首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The chemical synthesis of the zwitterionic disaccharide 2 is described that corresponds to the repeating unit of the O-specific polysaccharide (1) of the gram-negative human pathogen Shigella sonnei. Passive hemolysis inhibition tests using a hyperimmune rabbit serum raised against S. sonnei showed that the serologic activity of the disaccharide 2 is nearly 2- to 3-fold higher than those of its component monosaccharides. NMR data of 2 are in support of the proposed structure of the O-specific polysaccharide.  相似文献   

3.
A tetra- and a pentasaccharide were synthesized as analogues to the structure of the Streptococcus pneumoniae type 37 capsular polysaccharide, a homopolymer with a disaccharide-repeating unit of -->3)[beta-D-Glcp-(1-->2)]-beta-D-Glcp-(1-->. Synthesis of the tetrasaccharide employed a beta-(1-->2)-diglycosylation of a beta-(1-->3)-linked disaccharide. Subsequently, the pentasaccharide was synthesized from a suitably protected tetrasaccharide derivative by a beta-(1-->3)-extension at O-3'. Steric crowding was found to be an important factor in the formation of the pentasaccharide.  相似文献   

4.
5.
Methyl glycoside of the tetrasaccharide GlcNAc(beta 1-2)Rha(alpha 1-2)Rha(alpha 1-3)Rha, which represents a repeating unit of the basic chain of Shigella flexneri O-antigenic polysaccharides, was synthesized using acylated monosaccharide synthons. A dimer of the repeating unit, octasaccharide [GlcNAc(beta 1-2)Rha(alpha 1-2) Rha(alpha 1-3)Rha(alpha 1-3)]2-OMe was obtained by TrClO4-catalyzed condensation of two tetrasaccharide blocks.  相似文献   

6.
7.
8.
A series of polyprenyl phosphates with modified structure of polyprenyl residue was prepared through phosphorylation of polyprenyl trichloroacetimidates with phosphoric acid. Interaction of polyprenols with tetra-n-butylammonium dihydrogen phosphate and trichloroacetonitrile was found to represent a very efficient, simple and general method for the synthesis of polyprenyl phosphates. A procedure was developed for smooth conversion of polyprenyl pyrophosphates into the monophosphates through hydrolysis in the presence of 4-dimethylaminopyridine. The polyprenyl phosphates prepared were studied as substrates for the enzymes of Salmonella anatum O-specific polysaccharide biosynthesis. Correct stereochemistry of alpha- and beta-isoprenic units was found to be essential for substrate efficiency. At the more remote positions of the hydrocarbon chain just the presence of isoprenic units of any configuration seems necessary. Some changes in position of the phosphate group may be permissible without significant loss of substrate properties.  相似文献   

9.
O-Specific polysaccharide chain of the Vibrio fluvialis lipopolysaccharide is built up of pentasaccharide repeating units, containing one N-acetyl-D-glucosamine and four L-rhamnose residues. The structure of the polysaccharide was elucidated using two-dimensional correlation 1H-NMR-spectroscopy, 13C-NMR-spectroscopy and nuclear Overhauser effect and confirmed by methylation analysis and selective cleavage of N-acetylglucosamine residues by the N-deacetylation-deamination method which yielded linear L-rhamnan representing the backbone of the polysaccharide. Thus, the repeating unit of the O-specific polysaccharide has the following structure: (formula; see text)  相似文献   

10.
Di-, tri- and tetrasaccharide fragments of the linear chain of the capsular polysaccharide of Streptococcus pneumoniae type 3 consisting of glucose and glucuronic acid residues connected with beta 1----3- and beta 1----4-glycosidic linkage have been synthesised. A new method for selective deprotection of C3-hydroxyl group in the glucopyranuronic acid moiety is proposed.  相似文献   

11.
Amide-linked lysine mono- and di-uronic acid fragments of the O-specific polysaccharide from P. mirabilis O27 have been synthesised. N epsilon-Boc-L-lysine tert-butyl ester was condensed with 2-azidoethyl glycosides of glucuronic acid and beta-D-GlcpNAc-(1----3)-beta-D-GlcpA. Transformation of the products into 2-acrylamidoethyl glycosides, followed by deprotection using trifluoroacetic acid, gave the target monomers that were converted into high-molecular-weight copolymer-type neoglycoconjugates.  相似文献   

12.
Lysogenization of Salmonella typhimurium with either of the bacteriophages A3 and A4 results in O-acetylation of the L-rhamnose residues of the O-polysaccharide chain of the lipopolysaccharide of the bacterial cell envelope. The O-acetyl group is found on both O-2 and O-3 of the L-rhamnosyl residues. This lysogenic conversion prevents the adsorption of the A3 and A4 phages and also greatly reduces the rate of adsorption of phage P22 to the O-polysaccharide chain as measured by binding studies with whole bacteria. Isolated lipopolysaccharide from A3- and A4-lysogenized bacteria was also inefficient in inactivating these phages: the concentration required for 50% inactivation was 10,000-fold higher than that for lipopolysaccharide from S. typhimurium not lysogenized by any A phage. Binding of phages A3 and A4 is accompanied by hydrolysis of the alpha-1,3 linkage between rhamnose and galactose in the tetrasaccharide repeating unit of the O-polysaccharide. Phage hydrolysis generates saccharides of various lengths, the majority being dodecasaccharides, i.e., equivalent to three repeating units. It is surmised that O-acetylation of the rhamnosyl residue interferes with phage A3, A4, and P22 infection by preventing binding to and hydrolysis of the O-polysaccharide chain, the initial step in the phage infection cycle. The new O-acetyl-rhamnose entities did not elicit specific antibodies in rabbits in accordance with earlier experiences. The O-acetylation of O-2 and O-3 of rhamnose is a new, hitherto unknown, modification of the O-polysaccharide chain of S. typhimurium.  相似文献   

13.
The O-specific polysaccharide isolated by mild acid degradation of the lipopolysaccharide of Y. kristensenii strain 490 (O:12,25) contained D-glucose, 2-acetamido-2-deoxy-D-glucose, 2-acetamido-2-deoxy-D-galactose, 2-acetamido-2,6-dideoxy-L-galactose, glycerol, and phosphate in the ratios 2:2:1:1:1:1. On the basis of 31P- and 13C-n.m.r. data, methylation analysis, dephosphorylation, solvolysis with anhydrous hydrogen fluoride, and Smith degradation, it was concluded that the repeating unit of the polysaccharide was a branched hexaosylglycerol phosphate with the following structure. [formula: see text]  相似文献   

14.
Treatment of the DMan (beta 1-4) LRha (alpha 1-3) D [3H]Gal-derivative of moraprenyl pyrophosphate with the cell envelope preparation from S. newington results in the formation of polysaccharide with beta 1-6 linkage between the trisaccharide units (polymerization degree approximately 8). The synthetic derivatives of moraprenyl pyrophosphate which contain D-talose, 4-deoxy-D-xylo-hexose, LRha (alpha 1-3) DGlc or LRha (alpha 1-3) DGlc (alpha 1-6) DGal were found to serve as substrates for the biosynthesis of the corresponding modified polysaccharides.  相似文献   

15.
The synthesis of oligosaccharide fragments of the O-specific polysaccharide of Vibrio cholerae O139 containing a 4,6-cyclic phosphate galactose residue linked to GlcNAc is described. 8-Azido-3,6-dioxaoctyl 2,3,4,6-tetra-O-acetyl-beta-D-galactopyranosyl-(1-->3)-2-acetamido-4,6-O-benzylidene-2-deoxy-beta-D-glucopyranoside, obtained by condensation of 2,3,4,6-tetra-O-acetyl-alpha-D-galactopyranosyl bromide and 8-azido-3,6-dioxaoctyl 2-acetamido-4,6-O-benzylidene-2-deoxy-beta-D-glucopyranoside, was converted to 8-azido-3,6-dioxaoctyl 3-O-benzyl-beta-D-galactopyranosyl-(1-->3)-2-acetamido-6-O-benzyl-2-deoxy-beta-D-glucopyranoside (6) by reductive opening of the acetal, followed by deacetylation and selective benzylation. Phosphorylation of 6 furnished two isomeric 4,6-cyclic 2,2,2-trichloroethyl phosphates. Glycosylation of the (S)-phosphate with 2,4-di-O-benzyl-3,6-dideoxy-alpha-L-xylo-hexopyranosyl bromide under halide-assisted conditions gave the desired tetrasaccharide, together with a trisaccharide. Global deprotection and reduction of the azide to an amine was effected by catalytic hydrogenation/hydrogenolysis to give the deprotected tetrasaccharide, which is functionalized for conjugation.  相似文献   

16.
The O-specific polysaccharide of the lipopolysaccharide of Proteus penneri strain 103 was studied using 1H and 13C NMR spectroscopy, including 2D COSY, TOCSY, NOESY, H-detected 1H,(13)C HMQC, 1H, 31P HMQC, and HMBC experiments. It was found that the polysaccharide is built up of oligosaccharide-ribitol phosphate repeating units and thus resembles ribitol teichoic acids of Gram-positive bacteria. The following structure of the polysaccharide was established:where Etn and Rib-ol are ethanolamine and ribitol, respectively. This structure is unique among the known structures of Proteus O-antigens and, therefore, we propose classification of the strain studied into a new Proteus serogroup, O73. The molecular basis for cross-reactivity between O-antiserum against P. penneri 103 and O-antigens of P. mirabilis O33 and D52 is discussed.  相似文献   

17.
The synthesis is reported of 3-aminopropyl 4-O-(4-O-beta-D-glucopyranosyl-2-O-alpha-L-rhamnopyranosyl-beta-D- galactopyranosyl)-beta-L-rhamnopyranoside 3'-(glycer-2-yl sodium phosphate) (25 beta), which represents the repeating unit of the capsular polysaccharide of Streptococcus pneumoniae type 23F (American type 23) [(----4)-beta-D-Glcp-(1----4)-[Glycerol-(2-P----3)] [alpha-L- Rhap-(1----2)]-beta-D-Galp-(1----4)-beta-L-Rhap-(1----)n). 2,4,6-Tri-O-acetyl-3-O-allyl-alpha-D-galactopyranosyl trichloroacetimidate (5) was coupled with ethyl 2,3-di-O-benzyl-1-thio-alpha-L-rhamnopyranoside (6). Deacetylation of the resulting disaccharide derivative, followed by benzylidenation, and condensation with 2,3,4-trio-O-acetyl-alpha-L-rhamnopyranosyl trichloroacetimidate (10) afforded ethyl 4-O-[3-O-allyl-4,6-O-benzylidene-2-O-(2,3,4-trio-O-acetyl- alpha-L-rhamnopyranosyl)-beta-D-galactopyranosyl]-2,3-di-O-benzyl-1-thio - alpha-L-rhamnopyranoside (11). Deacetylation of 11, followed by benzylation, selective benzylidene ring-opening, and coupling with 2,3,4,6-tetra-O-acetyl-alpha-D-glucopyranosyl trichloroacetimidate (15) gave ethyl 4-O-[3-O-allyl-6-O-benzyl-4-O-(2,3,4,6- tetra-O-acetyl-beta-D-glucopyranosyl)-2-O-(2,3,4-tri-O-benzyl-alpha-L- rhamnopyranosyl)-beta-D-galactopyranosyl]-2,3-di-O-benzyl-1-thio-alpha-L - rhamnopyranoside (16). Deacetylation of 16 followed by benzylation, deallylation, and acetylation yielded ethyl 4-O-[3-O-acetyl-6-O-benzyl-4-O-(2,3,4,6-tetra-O-benzyl-beta-D-glucopy ran osyl)- 2-O-(2,3,4-tri-O-benzyl-alpha-L-rhamnopyranosyl)-beta-D-galactopyranosyl ]-2,3- di-O-benzyl-1-thio-alpha-L-rhamnopyranoside (20). The glycosyl bromide derived from 20, when coupled with 3-benzyloxycarbonylamino-1-propanol, gave the beta-glycoside (21 beta) as the major product. Deacetylation of 21 beta followed by condensation with 1,3-di-O-benzylglycerol 2-(triethylammonium phosphonate) (27), oxidation, and deprotection, afforded 25 beta.  相似文献   

18.
A trisaccharide (Glcalpha1-4Glcalpha1-6Glc) and a tetrasaccharide (Glcalpha1-4Glcalpha1-4Glcalpha1-6Glc) the structures of which are related to that of repeating unit of pullulan have been obtained, exploiting the transglycolytic activity of Aspergillus niger cyclodextrin glucanotransferase. Both products were obtained in one-pot reaction using as a donor the alpha-cyclodextrin and as an acceptor the disaccharide isomaltose. The regioselectivity of the reaction was 85% for the tetrasaccharide and 80% for the trisaccharide. The yield of reaction resulted to be 42% for the synthesis of trisaccharide and 25% for that of tetrasaccharide. Purification of products was performed by size exclusion chromatography and by semipreparative reverse phase HPLC after reversible derivatization with 2-aminopyridine. Structural characterization was performed by capillary electrophoresis, ion-spray mass spectrometry, and by 13C-NMR spectroscopy. A comparison of these results with those obtained by using alpha-D-glucosidase, which had been effective for the synthesis of the disaccharide isomaltose, is reported.  相似文献   

19.
20.
Interaction of lithium alcoholates of 2,4-di-O-benzoates of paratose and abequose with tetrabenzyl pyrophosphate gave alpha-phosphates of the 3,6-dideoxyhexoses, further converted into the corresponding cytidine-5'-diphosphate derivatives. These synthetic nucleotides were shown to participate in the biosynthesis of the O-specific polysaccharides for Salmonella typhimurium and S. nitra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号