首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The main objective of this investigation is to determine the concentration and accumulation of heavy metals in the coastal sediments of the Southeastern Black Sea of Turkey. The selected sampling area has mainly been affected by anthropogenic activities, such as agricultural, untreated domestic and treated industrial wastewater, and mining. Metal enrichment factor (EF), geo-accumulation index (Igeo), and metal pollution index (MPI) have been calculated and relative contamination levels evaluated at all stations. In this study, the maximum EF values calculated for nickel (Ni), cobalt (Co), cadmium (Cd), lead (Pb), chromium (Cr), arsenic (As), zinc (Zn), and copper (Cu) were 1.4, 3.1, 5.2, 7.8, 7.8, 20, 26, and 42, respectively. Metal pollution has decreased in recent years, but the enrichment of heavy metals has been observed to be relatively high, especially in the uppermost 3-6 cm of the core sample from the Sürmene sampling station, which has been polluted by mining activities. In addition, factor analysis revealed that the coastal sediments from the Eastern Black Sea were influenced by several sources, namely lithogenic and anthropogenic activities (mining, wastewater discharging, agriculture).  相似文献   

2.
Certain chemical constituents (NO3-N, bio-available P, Ca, Na, K, Mn, Cu, Co and organic matter) together with pH, Eh and clay content of surface sediments at various depths of the overlying water in Lake Bhim Tal were examined during 1977—1978. In addition, NH3-N and dissolved oxygen at the mud-water interface (water immediately above the sediments) were measured. The values of Eh, pH and NO3-N in the sediments showed a negative relationship with water depth and positive relationship with dissolved oxygen at the interface. The other variables of the sediment were positively related to water depth and negatively related to dissolved oxygen at the interface. Organic matter, K, Na and Ca showed positive relationship with the amount of clay while the cations (K, Na, Ca) and trace metals (Cu, Mn, Co) showed a positive relationship with the amount of organic matter in the sediments.  相似文献   

3.
Abstract

This study investigated the airborne concentration of PM10 and 20 trace elements (Al, As, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Mo, Na, Ni, Na, Pb, Ti, V, Zn) in residential, industry, traffic road, coal mining, thermal power plant area of Bac Giang province. The average PM10 concentration was highest at coal site, followed by traffic 1 sites, industrial sites and traffic 2 sites, the residential sites, and lowest at the power plant site located in mountain area. While Al, Ca, Fe, K, Mg, Na were the most abundant elements in all sampling sites, accounting for 73–96% of total obtained elements, the concentration of As, Cd, Cr, Cu, Mn, Ni, Pb, V, and Zn occupied from 2.9 to 23.2%. Noticeably, the concentrations of Cd were from 7 to 65 times higher than the concentration limit for Cd (0.1?ng/m3) according the World Health Organization (WHO). Although, the Hazard Index (HI values) of all metals were found to be within the safe level for both children and adults, the Carcinogenic Risk (CR) of Cr and As in all sites were closed to the acceptable levels for children, implying a potential carcinogenic risks of these metals.  相似文献   

4.
The present study was carried out to assess the impact of wastewater on parsley (Petroselinum crispum). The parameters determined for soil were pH, electrical conductivity (EC), soil organic matter (SOM), nutrient elements (Ca, Mg, Na, K, Mn, Cu, Zn, and Fe), and heavy metals (Cd, Cr, Ni, and Pb), while the parameters determined for the plant included pigment content, dry matter, nutrient element, and heavy metals. SOM, EC, and clay contents were higher, and pH was slightly acidic in soil treated with wastewater compared to control soil. The enrichment factors (EF) of the nutrient elements in contaminated soil are in the sequence of Na (2) > Ca (1.32) > Mn = Mg (1.17) > Cu (1.11) > Zn (1.08) > Fe (1.07) > K (0.93), while EF in parsley are Na (6.63) > Ca (1.60) > Mg (1.34) > Zn (1.15) > Fe (0.95) > Cu = K (0.90) > Mn (0.85). Application of wastewater significantly decreased dry matter, while photosynthetic pigment content increased in parsley. The enrichment of the heavy metals is in the sequence: Cd (1.142) > Pb (1.131) > Ni (1.112) > Cr (1.095). P. crispum shows a high transfer factor (TF > 1) for Cd signifying a high mobility of Cd from soil to plant. Thus, although the wastewater irrigation in parsley production aims to produce socioeconomic benefits, study results indicated that municipal wastewater is not suitable for irrigation of parsley because it has negative effects on plant and causes heavy metal accumulation.  相似文献   

5.
In this study, we collected two sediment cores (C1 and C2) from the Andong tidal flat, Hangzhou Bay, and studied the temporal variations of heavy metals in the cores. Vertical distributions of heavy metals were almost unchanged in both the cores before 2000. After 2000, however, the heavy metal concentrations increased dramatically, suggesting that the sediments have been affected by enhanced human pollution in the recent decade. In the core C1, the sediments were severely polluted by Pb, moderately to considerably polluted by Cr and Zn, and low to moderately polluted by other heavy metals. The core C2 was relatively unpolluted before 2000 and low to moderately polluted after 2000. Multi-statistical analyses indicated that the core C1 was additionally contaminated by local human activities such as wastewater discharge and the Hangzhou Bay Bridge. The heavy metals in the core C2, however, were largely contributed by the Yangtze River and controlled by sedimentation process. The calculated sedimentary flux (4–8 g m?2 a?1) of heavy metals generally increased with time. It was closely related to the wastewater discharge in adjacent areas. This study reconstructed the local heavy metal pollution history and provides important information for environmental protection and policy making.  相似文献   

6.
Surface sediment samples were collected from a source water reservoir in Zhejiang Province, East of China to investigate pollution characteristics and potential ecological risk of heavy metals. The BCR sequential extraction method was used to determine the four chemical fractions of heavy metals such as acid soluble, easily reducible, easily oxidizable and residual fractions. The heavy metals pollution and potential ecological risk were evaluated systematically using geoaccumulation index (Igeo) and Hakanson potential ecological risk index (H′). The results showed that the sampling sites from the estuaries of tributary flowing through downtowns and heavy industrial parks showed significantly (p < 0.05) higher average concentrations of heavy metals in the surface sediments, as compared to the other sampling sites. Chemical fractionation showed that Mn existed mainly in acid extractable fraction, Cu and Pb were mainly in reducible fraction, and As existed mainly in residual fraction in the surface sediments despite sampling sites. The sampling sites from the estuary of tributary flowing through downtown showed significantly (p < 0.05) higher proportions of acid extractable and reducible fractions than the other sampling sites, which would pose a potential toxic risk to aquatic organisms as well as a potential threat to drinking water safety. As, Pb, Ni and Cu were at relatively high potential ecological risk with high Igeo values for some sampling locations. Hakanson potential ecological risk index (H′) showed the surface sediments from the tributary estuaries with high population density and rapid industrial development showed significantly (p < 0.05) higher heavy metal pollution levels and potential ecological risk in the surface sediments, as compared to the other sampling sites.  相似文献   

7.
Adequate biogeochemical characterization and monitoring of aquatic ecosystems, both for scientific purposes and for water management, pose high demands on spatial and temporal replication of chemical analyses. Near-infrared reflectance spectroscopy (NIRS) may offer a rapid, low-cost and reproducible alternative to standard analytical sample processing (digestion or extraction) and measuring techniques used for the chemical characterization of aquatic sediments. We analyzed a total of 191 sediment samples for total and NaCl-extractable concentrations of Al, Ca, Fe, K, Mg, Mn, N, Na, P, S, Si, and Zn as well as oxalate- extractable concentrations of Al, Fe, Mn and P. Based on the NIR spectral data and the reference values, calibration models for the prediction of element concentrations in unknown samples were developed and tested with an external validation procedure. Except Mn, all prediction models of total element concentrations were found to be acceptable to excellent (ratio of performance deviation: RPD 1.8–3.1). For extractable element fractions, viable model precision could be achieved for NaCl-extractable Ca, K, Mg, NH4 +-N, S and Si (RPD 1.7–2.2) and oxalate-extractable Al, Fe and P (RPD 1.9–2.3). For those elements that showed maximum total values below 3 g kg−1 prediction models were found to become increasingly critical (RPD <2.0). Low concentrations also limited the performance of NIRS calibrations for extracted elements, with critical concentration thresholds <0.1 g kg−1 and 3.3 g kg−1 for NaCl and oxalate extractions, respectively. Thus, reliable NIRS measurements of trace metals are restricted to sediments with high metal content. Nevertheless, we demonstrated the suitability of NIRS measurements to determine a large array of chemical properties of aquatic sediments. The results indicate great potential of this fast technique as an analytical tool to better understand the large spatial and temporal variation of sediment characteristics in an economically viable way.  相似文献   

8.
An ecological survey was carried out to determine the levels of nutrients and heavy metals in the sediments and leaf tissues of two dominant mangrove plant species, Kandelia candel and Aegiceras corniculatum, in Futian mangrove forest, Shenzhen, the People's Republic of China. The spatial and seasonal variations of these elements were also investigated. The results show that there was no major difference between two sampling sites 150 m apart. In both sites, the sediment concentrations of total and NH4 +-N, total and extractable P, total and extractable K, total organic carbon were consistently higher in the landward locations and decreased gradually towards the sea. The sediment sample collected at the seaward edge of the mangrove plant community had the lowest levels of nutrient and organic matter. The vertical variations (from the land to the sea) of sediment heavy metals were less obvious and no particular trend could be identified. Extremely high contents of Cu, Cd, Pb, Cr and Zn were found at certain locations, suggesting the occurrence of some local contamination. The mean total metal concentrations in sediments decreased in the order Mn > Zn > Cu > Cr = Pb > Cd for the sample locations. Most of the heavy metals were not in a bioavailable form as the concentrations of extractable metals were relatively low (< 1% of total metals). Pb, Cr and Cd were not detected in leaf samples. Leaf C, N, P and K contents were similar between the two species and no significant difference was found among locations, although A. corniculatum seemed to have lower Mn concentrations than K. candel. With reference to temporal variations, no significant difference in sediment concentrations of some nutrients and metals was found between the spring and autumn seasons.  相似文献   

9.
于2011年8月采集了珠江口桂山岛海域12个站点的表层沉积物, 对沉积物中重金属的含量进行了测定。结果表明, 桂山岛沉积物中重金属含量与国内外港湾相比属于中等水平, Pb、Cr、Ni、Cu、Zn、Mn平均含量分别为40.06、31.29、14.17、30.67、100.18、599.76 mg/kg。富集系数法和 Hakanson潜在生态风险指数法评价表明:桂山岛沉积物各重金属元素的富集顺序为Cu﹥Pb﹥Zn﹥Mn﹥Cr﹥Ni, 其中Cu、Pb、Zn和Mn富集系数大于1;该海域重金属潜在生态风险总体上处于低水平, 从空间上看, S11危害最为严重。进一步通过主成分分析研究沉积物中重金属的来源, 发现前2个主成分贡献率分别为44.38%、42.61%, 表明重金属主要有2个来源:工业和生活污水排放、岩石的自然风化与侵蚀过程。  相似文献   

10.
The aim of the present study was to assess the temporal variation of the heavy metal content (Co, Cu, Fe, Mn, Ni, Pb, and Zn) in surface water and sediments in relation to agricultural practices in the Xanaes River (Córdoba, Argentina). A second objective was to analyze possible relationships between the input of heavy metals on surface water and sediment, heavy metal accumulation and physiological changes in the aquatic plant Myriophyllum aquaticum. Samples were taken from the river at two contrasting sites (between April 2010 and August 2010): (1) a pristine area (mountain site), and (2) an area with intensive agricultural activity located at 60 km down river (agricultural site). The total concentration of heavy metals in surface water was higher in samples collected at the agricultural site but in sediments only the Mn concentration was higher than at the mountain site. The Fe and Mn concentrations in surface water at the agricultural site exceeded the recommended values for Argentinean Legislation of 300 μg L−1 for Fe and 100 μg L−1 for Mn. The accumulations of Zn and Mn in M. aquaticum were higher at the agricultural site and more elevated than the Zn and Mn concentrations in sediments at the same sites and sampling times. At the agricultural site, temporal variations of Cu, Fe and Zn were relatively similar for plants and water column, but the levels of the metals in plants were displaced over time. These results suggest that the levels of pollutants in the river came in pulses from the riverbank. These results show the potential use of M. aquaticum as a suitable accumulation biomonitor at the early stages of heavy metal pollution in rivers.  相似文献   

11.
Limited studies have been conducted on atmospheric dust pollution due to high cost of instrumental monitoring and difficulties in associated sampling methods. In this study, the possibility of using leaves of plane tree (Platanus orientalis L.) as a bioindicator of atmospheric pollution was evaluated by determining the composition of heavy elements in both the tree leaves and the atmospheric dust. Plane tree leaves were sampled monthly for 7 consecutive months (May to Nov.; T1–T7) from 21 different sites in the city of Isfahan, central Iran. Atmospheric dust samples were also collected from the same sites on glass trays simultaneously, except for T1. Concentrations of Cu, Fe, Mn, Ni, Pb, and Zn were determined in both the washed (WL) and unwashed leaves (UL) as well as in the atmospheric dust samples. Elemental concentrations in the dust samples deposited on the leaves were determined by subtracting metal concentrations in UL from those in WL. Significant amounts of heavy metals were detected in UL taken from all sites at all the sampling times except for T7 before which time a heavy rain had fallen. Statistically significant correlations were found between the heavy metal concentrations in the atmospheric dust and the dust deposited on the leaves (UL–WL) except for Pb in T4 and T5 sampling times. The spatial distribution maps of heavy metal concentrations in atmospheric dust followed almost the same pattern as those in plant leaf dust. The results showed that plane tree leaves have a great potential for use as an indicator of air pollution for all the heavy metals investigated except for Pb. This passive dust sampling and pollution accumulating method appears to be an easy, inexpensive, and accessible approach for the detection of atmospheric heavy metals.  相似文献   

12.
张芬  杨长明  潘睿捷 《生态学杂志》2013,24(9):2625-2630
在位于浙江省临安市的青山水库采集了具有代表性的8个样点的表层沉积物样品,分析比较了样品中As、Cr、Cu、Ni、Mn、Pb、Zn等7种重金属总量的差异,采用BCR连续提取法对重金属不同形态(酸提取态、可还原态、可氧化态、残渣态)进行分析.采用地积累指数法(Igeo)和Hakanson潜在生态风险指数法,对青山水库不同采样点表层沉积物中重金属的污染程度和潜在毒性与生态风险进行评价.结果表明: 青山水库表层沉积物重金属污染程度存在明显的空间差异,流经城区和工业园区的青山水库支流入库河口附近的表层沉积物重金属含量明显高于其他采样点.青山水库表层沉积物7种重金属中,Mn主要以酸提取态存在;Cu和Pb主要以可还原态形式存在;As主要以残渣态形式存在.流经城区的支流入库河口附近表层沉积物还原态和酸提取态重金属比例较高,对水生生物有一定的毒性风险.8个样点的表层沉积物7种重金属中,以As污染程度最高,潜在生态风险最大,其次是Cu、Ni、Mn、Pb和Zn,均处于轻度污染状态,而Cr处于清洁水平,潜在生态风险较低.不同采样点比较发现,分别流经城区的锦溪和工业园区的横溪入库河口附近表层沉积物重金属污染程度和潜在生态风险明显高于其他采样点.  相似文献   

13.
Summary Absorption and accumulation of alkali (Li, Na, K, Rb, Cs) and alkaline earth (Mg, Ca, Sr, Ba) metals were investigated as taxonomic characteristics (in 62 plant species). Leaf and soil samples were collected from 9 sites in temperature forest in Japan and the above mentioned elements were analyzed. Considerable differences were found among species in their ability to accumulate alkali and alkaline earth metals. Very high concentrations of Li (45 ppm, D.W.), K (37×103 ppm), Rb (159 ppm) and Cs (8.2 ppm) were detected inLastrea japonica which were about 412, 12, 27 and 6 times higher than those of the species with the lowest concentrations. Na content was high inAcer micranthum (358 ppm) which was 16 times higher than species with the lowest concentration. Other species containing high levels of alkali metals wereHydrangea macrophylla, Struthiopteris niponica, Clethra barbinervis. Mean discrimination ratio (D.R.) for all investigated plant species for Li, Na, Rb, and Cs to K were 1.7, 0.44, 0.9 and 1.8 respectively. High concentrations of alkaline earth metals Ca (36×103 ppm), Sr (345 ppm), and Ba (241 ppm) were found in the leaves ofHydrangea paniculata which were about 31, 84, and 72 times higher than those for the species with the lowest concentration. Mg was very high inStruthiopteris niponica (83×102 ppm). Other species with high concentrations of alkaline earth metals belonged to the genus Viburnum. Mean D.Rs. for Mg, Sr, and Bavs Ca were 1.0, 0.7 and 0.08. Principal component analysis of interrelationships between the mineral content in leaf tissues indicated that these elements could be classified into 2 groups with respect to their accumulation behavior in plants. The alkali metals K, Li, Rb, and Cs behaved similarly in their accumulation in leaves but Na behaved independently. Alkaline earth metals Ca, Mg, Sr, and Ba were also found to behave similarly in their accumulation. Factors scores of 1st and 2nd components revealed three groups of plant species: alkaliphilic, alkaline earthphilic, and neutral (non-accumulators).  相似文献   

14.
为了了解渭河陕西段河道沉积物重金属空间分布特征,本研究对渭河陕西段干流及其支流17个采样点沉积物中的10种重金属元素(Cd、Sb、As、Co、Cu、Pb、Ni、Cr、Zn、Mn)含量进行测定及来源辨析。结果表明: 重金属元素Cd、Sb、As、Co、Cu、Pb、Ni、Cr、Zn、Mn的平均含量分别为0.10、1.24、11.73、11.95、24.90、24.91、29.31、54.18、72.74、626.85 mg·kg-1, 除Cd的变异系数大于1以外,其他元素的变异系数均低于0.5。其中,Cd、Pb、Cr含量于灞河入渭处达到峰值,Co和Mn在黑河入渭处达到峰值,Cu和Zn在清姜河入渭处达到峰值, Sb、As和Ni分别于沙王渡、咸阳铁桥和林家村处达到峰值。相关性分析、主成分分析和聚类分析表明,Cd、Co、Cu、Pb、Ni、Cr、Zn、Mn主要来源于以工业源和生活源为主的污染源;Sb、As主要来源于农业和地球化学污染源。  相似文献   

15.
To obtain information on the importance of membrane and zeta potentials as repelling or facilitating forces during the uptake of cationic trace elements, the heavy metal content and the growth resistance of the acidotolerant fungus Bispora. sp. to heavy metals were compared at pH 1.0 and pH 7.0. Cu, Co, Ni, Cd, Cr, and La contents of the fungus were significantly lower at pH 1.0 than at pH 7.0. A similar pH effect occurred with cationic macro elements such as Na, Mg, Ca, Fe, and Mn. Only K and Zn exhibited higher levels at pH 1.0 in the fungus than at pH 7.0. Macro and micro elements present in the medium in anionic form (sulfate, chloride) showed the opposite pattern to cations: Contents were higher at pH 1.0 than at pH 7.0. Minerals present at pH 1.0 predominantly in the electrical neutral, protonated form (phosphate, borate) exhibited a similar cell content at both acid and neutral pH (P) or a higher content at neutral pH than at acid pH (B). The resistance of fungal growth to the cations Cu, Zn, Ni, Co, Cr, and Cd was significantly higher at pH 1.0 than at pH 7.0. Such a difference was not observed with Hg, present in the medium at both pH values as electrically silent HgCl2. The anionic tungstate exhibited the opposite pattern to cationic heavy metals: The resistance of growth was higher at pH 7.0 than at pH 1.0. A greater growth resistance to heavy metals was correlated with a lower uptake of these elements, and vice versa; Uptake of heavy metals correlated with a lower resistance of fungal growth to these elements. The results are in agreement with the hypothesis that membrane and zeta potentials of the fungus are important factors controlling the uptake of heavy metals and thereby the resistance of growth to these elements: At pH 1.0 positive potentials of fungal hyphae impede the uptake of cationic heavy metals, but facilitate the uptake of anionic species. At neutral pH values the negative potentials facilitate the uptake of cations, but impede the uptake of anions.  相似文献   

16.
The concentration and bioavailability of Ni, Cu, Cd, Zn, and Pb in the sediments and leaves of grey mangrove, Avicennia marina, were studied throughout Sirik Azini creek (Iran) with a view to determine heavy metals bioavailability, and two methods were used. Results show that Zn and Ni had the highest concentrations in the sediments, while Cd and Cu were found to have the lowest concentrations in the sediments. Compared to the mean concentrations of heavy metals in sedimentary rock (shales), Zn and Cu showed lower concentration, possibly indicating that the origin of these heavy metals is natural. A geo-accumulation index (I geo) was used to determine the degree of contamination in the sediments. I geo values for Zn, Cu, Pb, and Ni showed that there is no pollution from these metals in the study area. As heavy metal concentrations in leaves were higher than the bioavailable fraction of metals in sediments, it follows that bioconcentration factors (leaf/bioavailable sediment) for some metals were higher than 1.  相似文献   

17.
Superficial sediments of the Scheldt estuary were collected with a Van Veen grab at 57 stations between Temse and Vlissingen. They were analysed for major elements (Si, Al, Fe, Ca, Mg, Na, K, Cinorg and Corg) and trace metals (Cd, Pb, Cu, Zn, Cr, Ni, Co, Mn and Li). Factor analysis indicates that 44% of the variance can be explained by one factor which exhibits a high saturation for trace metals, organic matter, Al and Fe, all variables typical of fine mud. The high scores of this first factor are almost exclusively present in the upper estuary except for one area in front of Terneuzen. The second factor, which explains 23% of the variance, is typical of the carbonates and the third one (19% of the variance) is representative of the clay minerals. These two factors are more evenly distributed over the estuary. As usual, a strong influence of granulometry on the distribution of trace elements in the sediments was observed. Intercomparison of their composition within the Scheldt or with those of other aquatic systems requires thus a normalization procedure. This problem has been studied in detail by analysing various size fractions (63–16, 16–8, 8–4, <4 m) obtained by elutriation of the sample or by using a parameter characteristic of the fine fraction such as the concentration of a typical element (Al, Fe, Li, Corg). The normalization of trace metals allowed us to evaluate an enrichment factor of the trace elements in the estuarine deposits due to mans activities. In addition, it demonstrates the decrease of the anthropogenic impact on the composition of sediments by comparing the composition of sediments collected in 1976 and in 1994.  相似文献   

18.
A field experiment was conducted to understand the potential of vetiver grass (Vetiveria zizanioides) in heavy metal uptake from the soil and wastewater. Four main irrigation treatments including T1 (treated industrial wastewater), T2 (1:1 ratio of municipal:industrial wastewater), T3 (treated municipal wastewater) and T4 (fresh water) were applied. Moreover, the effect of arbuscular mycorrhizal fungus (AMF), Glomus mosseae, on plant growth and heavy metal concentration was evaluated. Three main criteria including bioconcentration factor (BCF), translocation factor (TF) and heavy metal uptake were applied to assess the potential of vetiver grass in accumulation and translocation of heavy metals to aerial parts. The highest concentration of heavy metals was found in plant and soil irrigated with T1 treatment followed by T2, T3 and the lowest concentrations were found in T4 treatment. Irrigation with treated municipal wastewater led to a significant increase in plant biomass and heavy metal uptake compared to other treatments. In T1 treatment (industrial wastewater), vetiver grass caused a significant decrease in Zn, Fe, Cu, Cd and Pb concentrations in soil as compared to no-plant treatment (without planting vetiver grass). Therefore, vetiver grass, irrigated with treated industrial wastewater, is a promising method for the development of urban and industrial green space.  相似文献   

19.
Our work aimed at extending the search for the trace elements (TE) abnormalities in patients with lung cancer and in healthy controls who smoke, and also for evidence of a possible association between lung cancer and TE. The analysis of the hair from patients with Stage-IIIB non-small cell lung cancer (group 1) and healthy controls (group 2) were analyzed using the inductively coupled plasma mass spectrometry technique in order to obtain information on the correlation between the lung cancer patients and healthy controls. Sixty-seven one-hair samples in group 1 were individually collected before chemoradiotherapy. For comparison, 74 hair samples were collected from group 2. In group 1, the trace elements present at the highest levels were measured to be Ca, Zn, Sn, Na and Mg, respectively, and they were quantified as 68.2, 53.2, 33.9, 23.3, and 28.9?μg.kg(-1), respectively. In group 2, the trace elements present at the highest levels were Zn, Mg, Ca, Fe, and Se, respectively, and they were quantified as 109.7, 31.9, 30.8, 25.0, and 20.1?μg.kg(-1). In group 1, the highest levels of Ca, Sn, and Na were 2.03, 1.06, and 1.01 times higher, respectively, compared with group 2. In group 2, Zn, Mg, Fe, and Se were 2, 1.01, 2.7, and 1.6 times higher, respectively, compared with group 1. When the levels of trace elements were compared between groups 1 and 2 using Student's t test, the levels of Ag, Au, Be, Bi, Ca, Cd, Ce, Co, Cr, Cu, Fe, Ga, Hg, K, Ni, Rb, Rh, Sb, Sc, Ti, V, and Zn were found to be statistically different (p?相似文献   

20.
The effect of seasonal water availability on soil nutrients and soil N transformations was investigated by irrigating two large plots of mature tropical forest on Barro Colorado Island (BCI), Panama, during the dry season for five consecutive years. Methods included (i) nutrient accumulation by ion-exchange resins placed on the surface of the mineral soil for contiguous 21-day periods, (ii) monthly mineral soil (0–10 cm) extractions and incubations for inorganic N and P concentrations, and (iii) leaching loss of nutrients from leaf litter samples. Rates of nutrient accumulation by the resins showed a great deal of variation between sampling dates and among years in control plots; albeit, seasonal patterns were slight, except for the highest Ca values near the end of the wet season and inorganic P (Pi) and SO4 values that peaked during the dry season. Irrigation had remarkably little effect on nutrient accumulation rates by resins, except for an increase in Mg and Na values, but did affect the timing in the temporal variation in K, Na, Ni and Pi values. In contrast, inorganic N (Ni) and Pi pools and N transformation rates in the mineral soil hardly varied among sampling dates and did not show any response to irrigation. We hypothesize that the timing of leaf litterfall and nutrient leaching from forest floor litter can set up temporal patterns in the levels of soil nutrient at the surface of the mineral soil, but the temporal patterns essentially disappear with depth in the mineral soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号