首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
2.
OxyR controls H(2)O(2)-dependent gene expression in Pseudomonas aeruginosa. Without OxyR, diluted (<10(7)/ml) organisms are easily killed by micromolar H(2)O(2). The goal of this study was to define proteins that contribute to oxyR mutant survival in the presence of H(2)O(2). We identified proteins in an oxyR mutant that were oxidized by using 2,4-dinitrophenylhydrazine for protein carbonyl detection, followed by identification using a two-dimensional gel/matrix-assisted laser desorption ionization-time of flight approach. Among these was the peptidoglycan-associated lipoprotein, OprL. A double oxyR oprL mutant was constructed and was found to be more sensitive to H(2)O(2) than the oxyR mutant. Provision of the OxyR-regulated alkyl hydroperoxide reductase, AhpCF, but not AhpB or the catalase, KatB, helped protect this strain against H(2)O(2). Given the sensitivity of oxyR oprL bacteria to planktonic H(2)O(2), we next tested the hypothesis that the biofilm mode of growth might protect such organisms from H(2)O(2)-mediated killing. Surprisingly, biofilm-grown oxyR oprL mutants, which (in contrast to planktonic cells) possessed no differences in catalase activity compared to the oxyR mutant, were sensitive to killing by as little as 0.5 mM H(2)O(2). Transmission electron microscopy studies revealed that the integrity of both cytoplasmic and outer membranes of oxyR and oxyR oprL mutants were compromised. These studies suggest that sensitivity to the important physiological oxidant H(2)O(2) in the exquisitely sensitive oxyR mutant bacteria is based not only upon the presence and location of OxyR-controlled antioxidant enzymes such as AhpCF but also on structural reinforcement by the peptidoglycan-associated lipoprotein OprL, especially during growth in biofilms.  相似文献   

3.
A spontaneous Xanthomonas campestris pv. phaseoli H(2)O(2)-resistant mutant emerged upon selection with 1 mM H(2)O(2). In this report, we show that growth of this mutant under noninducing conditions gave high levels of catalase, alkyl hydroperoxide reductase (AhpC and AhpF), and OxyR. The H(2)O(2) resistance phenotype was abolished in oxyR-minus derivatives of the mutant, suggesting that elevated levels and mutations in oxyR were responsible for the phenotype. Nucleotide sequence analysis of the oxyR mutant showed three nucleotide changes. These changes resulted in one silent mutation and two amino acid changes, one at a highly conserved location (G197 to D197) and the other at a nonconserved location (L301 to R301) in OxyR. Furthermore, these mutations in oxyR affected expression of genes in the oxyR regulon. Expression of an oxyR-regulated gene, ahpC, was used to monitor the redox state of OxyR. In the parental strain, a high level of wild-type OxyR repressed ahpC expression. By contrast, expression of oxyR5 from the X. campestris pv. phaseoli H(2)O(2)-resistant mutant and its derivative oxyR5G197D with a single-amino-acid change on expression vectors activated ahpC expression in the absence of inducer. The other single-amino-acid mutant derivative of oxyR5L301R had effects on ahpC expression similar to those of the wild-type oxyR. However, when the two single mutations were combined, as in oxyR5, these mutations had an additive effect on activation of ahpC expression.  相似文献   

4.
A Pseudomonas aeruginosa oxyR mutant was dramatically sensitive to H(2)O(2), despite possessing wild-type catalase activity. Oxygen-dependent oxyR phenotypes also included an inability to survive aerobic serial dilution in Luria broth and to resist aminoglycosides. Plating the oxyR mutant after serial dilution in its own spent culture supernatant, which contained the major catalase KatA, or under anaerobic conditions allowed for survival. KatA was resistant to sodium dodecyl sulfate, proteinase K, pepsin, trypsin, chymotrypsin and the neutrophil protease cathepsin G. When provided in trans and expressed constitutively, the OxyR-regulated genes katB, ahpB, and ahpCF could not restore both the serial dilution defect and H(2)O(2) resistance; only oxyR itself could do so. The aerobic dilution defect could be complemented, in part, by only ahpB and ahpCF, suggesting that the latter gene products could possess a catalase-like activity. Aerobic Luria broth was found to generate approximately 1.2 microM H(2)O(2) min(-1) via autoxidation, a level sufficient to kill serially diluted oxyR and oxyR katA bacteria and explain the molecular mechanism behind the aerobic serial dilution defect. Taken together, our results indicate that inactivation of OxyR renders P. aeruginosa exquisitely sensitive to both H(2)O(2) and aminoglycosides, which are clinically and environmentally important antimicrobials.  相似文献   

5.
6.
The characterization of an oxyR insertion mutant provides evidences that katA, which encodes the unique H2O2-inducible HPII catalase, is regulated by OxyR not only in free-living Sinorhizobium meliloti but also in symbiotic S. meliloti. Moreover, oxyR is expressed independently of exogenous H2O2 and downregulates its own expression in S. meliloti.  相似文献   

7.
8.
9.
The induction of the SOS response by H2O2 was measured in Escherichia coli by means of a sfiA::lacZ operon fusion. The effects of mutations in genes involved in DNA repair or DNA metabolism on the SOS response were investigated. We found that in an uvrA mutant, H2O2 induced the SOS response at lower concentrations than in the uvr+ parent strain, indicating that some lesions induced by H2O2 may be repaired by the uvrABC-dependent excision repair system. A nth mutation, yielding deficiency in thymine glycol DNA glycosylase, had no detectable effect on SOS induction, indicating that thymine glycol, a DNA lesion expected to be induced by H2O2, does not participate detectably in the induction of the SOS response by this chemical under our conditions. H2O2 still induced the SOS response in a dnaC(Ts) uvrA double mutant under conditions in which no DNA replication proceeds, suggesting that this chemical induces DNA strand breaks. Induction of the SOS response by H2O2 was also assayed in various mutants affected in genes suspected to be important for protection against oxidative stress. Mutations in the catalase genes, katE and katG, had only minor effects. However, in an oxyR deletion mutant, in which the adaptative response to H2O2 does not occur, SOS induction occurred at much lower H2O2 concentrations than in the oxyR+ parent strain. These results indicate that some enzymes regulated by the oxyR gene are, under our conditions, more important than catalase for protection against the H2O2-induced DNA damages which trigger the SOS response.  相似文献   

10.
11.
OxyR regulates the expression of the majority of H(2)O(2) responses in Gram-negative organisms. In a previous study we reported the OxyR-dependent derepression of catalase expression in the human pathogen Neisseria gonorrhoeae. In the present study we used microarray expression profiling of N. gonorrhoeae wild-type strain 1291 and an oxyR mutant strain to define the OxyR regulon. In addition to katA (encoding catalase), only one other locus displayed a greater than two-fold difference in expression in the wild type : oxyR comparison. This locus encodes an operon of two genes, a putative peroxiredoxin/glutaredoxin (Prx) and a putative glutathione oxidoreductase (Gor). Mutant strains were constructed in which each of these genes was inactivated. A previous biochemical study in Neisseria meningitidis had confirmed function of the glutaredoxin/peroxiredoxin. Assay of the wild-type 1291 cell free extract confirmed Gor activity, which was lost in the gor mutant strain. Phenotypic analysis of the prx mutant strain in H(2)O(2) killing assays revealed increased resistance, presumably due to upregulation of alternative defence mechanisms. The oxyR, prx and gor mutant strains were deficient in biofilm formation, and the oxyR and prx strains had decreased survival in cervical epithelial cells, indicating a key role for the OxyR regulon in these processes.  相似文献   

12.
We isolated menadione-resistant mutants of Xanthomonas campestris pv. phaseoli oxyR (oxyR(Xp)). The oxyRR2(Xp) mutant was hyperresistant to the superoxide generators menadione and plumbagin and was moderately resistant to H(2)O(2) and tert-butyl hydroperoxide. Analysis of enzymes involved in oxidative-stress protection in the oxyRR2(Xp) mutant revealed a >10-fold increase in AhpC and AhpF levels, while the levels of superoxide dismutase (SOD), catalase, and the organic hydroperoxide resistance protein (Ohr) were not significantly altered. Inactivation of ahpC in the oxyRR2(Xp) mutant resulted in increased sensitivity to menadione killing. Moreover, high levels of expression of cloned ahpC and ahpF in the oxyR(Xp) mutant complemented the menadione hypersensitivity phenotype. High levels of other oxidant-scavenging enzymes such as catalase and SOD did not protect the cells from menadione toxicity. These data strongly suggest that the toxicity of superoxide generators could be mediated via organic peroxide production and that alkyl hydroperoxide reductase has an important novel function in the protection against the toxicity of these compounds in X. campestris.  相似文献   

13.
14.
15.
16.
Tannins are plant-derived polyphenols with antimicrobial effects. The mechanism of tannin toxicity towards Escherichia coli was determined by using an extract from Acacia mearnsii (Black wattle) as a source of condensed tannins (proanthocyanidins). E. coli growth was inhibited by tannins only when tannins were exposed to oxygen. Tannins auto-oxidize, and substantial hydrogen peroxide was generated when they were added to aerobic media. The addition of exogenous catalase permitted growth in tannin medium. E. coli mutants that lacked HPI, the major catalase, were especially sensitive to tannins, while oxyR mutants that constitutively overexpress antioxidant enzymes were resistant. A tannin-resistant mutant was isolated in which a promoter-region point mutation increased the level of HPI by 10-fold. Our results indicate that wattle condensed tannins are toxic to E. coli in aerobic medium primarily because they generate H(2)O(2). The oxidative stress response helps E. coli strains to overcome their inhibitory effect.  相似文献   

17.
Singlet oxygen ((1)O(2)) is a highly reactive form of molecular oxygen that may harm living systems by oxidizing critical cellular macromolecules. The oxyR gene product regulates the expression of the enzymes and proteins that are needed for cellular protection against oxidative stress. In this study, the role of oxyR in cellular defense against a singlet oxygen was investigated using Escherichia coli oxyR mutant strains. Upon exposure to methylene blue and visible light, which generates singlet oxygen, the oxyR overexpression mutant was much more resistant to singlet oxygen-mediated cellular damage when compared to the oxyR deletion mutant in regard to growth kinetics, viability and protein oxidation. Induction and inactivation of major antioxidant enzymes, such as superoxide dismutase and catalase, were observed after their exposure to a singlet oxygen generating system in both oxyR strains. However, the oxyR overexpression mutant maintained significantly higher activities of antioxidant enzymes than did the oxyR deletion mutant. These results suggest that the oxyR regulon plays an important protective role in singlet oxygen-mediated cellular damage, presumably through the protection of antioxidant enzymes.  相似文献   

18.
The effect of hydrogen peroxide on the activity of soxRS and oxyR regulon enzymes in different strains of Escherichia coli has been studied. Treatment of bacteria with 20 μM H2O2 caused an increase in catalase and peroxidase activities (oxyR regulon) in all strains investigated. It is shown for the first time that oxidative stress induced by hydrogen peroxide causes in some E. coli strains a small increase in activity of superoxide dismutase and glucose-6-phosphate dehydrogenase (soxRS regulon). This effect is cancelled by chloramphenicol, an inhibitor of protein synthesis in prokaryotes. The increase in soxRS regulon enzyme activities was not found in the strain lacking the soxR gene. These results provide evidence for the involvement of the soxRS regulon in the adaptive response of E. coli to oxidative stress induced by hydrogen peroxide. __________ Translated from Biokhimiya, Vol. 70, No. 11, 2005, pp. 1506–1513. Original Russian Text Copyright ? 2005 by Semchyshyn, Bagnyukova, Lushchak.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号