首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of endogenous opioid system on the rat's mean blood pressure (BP) and heart rate (HS) has been studied under the chronic infusion of the opioid receptor antagonist naloxone (1 mg/kg intraperitoneally, twice a day, during 6 days) or an inhibitor of captorile enkephalinases (20 mg/kg subcutaneously). Naloxone caused a significant decrease and captorile--increase of maximum meanings of HR during exercises (the running on the treadmill during 3.5 min by the velocity of 30 m/min), both compounds didn't exert a considerable effect on BP at rest and during exercises. It has been concluded that the endogenous opioid system plays an important role in the autonomic HR regulation during exercise.  相似文献   

2.
P Limonta  C W Bardin  E F Hahn  R B Thau 《Steroids》1985,46(6):955-965
In order to gain additional information on the role of brain opioid peptides in the regulation of the hypothalamic-pituitary-gonadal axis, we studied the effects of nalmefene, a new opiate antagonist, on gonadotropin and testosterone secretion in male rats. The results were compared with those obtained with naloxone, a well-studied antagonist. Acute injections of either nalmefene or naloxone (2 mg/kg) produced 4-fold increases in LH and testosterone secretion. In castrated male rats treated with testosterone propionate (TP), nalmefene (10 mg/kg) reversed the androgen negative feedback on LH secretion; surprisingly, when higher doses (25 and 50 mg/kg) were injected, the compound lost its ability to antagonize the testosterone-induced inhibition of LH levels. In contrast, naloxone was able to increase LH levels in TP-treated castrated rats even at the highest dose tested (50 mg/kg). Chronic administration of these antagonists resulted in suppression of the acute release of LH and T secretion in nalmefene-treated but not in naloxone-injected animals. These data are consistent with previous observations suggesting that opioid peptides a) exert a tonic inhibitory effect on LH and testosterone production and b) participate in the negative androgen-induced feedback control of LH secretion. Our results also show that the antagonistic action of nalmefene, but not naloxone, is reversed when higher doses are used or following chronic administration.  相似文献   

3.
The effects of chronic administration (4 weeks) of the alpha-2 adrenoceptor agonist clonidine (CL) and its termination on penile erection and ejaculation were investigated in male dogs. Penile erection and ejaculation were elicited by manual penile stimulation (for 5 min). CL (10 micrograms/kg/hr, s.c.) was delivered via osmotic minipump (Alza, 2ML-4). 3 or 7 days after the minipump implantation, CL caused a significant decrease in the amount of ejaculate produced by the genital stimulation without affecting the erectile potency. Ejaculatory ability returned to pretreatment levels despite continued CL administration, becoming evident in tests 14 days after initiation of treatment. Further, chronic CL (23 days) antagonized the inhibitory effects of acute administration of CL (0.05 mg/kg, i.p.). These data indicate tolerance to continued delivery of low doses as well as to acute administration of a higher dose. In the acute drug experiments, the ejaculatory inhibition elicited by CL (0.05 mg/kg, i.p.) was completely antagonized by pretreatment with yohimbine (0.05 and 0.10 mg/kg, i.p.), an alpha-2 adrenoceptor antagonist, but not with naloxone (1.0 mg/kg, i.p.), an opioid receptor antagonist. Furthermore, DG-5128 (1.0 and 2.0 mg/kg, i.p.), a selective alpha-2 adrenoceptor antagonist that poorly penetrates the blood-brain barrier, failed to antagonize the CL-induced ejaculatory inhibition. This study suggests that functional alterations in the central alpha-2 adrenoceptor mechanism may be related to the changes in the ejaculatory capacity during chronic treatment with CL.  相似文献   

4.
Naloxone (an opioid receptor antagonist) was used to examine the role of opioid mechanisms in bladder reflexes and in somatic afferent inhibition of these reflexes by tibial nerve stimulation (TNS). Experiments were conducted in α-chloralose-anesthetized cats when the bladder was infused with saline or 0.25% acetic acid (AA). The bladder volume was measured at the first large-amplitude (>30 cmH(2)O) contraction during a cystometrogram and termed "estimated bladder capacity" (EBC). AA irritated the bladder, induced bladder overactivity, and significantly (P < 0.0001) reduced EBC to 14.3 ± 1.9% of the saline control. TNS (5 Hz, 0.2 ms) at 4 and 8 times the threshold (T) intensity for inducing an observable toe movement suppressed AA-induced bladder overactivity and significantly increased EBC to 41.5 ± 9.9% (4T, P < 0.05) and 46.1 ± 7.9% (8T, P < 0.01) of the saline control. Naloxone (1 mg/kg iv) completely eliminated TNS inhibition of bladder overactivity. Naloxone (0.001-1 mg/kg iv) did not change EBC during AA irritation. However, during saline infusion naloxone (1 mg/kg iv) significantly (P < 0.01) reduced EBC to 66.5 ± 8.1% of the control EBC. During saline infusion, TNS induced an acute increase in EBC and an increase that persisted following the stimulation. Naloxone (1 mg/kg) did not alter either type of inhibition. However, naloxone administered during the poststimulation inhibition decreased EBC. These results indicate that opioid receptors have different roles in modulation of nociceptive and nonnociceptive bladder reflexes and in somatic afferent inhibition of these reflexes, raising the possibility that opioid receptors may be a target for pharmacological treatment of lower urinary tract disorders.  相似文献   

5.
Intracerebroventricular (ICV) administration of kyotorphin (L-Tyr-L-Arg) and cyclo (N-methyl-L-Tyr-L-Arg), its analog, produced significant dose-dependent hypothermic responses in mice at an ambient temperature of 24°C. The hypothermic action of kyotorphin was much greater than that of Met-enkephalin (Met-ENK) but less than that of cyclo NMTA. This action was slightly but not significantly reversed by intraperitoneally administered naloxone (8 mg/kg), an opioid receptor antagonist. Met-ENK utilized as a control peptide in this study also produced a dose-dependent hypothermia which was slightly antagonized by naloxone (8 mg/kg, IP). Thyrotropin releasing hormone (TRH) injected ICV produced hyperthermia dose-dependently. The hypothermia induced by kyotorphin, its cyclic analog and Met-ENK was prevented by a small dose of TRH (0.18 μg=0.5 nmol/animal) which by itself had little effect on body temperature. A TRH neuronal system in the brain may explain the mechanism of kyotorphin-induced hypothermia. However, there was little evidence of involvement of opioid receptors. The present study demonstrates a potent action of kyotorphin and its analog on thermoregulation.  相似文献   

6.
The effects of an opioid antagonist, naloxone, on the secretion of gonadotrophins were investigated in the long term ovariectomized rabbit. In the intact and acutely ovariectomized rabbit (2 days p.o.) naloxone at 10 mg/kg induced an increase of 260-300% in LH secretion at 40 min post-injection. From days 33-66 post-surgery naloxone at 10 mg/kg caused significant elevations in LH release even when animals were treated with estradiol benzoate 24 h previously. By contrast, treatment with oestradiol benzoate 3 h before naloxone abolished the LH increase. An LH surge could be elicited in these rabbits with GnRH treatment. These studies indicated that long term ovariectomy in the female rabbit does not completely remove the opioid control of GnRH release and that the LH response to naloxone is influenced by circulating estradiol levels.  相似文献   

7.
L L Murphy  B A Adrian  M Kohli 《Steroids》1999,64(9):664-671
Acute treatment with delta9-tetrahydrocannabinol [delta9-THC; 0.5 or 1.0 mg/kg b.w. intravenously (i.v.)], the major psychoactive constituent of marijuana, produces a dose-related suppression of pulsatile luteinizing hormone (LH) secretion in ovariectomized rats. To determine whether delta9-THC produces this response by altering neurotransmitter and/or neuropeptide systems involved in the regulation of LH secretion, ovariectomized rats were pretreated with antagonists for dopamine, norepinephrine, serotonin, or opioid receptors, and the effect of delta9-THC on LH release was determined. Pretreatment with the D2 receptor antagonists butaclamol (1.0 mg/kg b.w., intraperitoneally) or pimozide [0.63 mg/kg, subcutaneously (s.c.)], the opioid receptor antagonists naloxone (1-4 mg/kg, i.v.) or naltrexone (2 mg/kg, i.v.), the noradrenergic alpha2-receptor antagonist idazoxan (10 microg/kg, i.v.), or the serotonin 5-HT(1C/2) receptor antagonist ritanserin (1 or 5 mg/kg b.w., i.p.), did not alter delta9-THC-induced inhibition of pulsatile LH secretion. Pretreatment with a relatively high dose of the beta-adrenergic receptor blocker propranolol (6 mg/kg, i.v.) attenuated the ability of the low THC dose to inhibit LH release; however, lower doses of propranolol were without effect. Furthermore, the ability of a relatively nonspecific serotonin 5-HT(1A/1B) receptor antagonist pindolol (4 mg/kg, s.c.) or the specific 5-HT1A receptor antagonist WAY-100635 (1 mg/kg, s.c.) to significantly attenuate THC-induced LH suppression indicates that activation of serotonergic 5-HT1A receptors may be an important mode by which THC causes inhibition of LH release in the ovariectomized rat.  相似文献   

8.
The influence of endogenous opioid peptides on body thermoregulation has been studied in untreated postmenopausal women and in the same subjects after chronic administration of the antidopaminergic drug veralipride (200 mg/day for 20 days). Subjects randomly received an infusion of the opioid antagonist naloxone (1.6 mg/h for 4 h) or saline on two consecutive days, both before and after veralipride treatment. In untreated subjects body core temperature, as evaluated by rectal temperature, did not vary during saline infusion, whereas a significant decrease was observed during naloxone infusion. Chronic administration of veralipride significantly increased the hypothermic response to naloxone. Therefore, veralipride seems to increase the activity of endogenous opioid peptides on mechanisms which regulate body temperature in postmenopausal women.  相似文献   

9.
10.
Objective: The goal was to determine whether withdrawal from sugar can cause signs of opioid dependence. Because palatable food stimulates neural systems that are implicated in drug addiction, it was hypothesized that intermittent, excessive sugar intake might create dependency, as indicated by withdrawal signs. Research Methods and Procedures: Male rats were food‐deprived for 12 hours daily, including 4 hours in the early dark, and then offered highly palatable 25% glucose in addition to chow for the next 12 hours. Withdrawal was induced by naloxone or food deprivation. Withdrawal signs were measured by observation, ultrasonic recordings, elevated plus maze tests, and in vivo microdialysis. Results: Naloxone (20 mg/kg intraperitoneally) caused somatic signs, such as teeth chattering, forepaw tremor, and head shakes. Food deprivation for 24 hours caused spontaneous withdrawal signs, such as teeth chattering. Naloxone (3 mg/kg subcutaneously) caused reduced time on the exposed arm of an elevated plus maze, where again significant teeth chattering was recorded. The plus maze anxiety effect was replicated with four control groups for comparison. Accumbens microdialysis revealed that naloxone (10 and 20 mg/kg intraperitoneally) decreased extracellular dopamine (DA), while dose‐dependently increasing acetylcholine (ACh). The naloxone‐induced DA/ACh imbalance was replicated with 10% sucrose and 3 mg/kg naloxone subcutaneously. Discussion: Repeated, excessive intake of sugar created a state in which an opioid antagonist caused behavioral and neurochemical signs of opioid withdrawal. The indices of anxiety and DA/ACh imbalance were qualitatively similar to withdrawal from morphine or nicotine, suggesting that the rats had become sugar‐dependent.  相似文献   

11.
BALB/c mice are susceptible to develop non-healing, progressive infection with Leishmania major (L. major) due to the development of a non-protective Th2 response. Resistance to L. major infection is dependent to Th1 response. Treatment of mice with the opioid antagonist naloxone can promote the activation of Th1 responses. Here we study the effect of chronic administration of various doses of naloxone on susceptibility of BALB/c mice to L. major infection. Our results showed that naloxone has dose-dependent biphasic effect on L. major infection in BALB/c mice. While administration of 1mg/kg × 2/day tends to exacerbate the local reaction to L. major infection, treatment with 10mg/kg × 2/day of naloxone suppresses the local reaction and progress of infection. On the other hand treatment of mice with middle dose (5mg/kg whether 1 or 2 times per day) does not have significant effect on the infection. This study demonstrates that administration of high dose of naloxone could improve protection against L. major infection in BALB/c mice, presumably by modulation in Th1/Th2 balance or by affecting macrophages through binding to Toll-like receptors.  相似文献   

12.
C A Paronis  S G Holtzman 《Life sciences》1992,50(19):1407-1416
Chronic opioid antagonist administration increases opioid binding sites and potentiates behavioral responses to morphine. Conversely, chronic opioid agonist administration attenuates behavioral responses to morphine, though this is not necessarily accompanied by a parallel loss of binding sites. We examined the possibility that the in vivo affinity of the mu receptors might be altered as a consequence of the continuous administration of either naloxone or morphine. Rats were implanted sc with naloxone- or morphine-filled osmotic pumps; control animals were implanted with sham pumps. One week later, 24 hr after removing the osmotic pumps, cumulative dose-response curves for fentanyl analgesia were generated in the presence of 0.0, 0.03, 0.1, or 0.3 mg/kg naltrexone, using a tail-flick procedure. The analgesic ED50 (with 95% C. L.) of fentanyl in sham implanted animals, following saline pretreatment was 0.027 mg/kg (0.019, 0.039). The potency of fentanyl was decreased in rats infused with morphine, ED50 = 0.051 mg/kg (0.028, 0.093), and increased in rats that received naloxone, ED50 = 0.018 mg/kg (0.015, 0.022). The mean apparent pA2 value for naltrexone (with 95% C.L.) in the control group was 7.7 (7.5, 7.9). No differences were detected in animals that had received either naloxone or morphine for 7 days, pA2 = 7.8 (7.5, 8.1) and 7.4 (7.3, 7.6), respectively. Our results indicate that there is no change in the apparent affinity of the mu-receptor following continuous exposure to either an opioid agonist or antagonist, at a time when the analgesic potency of the agonist is decreased or increased, respectively.  相似文献   

13.
Oktar BK  Ercan F  Yeğen BC  Alican I 《Peptides》2000,21(8):1271-1277
The effect of alpha-melanocyte stimulating hormone (alpha-MSH) on colonic inflammation in the rat. In this study, we investigated the effects of alpha-MSH administration on trinitrobenzene sulfonic acid-induced colitis and the role of nitric oxide and prostaglandins in this response. alpha-MSH treatment (25 microg/rat, intraperitoneally; twice daily for 3 days) reduced the colonic macroscopic lesions compared to untreated ones in both acute and chronic colitis groups. This effect was reversed by pretreatment with the nitric oxide donor, sodium NP (4 mg/kg, intravenously) or cyclooxygenase-1 selective antagonist indomethacin (5 mg/kg, subcutaneously) in the acute group and with the cyclooxygenase-2 selective antagonist nimesulide (3 mg/kg, subcutaneously) in the chronic group. alpha-MSH had no effect on colonic wet weight and myeloperoxidase activity compared to the untreated colitis group. However, protein oxidation was markedly elevated in the alpha-MSH-treated group compared to untreated ones. Nitroprusside and indomethacin reversed the effect of alpha-MSH on macroscopic lesions in the acute groups, whereas nimesulide showed a similar effect in the chronic group. In conclusion, the results of our study show a protective role of alpha-MSH on colonic lesions which partially involves nitric oxide and prostaglandins.  相似文献   

14.
The role of the brain opioid system in the control of hypothalamic-pituitary-adrenal activity was studied in 10 conscious sheep with an indwelling cannula in a cerebral lateral ventricle. On separate days, sheep received infusions of artificial CSF (control) and the opiate antagonist, naloxone (100 micrograms/hr) before and during acute moderate hemorrhage (15 ml/kg over 10 min). Infusion of naloxone before hemorrhage raised plasma ACTH and resulted in a significant increase in cortisol compared to the control infusion. In contrast, ACTH and cortisol responses to hemorrhage tended to be blunted by central naloxone infusion. The responses of vasopressin, aldosterone and the catecholamines remained unaffected by naloxone. The fall in blood pressure and the rise in heart rate accompanying hemorrhage were likewise unaltered. These results suggest that brain opioid peptides have an inhibitory effect on basal ACTH secretion but do not play a major role in modulating the hemodynamic or pituitary-adrenal responses to acute moderate hemorrhage in conscious sheep.  相似文献   

15.
The objective of this work was to study the effect of small doses of naloxone (Nx) on the pulsatile secretion of prolactin (Pr). For this purpose 12 crossbreed ewes were selected and allocated to three groups of four. Group 1 was treated with two injections (at 7 and 19 h) of 40 microg of GnRH. Group 2 was treated with two i.m. injections (at 7 and 19 h) of 0.5mg of naloxone. And the control group 3 was sham treated with injections of 3 ml saline. Blood samples were taken at 20 min intervals during six consecutive hours after injections. When ewes were treated at 7h no significant changes were observed in concentrations of prolactin following treatment with GnRH. Values fluctuated between 200 and 210 ng/ml. In group 2 treated with naloxone there was no change in plasma Pr concentrations during the first 100 min of sampling, however 60 min after Nx treatment Pr decreased significantly (p<0.01) and thereafter Pr plasma levels were consistently less (p<0.001) than control and GnRH treated ewes for the duration of the experiment. The response of the three groups after the second injection (19 h): After the injection of GnRH plasma Pr levels followed much the same pattern observed after the initial treatment, Pr concentrations were similar to those of control ewes. Ewes treated with a second small dose of naloxone (0.5mg i.m.) however, showed a decrease in plasma Pr 60 min after the administration of the endogenous opioid antagonist. Thereafter Nx treated ewes had lesser (p<0.001) plasma Pr levels until the termination of the experiment. It was concluded that Nx an opioid antagonist administered in small intermittent doses can alter Pr plasma concentrations in the ewe, showing that endogenous opioids are important modulators of endocrine function and that the administration of small intermittent doses of opioid antagonists produce significant endocrine changes in ewes.  相似文献   

16.
The role exerted by the endogenous opioid system on thermoregulation has been studied in nine postmenopausal women before and after the chronic administration of the dopamine agonist bromocriptine (5 mg/day). These women randomly received an infusion of the opioid antagonist naloxone (1.6 mg/h for 4 h) or saline on two consecutive days, before and after 30 days of bromocriptine administration. Body temperature as evaluated by rectal temperature, did not vary during saline infusion performed both before and after 30 days of bromocriptine administration. In untreated women naloxone infusion significantly reduced body core temperature. The hypothermic response to naloxone was significantly greater following chronic bromocriptine administration. These results indicate that bromocriptine seems to increase the activity of the endogenous opioid system on the mechanisms which regulate body temperature in postmenopausal women.  相似文献   

17.
Administration of naloxone (100 mg i.v.; approximately 1.21 mg/kg body weight0.75) to 10 intact calves (24 weeks of age) caused an acute release of LH that was similar in amplitude and duration to spontaneous discharges of LH that occur at the same age. The naloxone-induced release of LH was abolished in 9/10 calves (intact and castrated) treated with oestradiol-17 beta. To determine the ontogeny of opioid control of secretion of LH, 12 calves were randomly assigned to receive saline or naloxone (1.21 mg/kg body weight0.75, i.v.) at 3, 5, 7, 9, 11, 13, 17 and 21 weeks of age. At each age, blood was collected at 10-min intervals for 4 h and saline or naloxone was administered (i.v.) after collection of the 120-min sample. Before administration of naloxone, plasma LH values increased with age (P less than 0.01) but did not differ between the control and naloxone groups (age x treatment, P greater than 0.05). Administration of naloxone caused concentrations of plasma LH to increase at 3, 11, 13, 17 and 21 weeks of age (treatment x time, P less than 0.001). Concentrations of LH (saline vs naloxone, ng/ml) reached a maximum within 20 min after treatment at Weeks 3 (0.3 vs 1.2), 11 (0.6 vs 2.6), 13 (0.6 vs 3.7), 17 (1.1 vs 2.6), and within 40 min after treatment at Week 21 (1.0 vs 3.5).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
A Bianchetti  A Guidice  F Nava  L Manara 《Life sciences》1986,39(24):2297-2303
Mice were rendered physically dependent by repeated administration of morphine, 25 mg/kg s.c., 5 times daily for 4 days, and on the 5th day, 2 h after the last morphine dose, they were challenged with a s.c. injection of either naloxone, 25 mg/kg, or the peripherally selective opioid antagonist SR 58002 C (N-methyl levallorphan mesilate), 75 mg/kg. Naloxone provoked jumping and diarrhea in all the animals; mice challenged with SR 58002 C presented no significant jumping but a high frequency of withdrawal diarrhea. When naloxone, 12 mg/kg, or SR 58002 C, 50 mg/kg, were given s.c. in combination with repeated morphine as above, mice which had received naloxone with morphine presented virtually no diarrhea or jumping upon naloxone challenge; those repeatedly treated with morphine plus SR 58002 C were substantially protected from naloxone-precipitated diarrhea, but not jumping. These results further support the remarkable selectivity for peripheral opioid receptors of SR 58002 C, even after repeated high-dose treatment, and are strongly consistent with the primary role of a local intestinal mechanism in the development and expression of opioid withdrawal diarrhea in mice. The in vivo dissociation of central and peripheral components of dependence on morphine is illustrated, apparently for the first time.  相似文献   

19.
The response of serum luteinizing hormone (LH) to naloxone, an opiate antagonist, and gonadotropin-releasing hormone (GnRH) was measured in cows in late pregnancy to assess opioid inhibition of LH. Blood samples were collected at 15-min intervals for 7 h. In a Latin Square arrangement, each cow (n = 6) received naloxone (0, 0.5, and 1.0 mg/kg BW, i.v.; 2 cows each) at Hour 2 on 3 consecutive days (9 +/- 2 days prepartum). GnRH (7 ng/kg body weight, i.v.) was administered at Hour 5 to all cows on each day. Mean serum LH concentrations (x +/- SE) before naloxone injection were similar (0.4 +/- 0.1 ng/ml), with no serum LH pulses observed during the experiment. Mean serum LH concentrations post-naloxone were similar (0.4 +/- 0.1 ng/ml) to concentrations pre-naloxone. Mean serum LH concentrations increased (p less than 0.05) following GnRH administration (7 ng/kg) and did not differ among cows receiving different dosages of naloxone (0 mg/kg, 1.44 +/- 0.20; 0.5 mg/kg, 1.0 +/- 0.1; 1.0 mg/kg, 0.9 +/- 0.1 ng/ml). In Experiment 2, LH response to naloxone and GnRH was measured in 12 ovariectomized cows on Day 19 of estrogen and progesterone treatment (5 micrograms/kg BW estrogen: 0.2 mg/kg BW progesterone) and on Days 7 and 14 after steroid treatment. On Day 19, naloxone failed to increase serum LH concentrations (Pre: 0.4 +/- 0.1; Post: 0.4 +/- 0.1 ng/ml) after 0, 0.5, or 1.0 mg/kg BW.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Nemmani KV  Ramarao P 《Life sciences》2002,70(15):1727-1740
In the present study, the role of benzodiazepine-GABAA receptor complex in the attenuation of U-50,488H (U50), a selective kappa opioid agonist-induced analgesia and inhibition of tolerance to its analgesia by ginseng total saponin (GTS) was investigated using the mice tail-flick test. The intraperitoneal (i.p.) treatment of GTS (100 and 200 mg/kg) and diazepam (0.1-1 mg/kg) dose-dependently attenuated the U50 (40 mg/kg, i.p.)-induced analgesia. GTS (0.001-10 microg/ml) did not alter binding of [3H]naloxone to mice whole brain membrane. The attenuation effect of GTS (100 mg/ kg) and diazepam (0.5 mg/kg) on U50-induced analgesia was blocked by flumazenil (0.1 mg/kg, i.p.), a benzodiazepine receptor antagonist, and picrotoxin (1 mg/kg, i.p.), a GABAA-gated chloride channel blocker. However, bicuculline (1 mg/kg, i.p.), a GABAA receptor antagonist blocked the attenuation effect of diazepam (0.5 mg/kg) but not GTS (100 mg/kg) on U50-induced analgesia. Chronic treatment (day 4-day 6) of GTS (50-200 mg/kg) and diazepam (0.1-1 mg/kg) dose-dependently inhibited the tolerance to U50-induced analgesia. Flumazenil (0.1 mg/kg) and picrotoxin (1 mg/kg) on chronic treatment blocked the inhibitory effect of GTS (100 mg/kg) and diazepam (0.5 mg/kg) on tolerance to U50-induced analgesia. On the other hand, chronic treatment of bicuculline (1 mg/kg) blocked the inhibitory effect of diazepam (0.5 mg/kg) but not GTS (100 mg/kg) on tolerance to U50-induced analgesia. In conclusion, the findings suggest that GTS attenuates U50-induced analgesia and inhibits tolerance to its analgesia and this action involves benzodiazepine receptors and GABAA-gated chloride channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号