首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Apple (Malus domestica Borkh.), which is a widely cultivated, important economic fruit crop with nutritive and medicinal importance, has emerged as a model horticultural crop in this post-genomic era. Apple cultivation is heavily dependent on climatic condition and is susceptible to several diseases caused by fungi, bacteria, viruses, insects, etc. Extensive research work has been carried out to standardize tissue culture protocols and utilize them in apple improvement. We review the in vitro shoot multiplication, rooting, transformation and regeneration methodologies in apple and tabulate various such protocols for easy reference. The utility and limitation of transgenesis in apple improvement have also been summarized. The concepts of marker-free plants, use of non-antibiotic resistance selectable markers, and cisgenic and intragenic approaches are highlighted. Furthermore, the limitations, current trends and future prospects of tissue culture-mediated biotechnological interventions in apple improvement are discussed.  相似文献   

2.
Picrorhiza (Picrorhiza kurrooa) is an endangered medicinal plant with well-known hepatoprotective activity attributed to monoterpenoid picrosides. The present article details on regulatory genes of terpenoid metabolism, 3-hydroxy-3-methylglutaryl coenzyme A reductase (pkhmgr) and 1-deoxy-D-xylulose-5-phosphate synthase (pkdxs) from picrorhiza. Since no molecular information was available, these genes were cloned to full-length by degenerate primers and rapid amplification of cDNA ends, followed by cloning of the upstream sequences that showed the presence of core sequences for light and temperature responsiveness. Electrophoretic mobility shift assay confirmed binding of protein to these motifs. Expression of pkhmgr and pkdxs was up-regulated at 15°C as compared to at 25°C as well as under light as compared to dark conditions. Picrosides content exhibited the trend similar to gene expression. To rule out the possible limitation of carbon pool under dark condition, plantlets of picrorhiza were raised in vitro in Murashige and Skoog medium supplemented with 3% sucrose. Results showed similar up-regulation of both the genes and the higher picrosides content in in vitro raised plantlets in the presence of light. Data suggested the important roles played by light and temperature in regulating pkhmgr and pkdxs, and the picrosides level in picrorhiza.  相似文献   

3.
Legumes represent a vast family of plants including more than 600 genera and more than 13,000 species. Among them, the term “pulses” refers only to dried seed crops, excluding those grown mostly for oil extraction (like soybean), where dried peas, edible beans, lentils, chickpeas, cowpea, mungbean, blackgram and pigeonpea are the most common cultivated ones for human consumption due to their high nutritional value. They also have the ability of fixing nitrogen into the soil with symbiotic bacteria, which reduces the need for chemical fertilizers in crop rotations. Conventional breeding methods for pulses are laborious and time-consuming before the release of new genotypes. Thus, alternative biotechnological approaches may be advantageous in this area. Tissue culture, plant regeneration strategies, gene transfer and plant transformation are studied in these pulses. Also, anther, microspore, embryo and ovary culture and their opportunity of application in these pulses are discussed.  相似文献   

4.
Yellow stem borer (YSB), Scirpophaga incertulas (Lepidoptera: Crambidae), a monophagous pest of paddy is considered as most important pest of rain fed low land and flood prone rice eco-systems. Breeding of yellow stem borer resistance in rice is difficult owing to the complex genetics of the trait, inherent difficulties in screening and poor understanding of the genetics of resistance. On the other hand, a good level of resistance against the widespread yellow stem borer has been rare in the rice germplasm. Resistance to insects has been demonstrated in transgenic plants expressing genes for δ-endotoxins from Bacillus thuringiensis (Bt), protease inhibitors, enzymes and plant lectins. The performance of insect resistant GM rice in trials in China has been quite impressive. The present review is an attempt to assess the current state of development in biotechnological intervention for yellow stem borer resistance in rice.  相似文献   

5.
Picrorhiza kurrooa L., a high altitude medicinal plant, is known for its drug content called Kutkin. In the present study, DNA-based molecular marker techniques, viz. simple sequence repeats (SSR) and cytochrome P-450 markers were used to estimate genetic diversity in Picrorhiza kurrooa. Twenty five accessions of Picrorhiza kurrooa, collected from ten different eco-geographical locations were subjected to 22 SSR and eight cytochrome P-450 primer pairs, out of which 13 SSR markers detected mean 5.037 alleles with a mean polymorphic information content (PIC) of 0.7718, whereas eight cytochrome P-450 markers detected mean 5.0 alleles with a mean PIC of 0.7596. Genetic relationship among the accessions was estimated by constructing the dendrograms using SSR and cytochrome P-450 data. There was a clear consistency between SSR and cytochrome P-450 trees in terms of positioning of most Picrorhiza accessions. SSR markers could cluster various Picrorhiza kurrooa accessions based on their geographical locations whereas cytochrome P-450 markers could cluster few accessions as per their geographical locations. The Mantel test between SSR and cytochrome P-450 markers revealed a good fit correlation (r = 0.6405). The dendrogram constructed using the combined data of SSR and cytochrome P-450s depicted two clusters of accessions based on its eco-geographical locations whereas two clusters contained the accessions from mixed eco-geographical locations. Overall, the results of the present study point towards quiet high degree of genetic variation among the accessions of each eco-geographic region.  相似文献   

6.
Picrorhiza kurrooa Royle ex Benth., a high value medicinal herb of alpine Himalaya and a source of hepatoprotective picrosides, is listed as ‘endangered’ due to heavy collection from its natural habitat. The present report deals with successful propagation of this species using both conventional and in vitro techniques. Vegetative propagation was achieved by rooting runner cuttings with indole-3-butyric acid (IBA) or α-naphtheleneacetic acid (NAA) treatment before planting. Nearly 87% rooting success was achieved by treatment of cuttings with 50.0 μM IBA. Seeds were given a presoaking treatment with gibberellic acid (GA3), 6-benzylaminopurine (BAP) or a combination of both to influence germination. More than 11-fold improvement in germination was recorded in seeds treated with 250.0 μM GA3. In vitro shoot multiplication was achieved through sprouting of axillary buds using nodal segment. Multiple shoots were formed following culture for 3 weeks on Murashige and Skoog (MS; 1962. Physiologia Plantarum 15: 473–497) medium containing 1.0 μM BAP. Cent percent rooting success, without basal callus formation, was observed when individual microshoots were placed in MS medium supplemented with IBA. The plantlets raised using conventional as well as tissue culture methods were hardened and successfully established in the experimental field located at 2450 m elevation. In addition, strategies have been discussed to encourage cultivation and in situ conservation of this highly valued medicinal herb so as to reduce pressure on its natural populations.  相似文献   

7.
Plant protoplasts: status and biotechnological perspectives   总被引:21,自引:0,他引:21  
Plant protoplasts ("naked" cells) provide a unique single cell system to underpin several aspects of modern biotechnology. Major advances in genomics, proteomics, and metabolomics have stimulated renewed interest in these osmotically fragile wall-less cells. Reliable procedures are available to isolate and culture protoplasts from a range of plants, including both monocotyledonous and dicotyledonous crops. Several parameters, particularly the source tissue, culture medium, and environmental factors, influence the ability of protoplasts and protoplast-derived cells to express their totipotency and to develop into fertile plants. Importantly, novel approaches to maximise the efficiency of protoplast-to-plant systems include techniques already well established for animal and microbial cells, such as electrostimulation and exposure of protoplasts to surfactants and respiratory gas carriers, especially perfluorochemicals and hemoglobin. However, despite at least four decades of concerted effort and technology transfer between laboratories worldwide, many species still remain recalcitrant in culture. Nevertheless, isolated protoplasts are unique to a range of experimental procedures. In the context of plant genetic manipulation, somatic hybridisation by protoplast fusion enables nuclear and cytoplasmic genomes to be combined, fully or partially, at the interspecific and intergeneric levels to circumvent naturally occurring sexual incompatibility barriers. Uptake of isolated DNA into protoplasts provides the basis for transient and stable nuclear transformation, and also organelle transformation to generate transplastomic plants. Isolated protoplasts are also exploited in numerous miscellaneous studies involving membrane function, cell structure, synthesis of pharmaceutical products, and toxicological assessments. This review focuses upon the most recent developments in protoplast-based technologies.  相似文献   

8.
《Biotechnology advances》2017,35(2):178-216
Alzheimer's disease (AD) is a severe, chronic and progressive neurodegenerative disease associated with memory and cognition impairment ultimately leading to death. It is the commonest reason of dementia in elderly populations mostly affecting beyond the age of 65. The pathogenesis is indicated by accumulation of the amyloid-beta (Aβ) plaques and neurofibrillary tangles (NFT) in brain tissues and hyperphosphorylation of tau protein in neurons. The main cause is considered to be the formation of reactive oxygen species (ROS) due to oxidative stress. The current treatment provides only symptomatic relief by offering temporary palliative therapy which declines the rate of cognitive impairment associated with AD. Inhibition of the enzyme acetylcholinesterase (AChE) is considered as one of the major therapeutic strategies offering only symptomatic relief and moderate disease-modifying effect. Other non-cholinergic therapeutic approaches include antioxidant and vitamin therapy, stem cell therapy, hormonal therapy, use of antihypertensive or lipid-lowering medications and selective phosphodiesterase (PDE) inhibitors, inhibition of β-secretase and γ-secretase and Aβ aggregation, inhibition of tau hyperphosphorylation and intracellular NFT, use of nonsteroidal anti-inflammatory drugs (NSAIDs), transition metal chelators, insulin resistance drugs, etanercept, brain-derived neurotrophic factor (BDNF) etc. Medicinal plants have been reported for possible anti-AD activity in a number of preclinical and clinical trials. Ethnobotany, being popular in China and in the Far East and possibly less emphasized in Europe, plays a substantial role in the discovery of anti-AD agents from botanicals. Chinese Material Medica (CMM) involving Chinese medicinal plants has been used traditionally in China in the treatment of AD. Ayurveda has already provided numerous lead compounds in drug discovery and many of these are also undergoing clinical investigations. A number of medicinal plants either in their crude forms or as isolated compounds have exhibited to reduce the pathological features associated with AD. In this present review, an attempt has been made to elucidate the molecular mode of action of various plant extracts, phytochemicals and traditional herbal formulations investigated against AD as reported in various preclinical and clinical tests. Herbal synergism often found in polyherbal formulations were found effective to combat disease heterogeneity as found in complex pathogenesis of AD. Finally a note has been added to describe biotechnological improvement, genetic and genomic resources and mathematical and statistical techniques for empirical model building associated with anti-AD plant secondary metabolites and their source botanicals.  相似文献   

9.
10.
Seaweed protoplasts: status,biotechnological perspectives and needs   总被引:3,自引:0,他引:3  
Protoplasts are living plant cells without cell walls which offer a unique uniform single cell system that facilitates several aspects of modern biotechnology, including genetic transformation and metabolic engineering. Extraction of cell wall lytic enzymes from different phycophages and microbial sources has greatly improved protoplast isolation and their yield from a number of anatomically more complex species of brown and red seaweeds which earlier remained recalcitrant. Recently, recombinant cell wall lytic enzymes were also produced and evaluated with native ones for their potential abilities in producing viable protoplasts from Laminaria. Reliable procedures are now available to isolate and culture protoplasts from diverse groups of seaweeds. To date, there are 89 species belonging to 36 genera of green, red and brown seaweeds from which successful protoplast isolation and regeneration has been reported. Of the total species studied for protoplasts, most belonged to Rhodophyta with 41 species (13 genera) followed by Chlorophyta and Phaeophyta with 24 species each belonging to 5 and 18 genera, respectively. Regeneration of protoplast-to-plant system is available for a large number of species, with extensive literature relating to their culture methods and morphogenesis. In the context of plant genetic manipulation, somatic hybridization by protoplast fusion has been accomplished in a number of economically important species with various levels of success. Protoplasts have also been used for studying foreign gene expression in Porphyra and Ulva. Isolated protoplasts are also exploited in numerous miscellaneous studies involving membrane function, cell structure, bio-chemical synthesis of cell walls etc. This article briefly reviews the status of various developments in seaweed protoplasts research and their potentials in genetic improvement of seaweeds, along with needs that must to be fulfilled for effective realization of the objectives envisaged for protoplast research.  相似文献   

11.
Among five hairy root lines of Picrorhiza kurrooa that were established through Agrobacterium rhizogenes, one (H7) was selected for encapsulation due to high accumulation of picrotin and picrotoxinin (8.3 and 47.6 μg/g DW, respectively). Re-grown encapsulated roots induced adventitious shoots with 73 % frequency on MS medium supplemented with 0.1 μM 6-benzylaminopurine, following 6 months of storage at 25 °C. Regenerated plantlets had 85 % survival after 2 months. Regenerants were of similar morphotype having increased leaf number and branched root system as compared to non-transformed plants. The transformed nature of the plants was confirmed through PCR and Southern blot analysis. Genetic fidelity analysis of transformed plants using RAPD and ISSR showed 5.2 and 3.6 % polymorphism, respectively. Phytochemical analysis also showed that picrotin and picrotoxinin content were similar in hairy root line and its regenerants.  相似文献   

12.
Feruloyl esterases represent a diverse group of hydrolases catalyzing the cleavage and formation of ester bonds between plant cell wall polysaccharide and phenolic acid. They are widely distributed in plants and microorganisms. Besides lipases, a considerable number of microbial feruloyl esterases have also been discovered and overexpressed. This review summarizes the latest research on their classification, production, and biophysicochemical properties. Special emphasis is given to the importance of that type of enzyme and their related phenolic ferulic acid compound in biotechnological processes, and industrial and medicinal applications.  相似文献   

13.
Light upregulates the expression of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) in Picrorhiza kurrooa, an endangered medicinal herb. Upstream sequences of HMGR of P. kurrooa (PropkHMGR) were analyzed in relation to its role in light-mediated regulation of gene expression. GATA motif in PropkHMGR exhibited stronger DNA-protein interaction with the nuclear extract of dark-exposed plants in contrast to SORLIP that exhibited stronger binding with the nuclear extract of light-exposed plants. Analysis of PropkHMGR (PropkHMGR-D1, ?1,059/?1) and its deletion fragments PropkHMGR-D2 (?825/?1), PropkHMGR-D3 (?651/?1), PropkHMGR-D4 (?452/?1), and PropkHMGR-D5 (?101/?1) in Arabidopsis thaliana showed PropkHMGR to regulate gene expression [β-glucuronidase (GUS) was used as a reporter gene] at all the developmental stages but only in actively dividing tissues, excluding anthers. Whereas, PropkHMGR-D2 regulated GUS expression in relatively older seedlings but the expression was observed only in shoot apical meristem, root tips, and anthers. PropkHMGR-mediated gene expression was higher in dark as compared to that in the light in Arabidopsis across four temperatures studied. As opposed to the results in P. kurrooa, GATA motifs exhibited DNA-protein interaction with nuclear extract of light-exposed plants of Arabidopsis. SORLIP motifs in Arabidopsis also exhibited DNA-protein interaction with nuclear extract of light-exposed plants as in P. kurrooa. Data showed that (1) PropkHMGR regulated light-mediated gene expression and (2) GATA motif exhibited an inverse relationship between strength of DNA-protein interaction and the gene expression whereas the relationship was species specific for SORLIP.  相似文献   

14.
Sea buckthorn (Hippophae L., Elaeagnaceae) is an economically and ecologically important medicinal plant comprising of species which are winter hardy, dioecious, wind-pollinated multipurpose shrubs bearing yellow or orange berries with nitrogen-fixing ability. It grows widely in cold regions of Indian Himalayas, China, Russia, Europe and many other countries. It is commonly known as ‘cold desert gold’ due to its high potential as a bio-resource for land reclamation, reducing soil erosion and its multifarious uses. The wild populations are being used for harvesting economic benefits with negligible plantation efforts. Although this plant has many excellent traits, it is still in an early phase of domestication. This woody plant is prone to many pests and diseases which destroy the plants and halt its commercial production. Limited progress has been made for improvement of sea buckthorn through breeding programs due to long juvenile period and lack of QTL linkage map, which makes screening of mapping populations a time-consuming and labor-intensive task. Conventional propagation methods, i.e. seeds, softwood and hardwood cuttings, and suckers are in place but are cumbersome and season dependent. Therefore, application of modern tools of biotechnology needs to be standardized for harnessing maximum benefits from this nutraceutical plant. Improvement of this genus through genetic transformation requires an efficient regeneration system, which is yet to be standardized. Taxonomic status of the genus is controversial and requires more inputs. Taxonomic delineation of species and subspecies and also the breeding programs can be more robustly addressed using molecular markers. This review summarizes the progress made and suggests some future directions of research for this important fruit species.  相似文献   

15.
Plant tissue culture and molecular biology techniques are powerful tools of biotechnology that can complement conventional breeding, expedite crop improvement and meet the demand for availability of uniform clones in large numbers. Jatropha curcas Linn., a non-edible, eco-friendly, non-toxic, biodegradable fuel-producing plant has attracted worldwide attention as an alternate sustainable energy source for the future. This review presents a consolidated account of biotechnological interventions made in J. curcas over the decades and focuses on contemporary information and trends of future research.  相似文献   

16.
Polyphenols produced in a wide variety of flowering and fruit-bearing plants have the potential to be valuable fine chemicals for the treatment of an assortment of human maladies. One of the major constituents within this chemical class are flavonoids, among which flavanones, as the precursor to all flavonoid structures, are the most prevalent. We review the current status of flavanone production technology using microorganisms, with focus on heterologous protein expression. Such processes appear as attractive production alternatives for commercial synthesis of these high-value chemicals as traditional chemical, and plant cell cultures have significant drawbacks. Other issues of importance, including fermentation configurations and economics, are also considered.  相似文献   

17.
18.
Polyhydroxyalkanoates (PHAs) are the polymers of hydroxyalkanoates that accumulate as carbon/energy or reducing-power storage material in various microorganisms. PHAs have been attracting considerable attention as biodegradable substitutes for conventional polymers. To reduce their production cost, a great deal of effort has been devoted to developing better bacterial strains and more efficient fermentation/recovery processes. The use of mixed cultures and cheap substrates can reduce the production cost of PHA. Accumulation of PHA by mixed cultures occurs under transient conditions mainly caused by intermittent feeding and variation in the electron donor/acceptor presence. The maximum capacity for PHA storage and the PHA production rate are dependent on the substrate and the operating conditions used. This work reviews the development of PHA research. Aspects discussed include metabolism and various mechanisms for PHA production by mixed cultures; kinetics of PHA accumulation and conversion; effects of carbon source and temperature on PHA production using mixed cultures; PHA production process design; and characteristics of PHA produced by mixed cultures.  相似文献   

19.
Halohydrin dehalogenases (HHDHs) are lyases that catalyze the cleavage of carbon–halogen bond of halohydrins. They also can catalyze the reverse reaction in the presence of nucleophiles such as cyanide, azide, and nitrite ions. HHDHs have been recognized as the ideal tools for the degradation of various halogenated environmental pollutants. Moreover, they can be used as biocatalysts for the kinetic resolution of halohydrins and epoxides, and for the preparation of various substituted alcohols. This review is mainly focused on the current status of research on HHDHs, highlighting the production, characterization, structures and mechanism, protein engineering, and biotechnological applications of HHDHs.  相似文献   

20.
Beauveria bassiana is an important entomopathogenic fungus widely commercialized in the world. Recent progress and achievements on conidia production have focused on a yield goal of 109 to 1010 conidia per gram of dry substrate. Due to cost-competitive perspectives, these yields should be associated with better production rates or productivities. This study presents a review of relevant studies of B. bassiana conidia production on solid-state cultures and the parameters that should be taken into account to maintain constant quality in the product to be commercialized. Conditions for maximizing production and infectivity of B. bassiana conidia are also analysed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号