首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Elucidation of x-ray crystal structures for the S1 subfragment of myosin afforded atomic resolution of the nucleotide and actin binding sites of the enzyme. The structures have led to more detailed hypotheses regarding the mechanisms by which force generation is coupled to ATP hydrolysis. However, the three-dimensional structure of double-headed myosin consisting of two S1 subfragments has not yet been solved. Therefore, to investigate the overall shape and relative orientations of the two heads of myosin, we performed small-angle x-ray and neutron scattering measurements of heavy meromyosin containing all three light chains (LC(1-3)) in solution. The resulting small-angle scattering intensity profiles were best fit by models of the heavy meromyosin head-tail junction in which the angular separation between heads was less than 180 degrees. The S1 heads of the best fit models are not related by an axis of symmetry, and one of the two S1 heads is bent back along the rod. These results provide new information on the structure of the head-tail junction of myosin and indicate that combining scattering measurements with high resolution structural modeling is a feasible approach for investigating myosin head-head interactions in solution.  相似文献   

2.
Low angle X-ray scattering from heavy meromyosin (HMM) and from single-headed heavy meromyosin (sHMM) have been examined to determine if the heads of myosin change shape when cleaved from the rod to form subfragment 1 (S1). The scattering intensities of intact HMM and sHMM were compared with those of their chymotryptic digestion products, S1 and subfragment 2 (S2). As the data with HMM were complicated by scattering between the two heads, the more extensive analysis was done with sHMM. Pseudo-Guinier plots of intact and digested sHMM, over the angular range used previously for S1, were linear and showed a difference in apparent radius of gyration (Rg) of only 0.07 +/- 0.04 nm. The absolute apparent Rg value of sHMM was 3.2 +/- 0.2 nm, which is comparable to the radius of gyration reported previously for S1 alone. A plot of the fractional differences in scattering intensities of intact and digested sHMM was flat to a reciprocal spacing of at least 1/3.5 nm-1. These results indicate that the head portions of sHMM and S1 have very similar structures at low resolution. Scattering curves for various models of sHMM and mixtures of S1 and S2 were calculated and the fractional difference plots of scattering intensities were made to determine how sensitive this type of analysis is to changes in the shape of the head. Changes in Rg of 0.1 nm or greater gave detectably non-flat difference plots. Thus, the X-ray scattering of sHMM (and HMM) demonstrated that differences in structure between the head of myosin and isolated S1 are likely to be small. Current controversies over myosin head structure are discussed in light of this result.  相似文献   

3.
Ribosomal protein S1 from Escherichia coli was studied in solution by small-angle X-ray scattering and the following parameters were obtained. The radius of gyration R = 8.0 +/- 0.2 nm; largest diameter D = 28 nm; molecular weight = (8--9) x 10(4). The data also yielded (with the assumption of a rigid particle with almost constant electron density) two radii of gyration of cross-section Rq1 = 2.5 +/- 0.1 nm and Rq2 = 1.05 +/- 0.05 nm and molecular volume = 140 nm3. The experimental scattering curve of S1 was compared with the theoretical scattering curves for several rigid triaxial homogeneous bodies and the closest fit was given by that of a flat elliptical cylinder with the dimensions of 4.5 nm and 0.88 nm for the two semiaxes and 26.5 nm for height. The results from the present X-ray scattering studies and those from limited proteolytic digestion of protein S1 [J. Mol. Biol. 127, 41--54, (1979)] support the notion that the structure of protein S1 is organized into two distinct subdomains within its elongated overall shape. Protein S1 was purified for this study by an efficient procedure which yielded 12 mg S1/g ribosomes. The isolated protein was fully active in functional tests both before and after X-ray irradiation.  相似文献   

4.
We have adapted a real space refinement protocol originally developed for high-resolution crystallographic analysis for use in fitting atomic models of actin filaments and myosin subfragment 1 (S1) to 3-D images of thin-sectioned, plastic-embedded whole muscle. The rationale for this effort is to obtain a refinement protocol that will optimize the fit of the model to the density obtained by electron microscopy and correct for poor geometry introduced during the manual fitting of a high-resolution atomic model into a lower resolution 3-D image. The starting atomic model consisted of a rigor acto-S1 model obtained by X-ray crystallography and helical reconstruction of electron micrographs. This model was rebuilt to fit 3-D images of rigor insect flight muscle at a resolution of 7 nm obtained by electron tomography and image averaging. Our highly constrained real space refinement resulted in modest improvements in the agreement of model and reconstruction but reduced the number of conflicting atomic contacts by 70% without loss of fit to the 3-D density. The methodology seems to be well suited to the derivation of stereochemically reasonable atomic models that are consistent with experimentally determined 3-D reconstructions computed from electron micrographs.  相似文献   

5.
H R Trayer  I P Trayer 《Biochemistry》1988,27(15):5718-5727
Fluorescence resonance energy transfer measurements have been made between Cys-374 on actin and Cys-177 on the alkali light chain of myosin subfragment 1 (S1) using several pairs of donor-acceptor chromophores. The labeled light chain was exchanged into subfragment 1 and the resulting fluorescently labeled subfragment 1 isolated by ion-exchange chromatography on SP-Trisacryl. The efficiency of energy transfer was measured by steady-state fluorescence in a strong binding complex of acto-S1 and found to represent a spatial separation between the two probes of 5.6-6.3 nm. The same measurements were then made with weak binding acto-S1 complexes generated in two ways. First, actin was complexed with p-phenylenedimaleimide-S1, a stable analogue of S1-adenosine 5'-triphosphate (ATP), obtained by cross-linking the SH1 and SH2 heavy-chain thiols of subfragment 1 [Greene, L. E., Chalovich, J. M., & Eisenberg, E. (1986) Biochemistry 25, 704-709]. Large increases in transfer efficiency indicated that the two probes had moved closer together by some 3 nm. Second, weak binding complexes were formed between subfragment 1 and actin in the presence of the regulatory proteins troponin and tropomyosin, the absence of calcium, and the presence of ATP [Chalovich, J. M., & Eisenberg, E. (1982) J. Biol. Chem. 257, 2432-2437]. The measured efficiency of energy transfer again indicated that the distance between the two labeled sites had moved closer by about 3 nm. These data support the idea that there is a considerable difference in the structure of the acto-S1 complex between the weakly and strongly bound states.  相似文献   

6.
The structure of subfragment 1 (S1) bound to F-actin has been compared to the structure of free S1 using neutron scattering. The F-actin was rendered "invisible" to neutrons by selective deuteration and solvent contrast matching. Highly deuterated actin was purified from the slime mold Dictyostelium discoideum, which was fed deuterated Escherichia coli. The properties of this actin were found to be similar to those of protonated actin. The neutron-scattering pattern of S1 bound to this "invisible" actin was compared to that of free S1. At near-physiological ionic strength, a strong interference effect was observed, which arose from pairs of S1 molecules cross-linking actin filaments. However, at low ionic strength the only differences that could be observed were attributed to interference effects between neutrons scattered from S1s bound randomly to equivalent sites on an actin filament. These effects became negligible as the fraction of actin sites occupied by S1 approached zero. Thus, we conclude that the scattering by S1 attached to F-actin is identical with that of free S1, to a resolution of about 2.5 nm. The difference in apparent radii of gyration is less than 0.05 nm. Modeling calculations have been carried out to determine the sensitivity of neutron scattering to possible S1 deformations. The calculations showed that deformations of the structure of S1 that are large enough ultimately to produce a powerstroke of 5 nm or greater are only consistent with the data if they involve at most about 20% of the S1 mass. These results restrict the class of plausible models describing force generation in muscle contraction.  相似文献   

7.
C L Berger  D D Thomas 《Biochemistry》1991,30(46):11036-11045
We have used saturation-transfer electron paramagnetic resonance (ST-EPR) to detect the microsecond rotational motions of spin-labeled myosin subfragment one (MSL-S1) bound to actin in the presence of the ATP analogues AMPPNP (5'-adenylylimido diphosphate) and ATP gamma S [adenosine 5'-O-(3-thiotriphosphate)], which are believed to trap myosin in strongly and weakly bound intermediate states of the actomyosin ATPase cycle, respectively. Sedimentation binding measurements were used to determine the fraction of myosin heads bound to actin under ST-EPR conditions and the fraction of heads containing bound nucleotide. ST-EPR spectra were then corrected to obtain the spectrum corresponding to the ternary complex (actin.MSL-S1.nucleotide). The ST-EPR spectrum of MSL-S1.AMPPNP bound to actin is identical to that obtained in the absence of nucleotide (rigor complex), indicating no rotational motion of MSL-S1 relative to actin on the microsecond time scale. However, MSL-S1-ATP gamma S bound to actin is rotationally mobile, with an effective rotational correlation time (tau r) of 17 +/- 2 microseconds. This motion is similar to that observed previously for actin-bound MSL-S1 during the steady-state hydrolysis of ATP [Berger et al. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 8753-8757]. We conclude that, in solution, the weakly bound actin-attached states of the myosin ATPase cycle undergo microsecond rotational motions, while the strongly bound intermediates do not, and that these motions are likely to be involved in the molecular mechanism of muscle contraction.  相似文献   

8.
We studied the cytoskeletal reorganization of saponized human platelets after stimulation by using the quick-freeze deep-etch technique, and examined the localization of myosin in thrombin-treated platelets by immunocytochemistry at the electron microscopic level. In unstimulated saponized platelets we observed cross-bridges between: adjoining microtubules, adjoining actin filaments, microtubules and actin filaments, and actin filaments and plasma membranes. After activation with 1 U/ml thrombin for 3 min, massive arrays of actin filaments with mixed polarity were found in the cytoplasm. Two types of cross-bridges between actin filaments were observed: short cross-bridges (11 +/- 2 nm), just like those observed in the resting platelets, and longer ones (22 +/- 3 nm). Actin filaments were linked with the plasma membrane via fine short filaments and sometimes ended on the membrane. Actin filaments and microtubules frequently ran close to the membrane organelles. We also found that actin filaments were associated by end-on attachments with some organelles. Decoration with subfragment 1 of myosin revealed that all the actin filaments associated end-on with the membrane pointed away in their polarity. Immunocytochemical study revealed that myosin was present in the saponin-extracted cytoskeleton after activation and that myosin was localized on the filamentous network. The results suggest that myosin forms a gel with actin filaments in activated platelets. Close associations between actin filaments and organelles in activated platelets suggests that contraction of this actomyosin gel could bring about the observed centralization of organelles.  相似文献   

9.
The ATPase activity of acto-myosin subfragment 1 (S1) at low ratios of S1 to actin in the presence of tropomyosin is dependent on the tropomyosin source and ionic conditions. Whereas skeletal muscle tropomyosin causes a 60% inhibitory effect at all ionic strengths, the effect of smooth muscle tropomyosin was found to be dependent on the ionic strength. At low ionic strength (20 mM) smooth muscle tropomyosin inhibits the ATPase activity by 60%, while at high ionic strength (120 mM) it potentiates the ATPase activity three- to five-fold. Therefore, the difference in the effect of smooth muscle and skeletal muscle tropomyosin on the acto-S1 ATPase activity was due to a greater fraction of the tropomyosin-actin complex being turned on in the absence of S1 with smooth muscle tropomyosin than with skeletal muscle tropomyosin. Using well-oriented gels of actin and of reconstituted specimens from vertebrate smooth muscle thin filament proteins suitable for X-ray diffraction, we localized the position of tropomyosin on actin under different levels of acto-S1 ATPase activity. By analysing the equatorial X-ray pattern of the oriented specimens in combination with solution scattering experiments, we conclude that tropomyosin is located at a binding radius of about 3.5 nm on the f-actin helix under all conditions studied. Furthermore, we find no evidence that the azimuthal position of tropomyosin is different for smooth muscle tropomyosin at various ionic strengths, or vertebrate tropomyosin, since the second actin layer-line intensity (at 17.9 nm axial and 4.3 nm radial spacing), which was shown in skeletal muscle to be a sensitive measure of this parameter, remains strong and unchanged. Differences in the ATPase activity are not necessarily correlated with different positions of tropomyosin on f-actin. The same conclusion is drawn from our observations that, although the regulatory protein caldesmon inhibits the ATPase activity in native and reconstituted vertebrate smooth muscle thin filaments at a molar ratio of actin/tropomyosin/caldesmon of 28:7:1, the second actin layer-line remains strong. Only adding caldesmon in excess reduces the intensity of the second actin layer-line, from which the binding radius of caldesmon can be estimated to be about 4 nm. The lack of predominant meridional reflections in oriented specimens, with caldesmon present, suggests that caldesmon does not project away from the thin filament as troponin molecules in vertebrate striated muscle in agreement with electron micrographs of smooth muscle thin filaments. In freshly prepared native smooth muscle thin filaments we observed a Ca(2+)-sensitive reversible bundling effect.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
Stone DB  Hjelm RP  Mendelson RA 《Biochemistry》1999,38(16):4938-4947
The dimeric structure of the members of the kinesin family of motor proteins determines the individual characteristics of their microtubule-based motility. Crystal structures for ncd and kinesin dimers, which move in opposite directions on microtubules, show possible states of these dimers with ADP bound but give no information about these dimers in solution. Here, low-angle X-ray and neutron scattering were used to investigate their solution structures. Scattering profiles of Drosophila ncd 281-700 (NCD281) and human kinesin 1-420 (hKIN420) were compared with models made from the crystallographically determined structures of NCD281 and rat kinesin 1-379 (rKIN379). From the low-angle region it was found that the radius of gyration (Rg) of NCD281 is 3.60 +/- 0.075 nm, which is in agreement with the crystallography-based model. Scattering by longer ncd constructs (NCD250 and NCD224) is also well fit by the appropriate crystallography-based models. However, the measured Rg of hKIN420, 4.05 +/- 0.075 nm, is significantly smaller than that of the crystallography-based model. In addition, the overall scattering pattern of NCD281 is well fit by the model, but that of hKIN420 is poorly fit. Model calculations indicate that the orientation of the catalytic cores is different from that observed in the rKIN379 crystal structure. Like the crystal structure, the best-fitting models do not show 2-fold symmetry about the neck axis; however, their overall shape more resembles a mushroom than the "T"-like orientation of the catalytic cores found in the crystal structure. The center of mass separations of the catalytic cores in the best-fitting models are 0.7-1 nm smaller than in the crystal structure.  相似文献   

11.
Gly 680 of Dictyostelium myosin II sits at a critical position within the reactive thiol helices. We have previously shown that G680V mutant subfragment 1 largely remains in strongly actin-bound states in the presence of ATP. We speculated that acto-G680V subfragment 1 complexes accumulate in the A.M.ADP.P(i) state on the basis of the biochemical phenotypes conferred by mutations which suppress the G680V mutation in vivo [Wu, Y., et al. (1999) Genetics 153, 107-116]. Here, we report further characterization of the interaction between actin and G680V subfragment 1. Light scattering data demonstrate that the majority of G680V subfragment 1 is bound to actin in the presence of ATP. These acto-G680V subfragment 1 complexes in the presence of ATP do not efficiently quench the fluorescence of pyrene-actin, unlike those in rigor complexes or in the presence of ADP alone. Kinetic analyses demonstrated that phosphate release, but not ATP hydrolysis or ADP release, is very slow and rate limiting in the acto-G680V subfragment 1 ATPase cycle. Single turnover kinetic analysis demonstrates that, during ATP hydrolysis by the acto-G680V subfragment 1 complex, quenching of pyrene fluorescence significantly lags the increase of light scattering. This is unlike the situation with wild-type subfragment 1, where the two signals have similar rate constants. These data support the hypothesis that the main intermediate during ATP hydrolysis by acto-G680V subfragment 1 is an acto-subfragment 1 complex carrying ADP and P(i), which scatters light but does not quench the pyrene fluorescence and so has a different conformation from the rigor complex.  相似文献   

12.
We have studied purified preparations of murine mammary tumor virus (MuMTV), Rous sarcoma virus (RSV; Prague strain), and feline leukemia virus (FeLV) by laser beat frequency light-scattering spectroscopy, ultra-centrifugation, and electron microscopy. The laser beat frequency light-scattering spectroscopy measurements yield the light-scattering intensity, weighted diffusion coefficients. The corresponding average hydrodynamic diameters, as calculated from the diffusion coefficients by the Stokes-Einstein equation for MuMTV, RSV, and FeLV, respectively, are: 144 +/- 6 nm, 147 +/- 7 nm, and 168 +/- 6 nm. Portions of the purified RSV and MuMTV preparations, from which light-scattering samples were obtained, and portions of the actual FeLV light-scattering samples were examined by negatively stained, catalase crystal-calibrated electron microscopy. The light-scattering intensity weighted averages of the electron micrograph size distributions were calculated by weighing each size by its theoretical relative scattering intensity, as obtained from published tables computed according to the Mie scattering theory. These averages and the experimentally observed hydrodynamic diameters agreed to within +/- 5%, which is the combined experimental error in the electron microscopic and light-scattering techniques. We conclude that the size distributions of singlet particles observed in the electron micrographs are statistically true representations of the sedimentation-purified solution size distributions. The sedimentation coefficients (S20, w) for MuMTV, RSV, and FeLV, respectively, are: 595 +/- 29S, 689 +/- 35S, and 880 +/- 44S. Virus partial specific volumes were taken as the reciprocals of the buoyant densities, determined in sucrose density gradients. The Svedberg equation was used to calculate particle weights from the measured diffusion and sedimentation coefficients. The particle weights for MuMTV, RSV, and FeLV, respectively, are: (3.17 +/- 0.32) x 10(8), (4.17 +/- 0.42) x 10(8), and (5.50 +/- 0.55) x 10(8) daltons.  相似文献   

13.
The shape and overall dimensions of the recently discovered Streptomyces alpha-chitin-binding protein, CHB1, were investigated by synchrotron radiation X-ray solution scattering. The radius of gyration and the maximum size of CHB1 were determined to be 1.75 +/- 0.03 nm and 6.0 +/- 0.2 nm, respectively. Using two independent ab initio approaches the low-resolution shape of the protein was found to consist of two domains, an elongated main globule with a length of about 4 nm and a foot-like domain of about 2 nm width. The structural and functional properties of CHB1 depend strongly on the presence of disulfide bonds; upon their reduction, the protein loses its affinity to chitin.  相似文献   

14.
We describe the purification of an actin regulatory protein from bovine adrenal medulla. This protein caused a dose-dependent decrease of the specific viscosity of actin solution within 30 s of its addition in a Ca2+-sensitive way. Sedimentation assays and the observation by electron microscopy showed that this effect was ascribable to the fragmentation of actin filaments. This protein apparently promoted nucleation of actin polymerization and increased the critical concentration of actin for polymerization nearly 5-fold, suggesting its binding to the barbed end of actin filaments. The inhibitory effect of this protein on the elongation of actin from the barbed end of the myosin subfragment S1-labeled actin seeds confirmed this suggestion. These properties are similar to those of gelsolin. However, the physicochemical properties of this protein having a single polypeptide chain with a molecular weight of 74,000, a Stokes radius of 3.9 nm, a sedimentation coefficient (s0(20),w) of 4.5 S, and an immunological characterization showed that this protein is different from gelsolin.  相似文献   

15.
Structural properties of rabbit skeletal myosin head (S1) and the influence of the DTNB light chain (LC2) on the size and shape of myosin heads in solution were investigated by small angle x-ray scattering. The LC2 deficient myosin head, S1 (-LC2), and the S1 containing LC2 light chain, S1 (+LC2) were studied in parallel. The respective values of the radius of gyration were found to be (40.2 +/- 0.5) A and (46.7 +/- 1) A, while the maximum dimension was (190 +/- 15) A for both species. The large difference between the two Rg values suggest that LC2 is located close to one extremity of the myosin head, in agreement with most electron microscopy observations. All models derived from the x-ray scattering pattern of the native myosin head share a common overall morphology, showing two main regions, an asymmetric globular portion which tapers smoothly into a thinner domain of roughly equivalent length making an angle of approximately 60 degrees, with a contour length of approximately 210 A.  相似文献   

16.
Actin and myosin are the two main proteins required for cell motility and muscle contraction. The structure of their strongly bound complex—rigor state—is a key for delineating the functional mechanism of actomyosin motor. Current knowledge of that complex is based on models obtained from the docking of known atomic structures of actin and myosin subfragment 1 (S1; the head and neck region of myosin) into low-resolution electron microscopy electron density maps, which precludes atomic- or side-chain-level information. Here, we use radiolytic protein footprinting for global mapping of sites across the actin molecules that are impacted directly or allosterically by myosin binding to actin filaments. Fluorescence and electron paramagnetic resonance spectroscopies and cysteine actin mutants are used for independent, residue-specific probing of S1 effects on two structural elements of actin. We identify actin residue candidates involved in S1 binding and provide experimental evidence to discriminate between the regions of hydrophobic and electrostatic interactions. Focusing on the role of the DNase I binding loop (D-loop) and the W-loop residues of actin in their interactions with S1, we found that the emission properties of acrylodan and the mobility of electron paramagnetic resonance spin labels attached to cysteine mutants of these residues change strongly and in a residue-specific manner upon S1 binding, consistent with the recently proposed direct contacts of these loops with S1. As documented in this study, the direct and indirect changes on actin induced by myosin are more extensive than known until now and attest to the importance of actin dynamics to actomyosin function.  相似文献   

17.
《The Journal of cell biology》1993,121(5):1053-1064
The interaction between myosin subfragment 1 (S1) and actin filaments after the photolysis of P3-1-(2-nitrophenyl)ethyl ester of ATP (caged ATP) was analyzed with a newly developed freezing system using liquid helium. Actin and S1 (100 microM each) formed a ropelike double-helix characteristic of rigor in the presence of 5 mM caged ATP at room temperature. At 15 ms after photolysis, the ropelike double helix was partially disintegrated. The number of S1 attached to actin filaments gradually decreased up to 35 ms after photolysis, and no more changes were detected from 35 to 200 ms. After depletion of ATP, the ropelike double helix was reformed. Taking recent analyses of actomyosin kinetics into consideration, we concluded that most S1 observed on actin filaments at 35-200 ms are so called "weakly bound S1" (S1.ATP or S1.ADP.Pi) and that the weakly bound S1 under a rapid association- dissociation equilibrium with actin filaments can be captured by electron microscopy by means of our newly developed freezing system. This enabled us to directly compare the conformation of weakly and strongly bound S1. Within the resolution of deep-etch replica technique, there were no significant conformational differences between weakly and strongly bound S1, and neither types of S1 showed any positive cooperativity in their binding to actin filaments. Close comparison revealed that the weakly and strongly bound S1 have different angles of attachment to actin filaments. As compared to strongly bound S1, weakly bound S1 showed a significantly broader distribution of attachment angles. These results are discussed with special reference to the molecular mechanism of acto-myosin interaction in the presence of ATP.  相似文献   

18.
The structural mechanism by which myosin heads exert force is unknown. One possibility is that the tight binding of the heads to actin drives them into a force-generating configuration. Another possibility is that the force-generating conformational change is inherent to the myosin heads. In this case the heads would make force by changing their shape according to the species of nucleotide in their active sites, the tight attachment to actin serving only to provide traction. To test this latter possibility, we used negative stain electron microscopy to search for a MgATP-induced shape change in the heads of single myosin molecules. We compared the heads of 10S smooth muscle myosin monomers (wherein MgATP is trapped at the active site) with the MgATP-free heads of 6S monomers. We found that to a resolution of about 2 nm, MgATP binding to the unrestrained myosin head does not drive it to change its shape or its flexibility. This result suggests that the head makes force by virtue of an induced fit to actin.  相似文献   

19.
Single bilayer vesicles of dimyristoylphosphatidylcholine have been investigated by small-angle X-ray scattering at 28 degrees C. The results indicate that these vesicles are hollow spherical shell structures with an outer radius of approximately 12 nm and a molecular weight of (3.2 +/- 0.5) X 10(6). The shell was found to be 4.4 +/- 0.2 nm thick with a cross-sectional electron-density profile characteristic for a single phospholipid bilayer. Upon interaction of these vesicles with apolipoprotein C-III from human very low density lipoproteins at a protein/lipid ratio greater than 0.08 (g/g), a complex containing 0.25 g of protein/g of lipid, with molecular weight of (3.9 +/- 0.4) X 10(5), is formed. The shape analysis indicates a highly asymmetric particle with an internal partition of low and high electron density resembling that produced by a bilayer structure. Model calculations and curve-fitting procedures show good agreement between the experimental scattering curve and that computed for an oblate ellipsoidal structure with dimensions of 17 X 17 X 5 nm and a 1 nm thick shell of high electron density surrounding the core of low electron density.  相似文献   

20.
To better characterize the conformational differences of G- and F-actin, we have compared the interaction between G- and F-actin with myosin subfragment 1 (S1) which had part of its F-actin binding site (residues 633-642) blocked by a complementary peptide or "antipeptide" (Chaussepied, P., and Morales, M. F. (1988) Proc. Natl. Acad. Sci. U.S.A. 85, 7471-7475). Light scattering, sedimentation, and electron microscopy measurements showed that, with the antipeptide covalently attached to the S1 heavy chain, S1 was not capable of inducing G-actin polymerization in the absence of salt. Moreover, the antipeptide-carrying S1 did not change the fluorescence polarization of 5-[2-(iodoacetyl)-aminoethyl]aminonaphthalene-1-sulfonic acid (1,5-IAEDANS)-labeled G-actin or of 1,5-IAEDANS-labeled actin dimer, compared to the control S1. This result, interpreted as a lack of interaction between G-actin and antipeptide-carrying S1, was confirmed further by the following experiments: in the presence of G-actin, antipeptide.S1 heavy chain was not protected against trypsin and papain proteolysis, and G-actin could not be cross-linked to antipeptide.S1 by 1-ethyl-3[-3-(dimethylamino)propyl]carbodiimide. In contrast, similar experiments showed that antipeptide.S1 was able to interact with nascent F-actin and with F-actin. Thus, blocking the stretch 633-642 of S1 heavy chain by the antipeptide strongly inhibits G-actin-S1 interaction but only slightly alters F-actin-S1 contact. We, therefore postulate that this stretch of skeletal S1 heavy chain is essential for G-actin-S1 interaction and that the G-F transformation generates new S1 binding site(s) on the actin molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号