in SIDS deaths after the change in immunisation schedules was greatest in the 4-6-month age range. While DPT immunisation might prevent some unexplained infant deaths due to asymptomatic whooping cough, these data indicate that immunisation with DPT also induces antibodies cross-reactive with pyrogenic staphylococcal toxins implicated in many cases of SIDS. Passive immunisation of infants who have low levels of these antibodies might reduce further the numbers of these infant deaths.  相似文献   

3.
Staphylococcal toxins bind to different sites on HLA-DR   总被引:5,自引:0,他引:5  
Staphylococcal enterotoxins (SE) and toxic shock syndrome toxin 1 (TSST-1) bind to MHC class II molecules and the toxin-class II complexes induce proliferation of T cells bearing specific V beta sequences. We have previously reported that these toxins display varying binding affinities for HLA-DR1. We now investigated whether these differences simply reflected differences in binding affinity for a single class II binding site or, at least in part, the engagement of different binding sites on the HLA-DR complex. Through competitive binding studies we show that SEB and TSST-1, which are not closely related by their amino acid sequences, bind to two different sites on HLA-DR. Both of these sites are also occupied by staphylococcal enterotoxin A (SEA), enterotoxin D (SED), and enterotoxin E (SEE) which exhibit more than 70% amino acid sequence homology. SEB and TSST-1 failed to inhibit SEA binding to HLA-DR. These studies suggest that there may be three distinct, although perhaps overlapping, binding sites on HLA-DR for these toxins. Further, although SED and SEE are similar to SEA in structure, and appear to bind the same sites on HLA-DR as SEA, they displayed significantly lower binding affinities. T cell proliferative responses to SED required a higher concentration of the toxin than SEA, probably reflecting its lower binding affinity. SEE, however, elicited T cell responses at very low concentrations, similar to SEA, despite its much lower binding affinity. Therefore, although the affinities of these toxins to MHC class II molecules appear to significantly influence the T cell responses, the effective recognition of the toxin-class II complex by the TCR may also contribute to such responses.  相似文献   

4.
Staphylococcal enterotoxins (SE) activate human T cells in vitro. This requires the presence of Ia+ accessory cells but does not require processing of the toxin by the accessory cell. We and others have recently demonstrated direct binding of SE to human MHC class II molecules. In this study, we have compared in detail the ability of class II molecules to bind two SE, toxic shock syndrome toxin-1 (TSST-1) and SEB. Scatchard analysis of equilibrium binding data indicate that SEB binds to Ia+ human cell lines with a 10-fold lower affinity than TSST-1. Likewise, SEB precipitates HLA-DR alpha- and beta-chains from detergent lysates of Ia+ cells less efficiently than TSST-1. The binding of TSST-1 and SEB to transfected L cells expressing HLA-DR and HLA-DQ gene products was differentially inhibited by anti-HLA-DR mAb. There was virtually no cross-inhibition of TSST-1 and SEB in competitive binding assays. We conclude that TSST-1 and SEB bind to two MHC class II sites which can be distinguished by their relative accessibility to blocking by anti-class II mAb and heterologous toxin.  相似文献   

5.
A simple method for the purification of staphylococcal enterotoxins A (SEA), B (SEB), and C2 (SEC2) from fermentor-grown cultures was developed. The toxins were purified by pseudo-affinity chromatography by using the triazine textile dye "Red A" and gave overall yields of 49% (SEA), 44% (SEB), and 53% (SEC2). The purified toxins were homogeneous when analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, but isoelectric focusing of the preparations revealed the microheterogeneity associated with these toxins. The SEA and SEB preparations each consisted of two isoelectric forms with pI values of 7.3 and 6.8 (SEA) and 8.9 and 8.55 (SEB); in contrast, SEC2 contained five different isoelectric forms, with pI values ranging between 7.6 and 6.85. The pattern of elution of the isoelectric forms from the column indicated a cationic-exchange process involved in the binding of toxin to Red A. Such a method forms the basis of a high-yielding, rapid means of purifying the staphylococcal enterotoxins that can easily be adapted to large-scale production.  相似文献   

6.
A simple method for the purification of staphylococcal enterotoxins A (SEA), B (SEB), and C2 (SEC2) from fermentor-grown cultures was developed. The toxins were purified by pseudo-affinity chromatography by using the triazine textile dye "Red A" and gave overall yields of 49% (SEA), 44% (SEB), and 53% (SEC2). The purified toxins were homogeneous when analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, but isoelectric focusing of the preparations revealed the microheterogeneity associated with these toxins. The SEA and SEB preparations each consisted of two isoelectric forms with pI values of 7.3 and 6.8 (SEA) and 8.9 and 8.55 (SEB); in contrast, SEC2 contained five different isoelectric forms, with pI values ranging between 7.6 and 6.85. The pattern of elution of the isoelectric forms from the column indicated a cationic-exchange process involved in the binding of toxin to Red A. Such a method forms the basis of a high-yielding, rapid means of purifying the staphylococcal enterotoxins that can easily be adapted to large-scale production.  相似文献   

7.
8.
Strong cross-reactions were demonstrated for staphylococcal enterotoxins B (SEB) and C1 (SEC1) by antigen-binding capacity and by competitive binding ability. Both SEB and SEC1 combined completely with the heterologous antibody although requiring four times as much antiserum as the homologous enterotoxin and both displaced about one-third of the other enterotoxin from a heterologous antigen-antibody system. It is proposed that one of the three major antigenic determinants of these enterotoxins possesses a significant similarity but probably not an identity of structure. SEB and SEC1 did not combine with antiserum to enterotoxin A nor inhibit the reaction of SEA with anti-SEA. SEA had no intrinsic binding capacity for anti-SEB or anti SEC1 nor did it inhibit the binding of either enterotoxin to its own antibody. Affinity chromatography was employed to demonstrate that a small apparent binding of SEA to anti-SEB was due to antibody to SEA in the anti-SEB serum and that an almost complete displacement of SEC1 binding to anti-SEC1 was caused by contaminating SEC (about 0.01%) in preparations of enterotoxin A.  相似文献   

9.
《MABS-AUSTIN》2013,5(1):119-129
Staphylococcal enterotoxin (SE) B is among the potent toxins produced by Staphylococcus aureus that cause toxic shock syndrome (TSS), which can result in multi-organ failure and death. Currently, neutralizing antibodies have been shown to be effective immunotherapeutic agents against this toxin, but the structural basis of the neutralizing mechanism is still unknown. In this study, we generated a neutralizing monoclonal antibody, 3E2, against SEB, and analyzed the crystal structure of the SEB-3E2 Fab complex. Crystallographic analysis suggested that the neutralizing epitope overlapped with the MHC II molecule binding site on SEB, and thus 3E2 could inhibit SEB function by preventing interaction with the MHC II molecule. Mutagenesis studies were done on SEB, as well as the related Staphylococcus aureus toxins SEA and SEC. These studies revealed that tyrosine (Y)46 and lysine (K)71 residues of SEB are essential to specific antibody–antigen recognition and neutralization. Substitution of Y at SEA glutamine (Q)49, which corresponds to SEB Y46, increased both 3E2’s binding to SEA in vitro and the neutralization of SEA in vivo. These results suggested that SEB Y46 is responsible for distinguishing SEB from SEA. These findings may be helpful for the development of antibody-based therapy for SEB-induced TSS.  相似文献   

10.
Staphylococcal enterotoxin (SE) B is among the potent toxins produced by Staphylococcus aureus that cause toxic shock syndrome (TSS), which can result in multi-organ failure and death. Currently, neutralizing antibodies have been shown to be effective immunotherapeutic agents against this toxin, but the structural basis of the neutralizing mechanism is still unknown. In this study, we generated a neutralizing monoclonal antibody, 3E2, against SEB, and analyzed the crystal structure of the SEB-3E2 Fab complex. Crystallographic analysis suggested that the neutralizing epitope overlapped with the MHC II molecule binding site on SEB, and thus 3E2 could inhibit SEB function by preventing interaction with the MHC II molecule. Mutagenesis studies were done on SEB, as well as the related Staphylococcus aureus toxins SEA and SEC. These studies revealed that tyrosine (Y)46 and lysine (K)71 residues of SEB are essential to specific antibody–antigen recognition and neutralization. Substitution of Y at SEA glutamine (Q)49, which corresponds to SEB Y46, increased both 3E2’s binding to SEA in vitro and the neutralization of SEA in vivo. These results suggested that SEB Y46 is responsible for distinguishing SEB from SEA. These findings may be helpful for the development of antibody-based therapy for SEB-induced TSS.  相似文献   

11.
We applied two-dimensional gel electrophoresis (2-DE) to the total exoproteins secreted from pathogenic MRSA strains and identified major protein spots by N-terminal amino acid sequence analysis. In approximately 300 to 500 spots visualized on each gel, various exoproteins and cell-associated proteins were identified and their sites on the gels confirmed for construction of a reference map. Major exotoxins such as enterotoxins SEA, SEB, and SEC,, toxic shock syndrome toxin-1 (TSST-1), and hemolysins were distributed in the region of pI 6.8 to 8.1 and MW 21 to 35 kDa. Although the differences between calculated and observed values of pI and MW were relatively small in each exoprotein, those of several proteins including alpha-hemolysin and SEB were considerably deviated from the positions of the expected values. Some exoproteins were detected as multiple spots. These included beta-hemolysin, enterotoxins SEA, SEB, and SEC3, glutamic acid-specific endopeptidase, glycerophosphoryl diester phosphodiesterase and triacylglycerol lipase. The multiple spots of these exoproteins may be generated by the action of own proteases. Certain similarities of 2-DE patterns among strains belonging to the same coagulase types were observed. On the basis of 2-DE image analysis, coagulase type II strains secreted somewhat larger amounts of SEB and SEC3 as well as TSST-1 than the strains belonging to other coagulase types. Taken together, 2-DE analysis of exoproteins is applicable to epidemiological studies for MRSA, as compared with pulsed field gel electrophoresis of restricted chromosomal DNA.  相似文献   

12.
Interaction of staphylococcal exotoxins (SE) with MHC class II molecules plays a central role in the activation of immune cells by SE. We have recently demonstrated directly that toxic shock syndrome toxin-1 (TSST-1) binds to MHC class II molecules with high affinity, and similar results have been reported for SEA and SEB. The ability of T cells to respond to individual SE is associated with the expression of particular TCR-V beta gene elements. In the present study we have examined the effect of polymorphism on the ability of MHC class II molecules to bind SEB and TSST-1. We have used a panel of L cell transfectants that express different allelic forms of each of the three human class II isotypes. Radioligand binding assays detected binding of SEB and TSST-1 to most, but not all of the MHC class II molecules examined. Toxin-driven MHC class II-dependent T cell proliferation occurred with all transfectants examined even in the absence of detectable toxin binding. These results indicate that SE can bind to human MHC class II molecules of diverse phenotypes.  相似文献   

13.
Staphylococcal enterotoxin (SE) B, a heat-stable toxin secreted by Staphylococcus aureus, has been implicated in the pathogenesis and exacerbation of several critical illnesses. It has been hypothesized that enterotoxins may interact with blood products such as platelets, in addition to T-lymphocytes and renal proximal tubule cells. The aim of this present study was to elucidate whether SEB directly alters human platelet function. Human platelet rich plasma (PRP) was pre-incubated with SEA, SEB, SEC or TSST-1, (at various concentrations and incubation times). After incubation, PRP was exposed to thrombin and aggregation was assessed. Incubation with all toxins tested resulted in decreased aggregation, specifically; exposure to 10μ g/ml of SEB for 30 min caused a 20% decrease and a 49% decrease at 90 min. A similar reduction in aggregation was seen in samples incubated with phorbol myristate acetate, a known stimulator of protein kinase C (PKC). Further, platelets exposed to SEB exhibited an increased plasma membrane PKC activity. Sphingosine, an inhibitor of PKC proved to block the SEB-induced reduction in aggregation. SEB effects on platelet metabolism were investigated using high performance liquid chromatography showing up to a 2-fold increase of active metabolites lipoxin A4 and 12-HETE, as compared to control. These data indicate that SEB is able to induce platelet dysfunction, and these effects may be mediated through activation of PKC.The views of the authors do not purport to reflect the position of the Department of the Army or the Department of Defense (Para, 4–3) AR360-5.  相似文献   

14.
The common bacterial toxins hypothesis of sudden infant death syndrome (SIDS) is that nasopharyngeal bacterial toxins can trigger events leading to death in infants with absent/low levels of antibody that can neutralise the toxins. The aim of this study was to investigate nasopharyngeal carriage of Staphylococcus aureus and determine levels of immunity in the first year of life to toxic shock syndrome toxin (TSST-1) and staphylococcal enterotoxin C (SEC). Both toxins have been implicated in SIDS cases. Seventy-three mothers and their infants (39 males and 34 females) were enrolled onto the study. The infants had birth dates spread evenly throughout the year. In infants, S. aureus carriage decreased significantly with age (P<0.001). Between 40% and 50% of infants were colonised with S. aureus in the first three months of life and 49% of the isolates produced one or both of the staphylococcal toxins. There was a significant correlation between nasopharyngeal carriage of S. aureus in mothers and infants in the three months following the birth (P<0.001). Carriage of S. aureus in infants and their mothers was not significantly associated with levels of antibody to TSST-1 or SEC in cord blood, adult saliva or breast milk. Infants colonised by S. aureus had higher levels of salivary IgA to TSST-1 than infants who were culture negative. Analysis of cord blood samples by a quantitative ELISA detected IgG bound to TSST-1 and SEC in 95.5% and 91.8% of cases respectively. There was a marked variation in levels of maternal IgG to both TSST-1 and SEC among cord blood samples. Maternal age, birth weight, and seasonality significantly affected the levels of IgG binding to TSST-1 or SEC. Analysis of infant saliva samples detected IgA to TSST-1 and SEC in the first month after birth; 11% of samples tested positive for salivary IgA to TSST-1 and 5% for salivary IgA to SEC. By the age of two months these proportions had increased to 36% and 33% respectively. More infants who used a dummy tested positive for salivary IgA to TSST-1 compared to infants who did not use a dummy. Levels of IgA to TSST-1 and SEC detected in the breast-milk samples varied greatly among mothers. There was a trend for infants receiving breast milk with low levels of antibody to TSST-1 or SEC to have higher levels of salivary antibody to the toxins. In conclusion, passive immunity to toxins implicated in SIDS cases varies greatly among infants. Infants are able to mount an active mucosal immune response to TSST-1 and SEC in the first month of life.  相似文献   

15.
By fusion of mouse spleen cells immunized with five different staphylococcal enterotoxins (SEA, SEB, SEC2, SED, and SEE) with myeloma cells, we obtained 15 hybridomas producing monoclonal antibodies (mAbs). Four mAbs were reactive with both SEA and SEE, whereas 8 mAbs were reactive with SEB and SEC2. One mAb reacted with SEA, SED, and SEE. The other two mAbs were found to be reactive with all five serotypes of SEs. The mAbs specific for five serotypes of SEs were found to be most reactive with SED, reactive with SEA, and slightly less reactive with SEB, SEC2, and SEE. Those mAbs with specificities for all serotypes of SEs may be valuable to prepare immunoadsorbent(s) for isolation of SEs and to detect SEs in foods and clinical specimens involved in outbreaks of staphylococcal food poisoning.  相似文献   

16.
We investigated the effect of carriage of Staphylococcus aureus in the later stages of pregnancy on levels of antibody specific to the S. aureus toxins, staphylococcal enterotoxin B (SEB), staphylococcal enterotoxin C (SEC) and toxic shock syndrome toxin-1 (TSST-1), in cord blood and breast milk and also explored the relationship between levels of antibody in antenatal serum and cord blood. Nasopharyngeal swabs and stool samples were collected on two occasions, from 96 women, during the last 6 weeks of pregnancy. Samples were cultured and S. aureus isolates were identified. Antenatal and cord blood samples from the same women and their infants were analysed for IgG antibody to SEB, SEC and TSST-1 by enzyme-linked immunosorbent assay. Breast milk samples were analysed for IgA antibody to the same toxins. We found that S. aureus carriage in pregnancy is common and exposure to a toxin-producing isolate boosts immunity. Over 89% of women and infants have some protective antibody to the toxins, and antitoxin IgG levels are higher in cord blood samples compared with antenatal samples. Levels of cord blood IgG and breast milk IgA specific for the staphylococcal toxins vary. Some infants lack protection and could be at risk of toxin-induced disease.  相似文献   

17.
Staphylococcal and streptococcal exotoxins, also known as superantigens, mediate a range of diseases including toxic shock syndrome, and they exacerbate skin, pulmonary and systemic infections caused by these organisms. When present in food sources they can cause enteric effects commonly known as food poisoning. A rapid, sensitive assay for the toxins would enable testing of clinical samples and improve surveillance of food sources. Here we developed a bead-based, two-color flow cytometry assay using single protein domains of the beta chain of T cell receptors engineered for high-affinity for staphylococcal (SEA, SEB and TSST-1) and streptococcal (SpeA and SpeC) toxins. Site-directed biotinylated forms of these high-affinity agents were used together with commercial, polyclonal, anti-toxin reagents to enable specific and sensitive detection with SD50 values of 400 pg/ml (SEA), 3 pg/ml (SEB), 25 pg/ml (TSST-1), 6 ng/ml (SpeA), and 100 pg/ml (SpeC). These sensitivities were in the range of 4- to 80-fold higher than achieved with standard ELISAs using the same reagents. A multiplex format of the assay showed reduced sensitivity due to higher noise associated with the use of multiple polyclonal agents, but the sensitivities were still well within the range necessary for detection in food sources or for rapid detection of toxins in culture supernatants. For example, the assay specifically detected toxins in supernatants derived from cultures of Staphylococcus aureus. Thus, these reagents can be used for simultaneous detection of the toxins in food sources or culture supernatants of potential pathogenic strains of Staphylococcus aureus and Streptococcus pyogenes.  相似文献   

18.
Toxic shock syndrome toxin-1 (TSST-1)-binding structures present on murine lymphoid tissues were investigated by using 125I-TSST-1. T-depleted C57BL/6 spleen cells incubated with TSST-1 for 3 h at 0 degree C were mitogenic to splenic T cells, indicating that the former cells bind and present TSST-1 to T cells. TSST-1-binding activity was observed in C57BL/6 splenic B cells and L cells transfected with I-Ab genes, but not in splenic T cells and control L cells. Scatchard plot analysis showed that these B cells and transfectants bound TSST-1 with similar binding affinity. SDS-PAGE analysis showed that lysates of C57BL/6 spleen cells and the I-Ab-positive transfectants contain a single band which bound TSST-1 and comigrated with I-Ab heterodimers. TSST-1-binding activity observed clearly in C57BL/6. BALB/c, and C3H/HeN spleen cells and L cells transfected with I-Ab or I-Ak genes was not reduced by paraformaldehyde fixation. Binding of 125I-TSST-1 to the three spleen cells was markedly reduced by anti-I-A antibodies, but not by anti-I-E antibodies. C57BL/6, C3H/HeN, and (C3H/HeN x C57BL/6) F1 T cells were activated by TSST-1 to proliferate and produce IL-2 in the presence of FT6.2 cells, LT1-30-3 cells and either of them, respectively, but not in the presence of control L cells. These results indicate that I-A molecules function as the structures via that accessory cells directly bind TSST-1 on the cell surface and present a triggering signal of TSST-1 to T cells.  相似文献   

19.
Staphylococcal enterotoxins (SE) and toxic shock syndrome toxin-1 bind directly to class II molecules of the MHC and stimulate T cells based predominantly on the V beta segment used by the TCR. We investigated the relationship between the class II binding affinities of four of these exotoxins, SEA, SEB, SEC1, and toxic shock syndrome toxin-1 and their T cell signaling capabilities. Although the toxins stimulated T cells at concentrations that ranged over more than two orders of magnitude, their affinities for class II (DR1) differed by less than sixfold. The affinities of the toxins predicted their capacity to stimulate resting T cells to proliferate. The binding affinities of the toxins for class II molecules indicated that at concentrations required for T cell stimulation, as few as 0.1% of the class II molecules are complexed with toxin. Finally, the isotype of class II molecules affected the ability of the toxins to bind and use these MHC Ag to stimulate T cells. These data thus demonstrate that of the staphylococcal exotoxins studied, both their potency as T cell mitogens and their ability to function in the presence of single class II isotypes can be attributed in part to their characteristic abilities to bind class II molecules.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号