首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Testes of the Western spotted skunk enlarge and regress seasonally. The pineal hormone, melatonin, may be important in timing this seasonal reproductive activity. Likewise, the suprachiasmatic nuclei (SCN) have been implicated as possible neural regulators of pineal and reproductive events. These experiments were conducted to determine whether ablation of the SCN or constant administration of melatonin alters timing of the seasonal pattern of testicular regression and recrudescence. Male skunks (n = 24) were treated as follows: six received two empty Silastic capsules, six received two melatonin-filled Silastic capsules, six received sham lesions to the SCN, and six received lesions to the SCN (SCNx). All skunks were exposed to a natural photoperiod and had regressed testes at the onset of the experiment. Four of six males from the SCNx group had an average of 94 +/- 11.3% of these nuclei destroyed. Sham SCNx, animals with less than 40% of the SCN ablated, and males with empty capsules did not have fully enlarged testes until October. SCNx and melatonin-treated skunks exhibited a hastening of testicular recrudescence with maximal testis size being reached in June. Skunks with lesions to the SCN maintained enlarged testes for 5 months while all other groups exhibited rapid regression after attaining maximal testis size. Testicular regression occurred from July through October in animals receiving continuous melatonin, while controls exhibited recrudescence during this same period. Our data suggest that the SCN, melatonin, and thus the pineal gland, play a role in regulating the seasonal testicular cycle of the spotted skunk.  相似文献   

2.
Pineal melatonin synthesis is regulated by norepinephrine at beta-adrenergic receptors on pinealocytes. Melatonin released from the pineal is believed to be responsible for short photoperiod-induced gonadal regression. By blocking melatonin production at the beta-adrenergic receptor with beta-adrenergic antagonists, short photoperiod-induced gonadal regression was prevented. Propranolol or nadolol injected daily in the late afternoon prohibited short photoperiod-produced testicular regression in male Syrian hamsters. Likewise, propranolol and nadolol pellets were able to block short photoperiod-induced gonadal regression. Interestingly, in the presence of beta-adrenergic antagonists, gonadal regression was still produced by daily afternoon injections of melatonin. These results indicate that propranolol or nadolol can be used to "pharmacologically pinealectomize" hamsters and block the physiological action of the pineal.  相似文献   

3.
The annual cycle of reproductive activity in the Syrian hamster, Mesocricetus auratus, is the result of interaction between seasonal changes in daylength (photoperiodism) and seasonal changes in responsiveness to daylength (seasonality). The present experiment was designed to investigate the role of the pineal gland and its hormone, melatonin, in the alternation of seasonality (scotosensitivity and scotorefractoriness). Male hamsters were maintained on short daylengths (10L:14D) to establish scotorefractoriness, and then they were transferred to long daylengths (14L:10D) for conversion to scotosensitivity (sensitive to short daylengths). Before transfer to long daylengths, some of the hamsters were pinealectomized and others were sham-operated or unoperated. Some of the pinealectomized hamsters received single daily melatonin or saline injections while on long daylengths. After 14 wk on long daylengths, the hamsters were transferred to short daylengths for 10 wk to test for conversion to scotosensitivity. Pinealectomized hamsters were given three daily melatonin injections while on short daylengths. Such treatment is known to promote gonadal regression in scotosensitive but not in scotorefractory hamsters. Examination of testes after the short daylength interval revealed that exposure of nonpinealectomized hamsters to long daylengths had reestablished scotosensitivity (regressed testes). Pinealectomized hamsters that received no melatonin replacement while on long daylengths remained scotorefractory (enlarged testes), whereas those that received single daily injections of melatonin during long daylengths were found to be scotosensitive. These results indicate that a daily pulse of melatonin during expsoure to long daylengths has an important role in reestablishing responsiveness (scotosensitivity) to short daylengths.  相似文献   

4.
Gonadal state, pineal melatonin rhythms, and locomotor activity rhythms were examined in juvenile male Djungarian hamsters exposed to non-24-hr light cycles ("T-cycles") or to full photoperiods. At the end of 1 month, hamsters exposed to a 1-hr pulse of light every 24.33 hr (T 24.33) exhibited small testes, whereas those receiving the same amount of light every 24.78 hr (T 24.78) displayed stimulated gonads, ten-fold larger in size. Accompanying the nonstimulatory effect of the T 24.33 cycle were nocturnal peaks in both pineal melatonin content and serum melatonin concentration which were longer by approximately 4 hr than those observed on the photostimulatory T 24.78 cycle. Exposure to an intermediate-length T-cycle (T 24.53) resulted in a mixed gonadal response and in pineal and serum melatonin peaks of intermediate duration. Wheel-running activity was entrained to the T-cycles such that light was present only near the beginning of the subjective night, its phase (relative to activity onset) differing only slightly among T-cycle groups. Hence the durational differences observed in the melatonin peaks were apparently not due to the acute suppressive or phase-advancing effects of morning light on melatonin biosynthesis, but were rather the result of differences in the endogenous control of pineal activity by the circadian pacemaker system. While no strong correlation was detected between gonadal state and the phase of locomotor activity onset relative to the light pulse, a significant correlation was observed between gonadal state and the duration of daily locomotor activity (alpha). These data were compared to similar measures obtained from hamsters exposed to long-versus short-day full photoperiods (LD 16:8 vs. LD 10:14). In summary, the results of this study indicate involvement of the circadian pacemaker system of Djungarian hamsters in the control of pineal melatonin synthesis and secretion, and in photoperiodic time measurement. Furthermore, these data strengthen the hypothesis that it is the duration of nocturnal pineal melatonin secretion that is the critical feature of this neuroendocrine gland's photoperiodic signal.  相似文献   

5.
Continuous exposure of male hamsters to short day lengths induces testicular regression. This is followed many weeks later by spontaneous recrudescence of the testes with reinitiation of spermatogenesis and function of the accessory sexual glands. Hamsters at this stage of the annual reproductive cycle are refractory to short photoperiods--even continuous darkness will not induce another bout of testicular regression. Animals refractory to short days are also refractory to the pineal hormone melatonin and a number of investigators attribute spontaneous recrudescence and photo and melatonin refractoriness to a developed target cell insensitivity to endogenous melatonin from the pineal. Refractoriness is terminated by exposure to long days for at least 11 weeks. The pineal gland is reported to be essential for this process. We report here the effects of pinealectomy, daily melatonin injections, and constant-release melatonin implants on the ability of male hamsters to recover from the refractory state. In the absence of the pineal gland, refractory male hamsters did not discriminate (count?) 15 weeks of long days to terminate refractoriness. Daily melatonin injections at 1900 h, but not at 1200 h (lights 0600-2000 h) during the 15 weeks of long-day exposure blocked the recovery from refractoriness. Constant-release melatonin implants abolished the animals ability to measure 12 and 15 weeks of long days to terminate refractoriness. These results demonstrate that general target tissue insensitivity to melatonin cannot account for the refractory state in hamsters, that a multiplicity of target tissues may exist for melatonin to account for its varied roles throughout the annual reproductive cycle in hamsters, and that the pineal gland is intimately involved in the animals' ability to measure a prescribed duration of long days to terminate refractoriness.  相似文献   

6.
Summary A recent study has shown that olfactory bulbectomy (BX) will prevent reproductive regression associated with short photoperiod in male golden hamsters. The results of experiments reported in this paper show that bulbectomized hamsters on long or short photoperiod still show a large nocturnal elevation in pineal melatonin production and that BX inhibits the reproductive regression induced by exogenous melatonin in pinealectomized hamsters. The data therefore indicate that BX does not inhibit short photoperiod induced testicular regression by altering melatonin secretion.  相似文献   

7.
Adult male Turkish hamsters maintained testicular function when exposed to photoperiods of 15, 16, or 17 h of light per day. Photoperiods of less than 15 or greater than 17 h of light per day induced a rapid and complete testicular regression. As pinealectomy had been shown by others to induce testicular regression in long-day Turkish hamsters, we thought that regression on 18 or more h of light might be based on the inability of the pineal to generate a daily rhythm of melatonin in production and release. This proved not to be the case. Animals exposed to 14-18 and 20 h of light per day had a robust nocturnal melatonin rhythm.  相似文献   

8.
Adult male Syrian hamsters either placed in a short photoperiod alone or kept in a long photoperiod and given daily afternoon injections of the pineal indole melatonin (25 micrograms) exhibited splenic hypertrophy and extramedullary hematopoiesis in addition to a marked regression in testicular weight. The testicular regression as well as the changes in spleen weight and histology could be prevented if the animals in short photoperiod were either pinealectomized or implanted subcutaneously with a pellet containing 1 mg melatonin. Female Syrian hamsters given afternoon injections of melatonin for 7 or 12 weeks had ovaries devoid of corpora lutea; additionally, these animals had reduced relative spleen weights compared to the control animals. In conclusion, it is apparent that spleen weight varies with the functional status of the gonads. Splenic hypertrophy accompanied by pineal-induced testicular regression in males may be related to splenic extramedullary hematopoiesis.  相似文献   

9.
Pineal levels of tryptophan, 5-hydroxytryptophan, serotonin, N-acetylserotonin, melatonin, 5-hydroxyindoleacetic acid and the enzyme activities of N-acetyltransferase and hydroxyindole-O-methyltransferase were determined in male albino rats and Syrian hamsters that were injected with insulin twice daily for three days, or injected with streptozotocin to induce diabetes. Neither insulin injections nor streptozotocin diabetes had any effect on pineal melatonin production in rats. In hamsters, diabetes reduced the nocturnal peak of pineal melatonin content by approximately one half, while insulin injections had no effect on pineal melatonin levels; however, insulin injections did cause a slight increase in pineal N-acetyltransferase activity. These findings indicate that the pineal gland of the hamster may be more sensitive to alterations in plasma insulin levels than the same organ in rats.  相似文献   

10.
Juvenile hamsters were injected daily with melatonin and some were also given transplants of 2 pituitaries under the kidney capsule. Weights of the testes and the accessory reproductive glands were reduced after 8 and after 12 weeks of melatonin treatment, but remained unaltered in animals treated with ectopic pituitary transplants. Levels of testicular LH/hCG receptors were significantly reduced by daily melatonin injections for 8 and 12 weeks. The presence of pituitary transplants in melatonin-injected hamsters prevented these reductions, and increased LH/hCG receptors above control levels. These changes in testicular LH/hCG receptors were closely related to alterations in serum prolactin concentration induced by melatonin and pituitary transplants. After 8, but not after 12 weeks of treatment, testicular prolactin receptor levels were reduced by melatonin and maintained by the presence of pituitary transplants. We conclude that: juvenile male hamsters become sensitive to the effects of daily melatonin injections when they reach maturity; daily melatonin injections can reduce the levels of testicular LH/hCG and prolactin receptors; and the effects of melatonin on LH/hCG and prolactin receptors are probably due to suppression of endogenous prolactin release.  相似文献   

11.
The duration of nocturnal pineal melatonin secretion transduces effects of day length (DL) on the neuroendocrine axis of photoperiodic rodents. Long DLs support reproduction, and short DLs induce testicular regression, followed several months later by spontaneous recrudescence; gonadal regrowth is thought to reflect development of tissue refractoriness to melatonin. In most photoperiodic species, pinealectomy does not diminish reproductive competence in long DLs. Turkish hamsters (Mesocricetus brandti) deviate from this norm: elimination of melatonin secretion in long-day males by pinealectomy or constant light treatment induces testicular regression and subsequently recrudescence; the time course of these gonadal transitions is similar to that observed in males transferred from long to short DLs. In the present study, long-day Turkish hamsters that underwent testicular regression and recrudescence in constant light subsequently were completely unresponsive to the antigonadal effects of short DLs. Other hamsters that manifested testicular regression and recrudescence in short DLs were unresponsive to the antigonadal effects of pinealectomy or constant light. Long-term suppression of melatonin secretion induces a physiological state in Turkish hamsters similar or identical to the neuroendocrine refractoriness produced by short-day melatonin signals (i.e., neural refractoriness to melatonin develops in the absence of circulating melatonin secretion). A melatonin-independent interval timer, which would remain operative in the absence of melatonin during hibernation, may determine the onset of testicular recrudescence in the spring. In this respect, Turkish hamsters differ from most other photoperiodic rodents.  相似文献   

12.
Daily changes of pineal melatonin content were determined in warm-adapted nonhibernating and cold-adapted hibernating golden hamsters (Mesocricetus auratus). Pineal melatonin in nonhibernating golden hamsters showed marked daily rhythm with the night values about 20 times higher than the daytime ones. In hamsters hibernating for 2 and 3 days the melatonin rhythm was abolished, since no increase of pineal melatonin over basal levels occurred throughout 24 hr period. After arousal from hibernation melatonin increased rapidly regardless whether the hamsters were provoked to arousal during day or night.  相似文献   

13.
Pineal melatonin rhythm in golden hamsters was abolished during hibernation. After arousal in darkness, pineal melatonin increased rapidly regardless of whether the arousal was induced during the day or at night. Rapid increase of pineal melatonin after arousal was markedly diminished in animals exposed to light. In hamsters aroused at midnight, the melatonin rhythm in constant darkness ran with the reversed phase relative to hamsters aroused at noon. Since after arousal the melatonin rhythm obviously starts anew from the same phase, we conclude that the circadian pacemaker driving the rhythm might be arrested during hibernation at the day-time phase.  相似文献   

14.
Exposure of adult male Syrian hamsters to artificially shortened photoperiods in the laboratory was followed by gonadal involution. Return of these animals to long days (light:ddark cycles of 14:10) resulted in regrowth of the reproductive organs, following which the animals were refractory to the normally antigonadotrophic effects of daily melatonin injections given late in the afternoon. When hamsters were kept under naturally shortening photoperiods beginning on October 19, their reproductive organs involuted and remained infantile until the following spring when they again recrudesced to adult size. These animals too were refractory to the inhibitory effects of daily afternoon melatonin injections. The refractory period to melatonin was interrupted by exposure of the animals to long days for 22 weeks.  相似文献   

15.
Timing of daily torpor was assessed in suprachiasmatic nucleus-ablated (SCNx) and sham-ablated Siberian hamsters fed restricted amounts of food each day either in the light or dark phase of a 14:10 light-dark cycle. Eighty-five percent of sham-ablated and 45% of SCNx hamsters displayed a preferred hour for torpor onset. In each group, time of torpor onset was not random but occurred at a mean hour that differed significantly from chance. Time of food presentation almost completely accounted for the timing of torpor onset in SCNx animals and significantly affected timing of this behavior in intact hamsters. These results suggest that the circadian pacemaker in the SCN controls the time of torpor onset indirectly by affecting timing of food intake, rather than by, or in addition to, direct neural and humoral outputs to relevant target tissues.  相似文献   

16.
When adult male Syrian hamsters were maintained under 14 h light and 10 h darkness daily (lights on from 0600-2000 h), peak pineal melatonin levels (705 pg/gland) were attained at 0500 h. When the dark phase of the light:dark cycle was interrupted with a 15 min pulse of light from 2300–2315 h (3 h after lights out), the highest melatonin levels achieved was roughly 400 pg/gland. Finally, if the 15 min pulse of light was given at 0200–0215 h (6 h after lights out) the nocturnal rise in pineal melatonin was completely abolished. Having made these observations, a second experiment was designed to determine the ability of afternoon melatonin injections to inhibit reproduction in hamsters kept under an uninterrupted 1410 cycle or under the same lighting regimen where the dark phase was interrupted with a 15 min pulse of light (0200–0215 h). In the uninterrupted light:dark schedule the daily afternoon injection of 25 g melatonin caused the testes and the accessory sex organs to atrophy within 11 weeks. Conversely, if the dark phase was interrupted with light between 0200–0215 h, afternoon melatonin injections were incapable of inhibiting the growth of the reproductive organs. The findings suggest that exogenously administered melatonin normally synergizes with endogenously produced melatonin to cause gonadal involution in hamsters.  相似文献   

17.
In Siberian hamsters, transference of photoperiodic information from dam to fetus influences pubertal testicular development of the young when reared either in constant light (LL) or postnatal photoperiods of intermediate length (i.e. 14L:10D). The effects of short photoperiods during gestation can be mimicked by administering melatonin to pregnant females. This experiment examined whether there exists a daily pattern of sensitivity to melatonin when it is administered to pineal-intact pregnant females housed on a long photoperiod. Groups of pregnant and lactating females received melatonin at each hour of the day. The young were not treated with exogenous melatonin. At the approximate time of maturation of their endogenous pineal melatonin rhythm (Day 15), the young were placed in LL to suppress pineal melatonin secretion. Young males were killed at 28 days of age. Afternoon (1200 h-2000 h) and late night (0400 h) injections of melatonin into females caused their male young to develop as though gestation occurred on a short photoperiod. Melatonin injections at other times were ineffective. The daily pattern of effectiveness of exogenous melatonin administration to pregnant females resembles that observed in adult males of this and other hamster species and is consistent with the hypothesis that a daily rhythm in sensitivity to melatonin is involved in the transduction of photoperiodic signals.  相似文献   

18.
During the past decade there has been ample documentation of the proposition that the pineal gland mediates photoperiodic influences upon reproductive behavior of hamsters. It is commonly hypothesized that the pineal gland expresses its activity by transformation of photoperiodic information into an hormonal output, that hormone being melatonin. If this hypothesis is correct, there must be some essential diffrence in melatonin's output when hamsters are exposed to different photoperiodic environments. The experiments summarized in this communication analyze pineal melatonin contents in Syrian hamsters maintained in a variety of photoperiodic conditions during different physiological states. The results demonstrate that adult hamsters have a daily surge in pineal melatonin content throughout their lifetime when exposed to simulated annual photoperiodic cycles. There is some fluctuation in the amount of pineal melatonin produced during different physiological states and photoperiodic environments, but these fluctuations seem small when compared to those normally found for other regulatory hormones. When hamsters are exposed to different photoperiodic regimens, the daily melatonin surge maintains a relatively constant phase relationship with respect to the onset of daily activity. There is a concomitant change in its phase relationship with respect to light-dark transitions.Presented at the Ninth International Congress of Biometeorology, 23 September–1 October 1981, Osnabrück and Stuttgart-Hohenheim, Federal Republic of Germany.  相似文献   

19.
Weekly subcutaneous implants of melatonin in a beeswax pellet prevented the testicular regression which normally occurs in hamsters exposed to short photoperiod for 8 weeks. Normal (14L:10D) hamster testes were indistinguishable from the testes of melatonin-treated (1L:23D) hamsters. The exogenous melatonin had varied effects on the fine structure of the golden hamster pineal gland. Pinealocyte nuclear characteristics of melatonin-treated hamsters (smaller average diameter, less polymorphism, and more heterochromatin) as well as apparent reductions in the amounts of hypertrophic SER and lipid moieties seemed to indicate that melatonin caused inhibition of pineal gland activity, and in this respect counteracted the effects of short photoperiod. However, an apparent increase in the number of large mitochondria, membrane whorls and dense-cored secretory vesicles in pinealocytes of melatonin-treated hamsters suggests enhanced pineal gland activity.  相似文献   

20.
Jerry Vriend 《Life sciences》1981,29(19):1929-1936
Studies of thyroid physiology in rats and hamsters support the view that the pineal gland has an anti-thyrotropic action. While chronic exposure of hamsters to short photoperiod, darkness, or blindness results in a depression of plasma thyroxin and plasma TSH, removal of the pineal gland, which synthesizes melatonin, prevents these effects. Melatonin administration, in the form of daily injections given late in the photoperiod, also results in inhibition of plasma thyroxin and plasma TSH. These anti-thyrotropic effects are similar to the anti-gonadotropic effects of melatonin. The results of a variety of experiments are consistent with the view that melatonin acts on a neuroendocrine control mechanism influencing synthesis or release of hypothalamic thyrotropin releasing hormone (TRH).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号