首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The major goal of this study was to examine the ability of several antioxidants namely, vitamin E, beta-carotene and N-acetylcysteine, to protect the brain from oxidative stress induced by lipopolysaccharide (LPS, endotoxin). LPS, a component of the bacterial wall of gram-negative bacteria, has been recognized as one of the most potent bacterial products in the induction of host inflammatory responses and tissue injury and was used in this study to mimic infections. LPS injection resulted in a significant increase in the stress indices, plasma corticosterone and glucose concentration, a significant alteration of the brain oxidative status observed as elevation of the level of malondialdehyde (MDA, index of lipid peroxidation) and reduction of reduced glutathione (GSH), and a disturbance in the brain energy metabolism presented as a reduction in the ATP/ADP ratio and an increase in the mitochondrial/cytosolic hexokinase ratio. However, the activities of brain superoxide dismutase and Na+, K+-ATPase and contents of cholesterol and phospholipids were not altered. Administration of the aforementioned antioxidants prior to LPS injection ameliorated the oxidative stress by reducing levels of MDA, restoring GSH content and normalizing the mitochondrial/cytosolic hexokinase ratio in the brain in addition to lowering levels of plasma corticosterone and glucose. In conclusion, this study showed the increased free radical generation during infections and LPS-induced stress. It also suggests that brain oxidative status and energy is disturbed.  相似文献   

2.
This study was aimed to determine the neuroprotective influence of Stellaria media in terms of restoring normal state of the rat’s hippocampus and cortex after oxidative insult caused by in vitro ischemia and reperfusion. Cell viability and membrane integrity were assessed using MTT and lactate dehydrogenase (LDH) assay, respectively. Ischemic insult was introduced in the rat brain’s hippocampal and cortical slivers by exposing oxygen and glucose deficiency (OGD) for 2 h, followed by 1 h of re-perfusion. Cellular oxidative stress levels were quantified by incorporating 2?,7?-dichlorofluorescein diacetate fluorescent probes. Additionally, the lipid peroxidation was assessed using TBARS assay. Findings revealed significant neuroprotection against OGD-induced mitochondrial impairment at 40 µg/mL of S. media in rat’s hippocampal and cortical slices. The LDH levels were decreased significantly (P < 0.001) during pre-incubation and reoxygenation periods using varied concentrations of S. media extract. Cellular oxidative stress levels results showed significant (P < 0.001) reduction in dichlorofluorescein fluorescence in slices homogenate of hippocampus and cortex using S. media extract. The lipid peroxidation assay results showed decreased (P < 0.01) levels of malondialdehyde in liver tissues of treated rats treated (200 mg/kg body weight) when compared to the ischemic animal. In summary, findings clearly indicated the neuroprotective effects of extract against in vitro ischemia in brain hippocampal and cortex slivers. S. media could undoubtedly be utilized as a healing agent in preventing neuronal cells’ loss during is chemic-reperfusion process.  相似文献   

3.
Reactive oxygen and nitrogen species participate in the inflammatory process during meningitis. Among them, superoxide, nitric oxide (NO), and their reaction product peroxynitrite exert cytotoxic effects. Mercaptoethylguanidine (MEG) exerts beneficial effects in in vivo inflammatory conditions by scavenging peroxynitrite and inhibiting the inducible NO synthase. This study was designed to investigate whether MEG may attenuate inflammation and brain injury in experimental meningitis. Meningitis increased nitrite/nitrate, and protein content in the cerebrospinal fluid (CSF). In the brain tissue high levels of malondialdehyde and formation of nitrotyrosine indicated lipid peroxidation and nitrosative stress, respectively. Myeloperoxidase activity was increased indicating accumulation of neutrophils into the brain parenchyma. Treatment with MEG decreased nitrite/nitrate levels whereas it did not affect the bacterial clearance from the CSF. Furthermore, treatment with MEG markedly reduced brain tissue levels of myeloperoxidase and malondialdehyde. These data demonstrate that MEG could have a therapeutic role in meningitis.  相似文献   

4.
The present study examined the effects of derivatives of galactosides and glucosides in a polysaccharide extract from Euphorbia kansui (Euphorbiaceae) on exercise-induced oxidative stress in mice. Exhaustive swimming exercise significantly increases the degree of lipid peroxidation in terms of malondialdehyde content and reduces the antioxidant activities of superoxide dismutase (SOD) and glutathione peroxidase (GPx). Our findings revealed that chronic oral treatment with the extract elevates enzymatic activities of SOD and GPx accompanied by a corresponding decrease in malondialdehyde. The antioxidative activities of these compounds against exercise-induced oxidative stress are correlated with various activities such as reducing the production of superoxide and hydroxyl radicals, inhibiting lipid peroxidation, enhancing antioxidative defenses, and increasing the production of SOD and GPx activity and expression in different tissues. These compounds may be involved in glycogen metabolism to meet the requirement of working skeletal muscles and act as antioxidants by terminating the chain reaction of lipid peroxidation to maintain the morphological stability of mitochondria in spinal motor neurons. These observations suggest that E. kansui has antioxidative and antifatigue properties and can be given as prophylactic and (or) therapeutic supplements for increasing antioxidant enzyme activities and preventing lipid peroxidation during strenuous exercise.  相似文献   

5.
The responses to oxidative stress induced by chronic exercise (8-wk treadmill running) or acute exercise (treadmill running to exhaustion) were investigated in the brain, liver, heart, kidney, and muscles of rats. Various biomarkers of oxidative stress were measured, namely, lipid peroxidation [malondialdehyde (MDA)], protein oxidation (protein carbonyl levels and glutamine synthetase activity), oxidative DNA damage (8-hydroxy-2'-deoxyguanosine), and endogenous antioxidants (ascorbic acid, alpha-tocopherol, glutathione, ubiquinone, ubiquinol, and cysteine). The predominant changes are in MDA, ascorbic acid, glutathione, cysteine, and cystine. The mitochondrial fraction of brain and liver showed oxidative changes as assayed by MDA similar to those of the tissue homogenate. Our results show that the responses of the brain to oxidative stress by acute or chronic exercise are quite different from those in the liver, heart, fast muscle, and slow muscle; oxidative stress by acute or chronic exercise elicits different responses depending on the organ tissue type and its endogenous antioxidant levels.  相似文献   

6.
This study aimed to determine whether patients with aseptic and bacterial meningitis presented alterations in oxidative stress parameters of cerebrospinal fluid (CSF). A total of 30 patients were used in the research. The CSF oxidative stress status has been evaluated through many parameters, such as lipid peroxidation through thiobarbituric acid reactive substances (TBARS) and antioxidant defense systems such as superoxide dismutase (SOD), glutathione S-transferase (GST), reduced glutathione (GSH) and ascorbic acid. TBARS levels, SOD and GST activity increase in aseptic meningitis and in bacterial meningitis. The ascorbic acid concentration increased significantly in patients with both meningitis types. The reduced glutathione levels were reduced in CSF of patients with aseptic and bacterial meningitis. In present study we may conclude that oxidative stress contributes at least in part to the severe neurological dysfunction found in meningitis.  相似文献   

7.
The chronic mild stress (CMS) protocol is widely used to evoke depression-like behaviors in the laboratory. Some animals exposed to CMS are resistant to the development of anhedonia, whereas the remaining are responsive, CMS-resilient and CMS-sensitive, respectively. The aim of this study was to examine the effects of chronic stress on oxidative parameters in the rat brain. The consumption of sweet food, protein and lipid oxidation levels and superoxide dismutase and catalase activities in the rat hippocampus, cortex and cerebellum were assessed. We found a significant increase in protein peroxidation (hippocampus and cortex), a significant increase in catalase activity (cortex, hippocampus and cerebellum) and a decrease in superoxide dismutase activity (cortex, hippocampus and cerebellum) in the CMS-sensitive group compared to the CMS-resilient group and normal controls as well as an increase in lipid peroxidation (cerebellum) in the CMS-sensitive and CMS-resilient groups compared to normal controls. However, there was no significant difference in protein peroxidation (cerebellum) and lipid peroxidation (cortex and hippocampus) among the three groups. In conclusion, our results indicate that the segregation into CMS-sensitive and -resilient groups based on sucrose intake is paralleled by significant differences in oxidative parameters. CMS induces oxidative damage and alterations in the activity of antioxidants which may lead to increased oxidative damage, irrespective of the anhedonia-like status of the stressed animals.  相似文献   

8.
Abstract: Deposits of amyloid β-peptide (Aβ), reduced glucose uptake into brain cells, oxidative damage to cellular proteins and lipids, and excitotoxic mechanisms have all been suggested to play roles in the neurodegenerative process in Alzheimer's disease. Synapse loss is closely correlated with cognitive impairments in Alzheimer's disease, suggesting that the synapse may be the site at which degenerative mechanisms are initiated and propagated. We report that Aβ causes oxyradical-mediated impairment of glucose transport, glutamate transport, and mitochondrial function in rat neocortical synaptosomes. Aβ induced membrane lipid peroxidation in synaptosomes that occurred within 1 h of exposure; significant decreases in glucose transport occurred within 1 h of exposure to Aβ and decreased further with time. The lipid peroxidation product 4-hydroxynonenal conjugated to synaptosomal proteins and impaired glucose transport; several antioxidants prevented Aβ-induced impairment of glucose transport, indicating that lipid peroxidation was causally linked to this adverse action of Aβ. FeSO4 (an initiator of lipid peroxidation), Aβ, and 4-hydroxynonenal each induced accumulation of mitochondrial reactive oxygen species, caused concentration-dependent decreases in 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide reduction, and reduced cellular ATP levels significantly. Aβ also impaired glutamate transport, an effect blocked by antioxidants. These data suggest that Aβ induces membrane lipid peroxidation, which results in impairment of the function of membrane glucose and glutamate transporters, altered mitochondrial function, and a deficit in ATP levels; 4-hydroxynonenal appears to be a mediator of these actions of Aβ. These data suggest that oxidative stress occurring at synapses may contribute to the reduced glucose uptake and synaptic degeneration that occurs in Alzheimer's disease patients. They further suggest a sequence of events whereby oxidative stress promotes excitotoxic synaptic degeneration and neuronal cell death in a variety of different neurodegenerative disorders.  相似文献   

9.
The neurotoxic actions of methamphetamine (METH) may be mediated in part by reactive oxygen species (ROS). Methamphetamine administration leads to increases in ROS formation and lipid peroxidation in rodent brain; however, the extent to which proteins may be modified or whether affected brain regions exhibit similar elevations of lipid and protein oxidative markers have not been investigated. In this study we measured concentrations of TBARs, protein carbonyls and monoamines in various mouse brain regions at 4 h and 24 h after the last of four injections of METH (10 mg/kg/injection q 2 h). Substantial increases in TBARs and protein carbonyls were observed in the striatum and hippocampus but not the frontal cortex nor the cerebellum of METH-treated mice. Furthermore, lipid and protein oxidative markers were highly correlated within each brain region. In the hippocampus and striatum elevations in oxidative markers were significantly greater at 24 h than at 4 h. Monoamine levels were maximally reduced within 4 h (striatal dopamine [DA] by 95% and serotonin [5-HT] in striatum, cortex and hippocampus by 60-90%). These decrements persisted for 7 days after METH, indicating effects reflective of nerve terminal damage. Interestingly, NE was only transiently depleted in the brain regions investigated (hippocampus and cortex), suggesting a pharmacological and non-toxic action of METH on the noradrenergic nerve terminals. This study provides the first evidence for concurrent formation of lipid and protein markers of oxidative stress in several brain regions of mice that are severely affected by large neurotoxic doses of METH. Moreover, the differential time course for monoamine depletion and the elevations in oxidative markers indicate that the source of oxidative stress is not derived directly from DA or 5HT oxidation.  相似文献   

10.
We previously showed that hyperoxia exerts oxidative stress on the rat cerebral cortex, and the protein levels of phospholipase C (PLC) -beta1 and -delta1, but not PLC-gamma1, were changed. Acrylonitrile (ACN) appears to induce astrocytomas through induction of oxidative stress on the rat brain selectively. This study compared hyperoxia or ACN treatments of rats with respect to lipid peroxidation and PLC levels in the heart and cerebral cortex. Treatment of rats with ACN promoted lipid peroxidation in the heart and cerebral cortex, the percent increase above control being greater in the cortex than heart. Hyperoxia did not cause significant increases in lipid peroxidation in the cerebral cortex or heart. In the ACN-treated cerebral cortex, significant increases in the PLC-beta1 and -delta1 in the cytosol, and PLC-gamma1 in the cytosolic and particulate fractions, and lysate were observed. In the rat heart, in which PLC-beta1 could not be detected, PLC-gamma1 and -delta1 were increased and decreased in the cytosolic and particulate fractions, respectively, by hyperoxia. In addition, the expression level of PLC-gamma1 was decreased in the lysate by the treatment. In the heart treated with ACN, there was no change in the level of PLC-gamma1, while PLC-delta1 was elevated in all fractions. These findings suggested that the expression levels of PLC isozymes are altered by hyperoxia and ACN, but there are apparent differences in these altered levels between the different levels of oxidative stress, and between the organs.  相似文献   

11.
This study examined the effect of Echis pyramidum (EP) venom on time-course of lipid peroxidation in different vital organs of mice. Adult male Swiss albino mice were injected with EP venom (2 mg/kg, i.p.); control mice received vehicle alone (normal saline). Mice were killed at 1, 3, 6, 12, and 24 h post-envenomation. The liver, lung, kidney, heart, and brain (cerebrum and cerebellum) were collected for the estimation of malondialdehyde (MDA), an index of lipid peroxidation. The results of this study showed that a single injection of EP venom caused a significant lipid peroxidation in all the organs studied. The onset of lipid peroxidation was as early as 1 h and persisted for several hours, suggesting an important role of oxidative stress in the cytotoxicity of EP venom.  相似文献   

12.
Kainic acid (KA) initiates neuronal injury and death by inducing oxidative stress and nitric oxide release from various regions of the brain. It was recently shown that melatonin has free radical-scavenging action and may protect against kainate-induced toxicity. In order to assess the possible supportive effect of melatonin treatment in KA-induced injury in the rat brain cortex, we determined malondialdehyde (MDA) levels as an index of lipid peroxidation, and assessed the activities of catalase (CAT) and superoxide dismutase (SOD) and the levels of nitrite/nitrate 35 male rats were divided into five groups, each receiving a different intraperitoneal treatment: saline solution (0.2 ml), kainic acid (15 mg/kg), melatonin (20 mg/kg), KA then melatonin (each as above, 15 min apart), or melatonin then KA (each as above, 30 min apart). Administration of KA caused an about five-fold increase in the catalase activity and an increase in the SOD activity in the cortex relative to the activities for the controls. Treatment with melatonin 15 min after KA injection kept malondialdehyde levels and catalase and superoxide dismutase activities at the normal levels, and led to an increase in the levels of nitrite/nitrate. Our data suggests that melatonin treatment following KA administration has a protective effect on antioxidant enzyme activities and thus supports the role of melatonin and oxidative stress in the regulation of antioxidative enzyme activity.  相似文献   

13.
Venlafaxine is an approved antidepressant that is an inhibitor of both serotonin and norepinephrine transporters. Medical treatment with oral venlafaxine can be beneficial to depression due to reducing free radical production in the brain and medulla of depression- induced rats because oxidative stress may a play role in some depression. We investigated the effect of venlafaxine administration and experimental depression on lipid peroxidation and antioxidant levels in cortex brain, medulla and erythrocytes of rats. Thirty male wistar rats were used and were randomly divided into three groups. Venlafaxine (20 mg/kg) was orally supplemented to depression-induced rats constituting the first group for four week. Second group was depression-induced group although third group was used as control. Depressions in the first and second groups were induced on day zero of the study by chronic mild stress. Brain, medulla and erythrocytes samples were taken from all animals on day 28. Depression resulted in significant decrease in the glutathione peroxidase (GSH-Px) activity and vitamin C concentrations of cortex brain, glutathione (GSH) value of medulla although their levels were increased by venlafaxine administration to the animals of depression group. The lipid peroxidation levels in the three tissues and nitric oxide value in cortex brain elevated although their levels were decreased by venlafaxine administration. There were no significant changes in cortex brain vitamin A, erythrocytes vitamin C, GSH-Px and GSH, medulla vitamin A, GSH and GSH-Px values. In conclusion, cortex brain within the three tissues was most affected by oxidative stress although there was the beneficial effect of venlafaxine in the brain of depression-induced rats on investigated antioxidant defenses in the rat model. The treatment of depression by venlafaxine may also play a role in preventing oxidative stress. Abstract of the paper was submitted in 1st Ion Channels and Oxidative Stress Congress, 14–16 September 2006, Isparta, Turkey.  相似文献   

14.
15.
《Free radical research》2013,47(8):614-623
Abstract

Paraquat is a highly toxic herbicide capable of generating oxidative stress and producing brain damage after chronic exposure. The aim of this research was to investigate the contribution of mitochondria to the molecular mechanism of apoptosis in an in vivo experimental model of paraquat neurotoxicity. Sprague-Dawley adult female rats received paraquat (10 mg/kg i.p.) or saline once a week during a month. Paraquat treatment increased cortical and striatal superoxide anion levels by 45% and 18%, respectively. As a consequence, mitochondrial aconitase activity was significantly inhibited in cerebral cortex and striatum. Paraquat treatment increased cortical and striatal lipid peroxidation levels by 16% and 28%, respectively, as compared with control mitochondria Also, cortical and striatal cardiolipin levels were decreased by 13% and 49%, respectively. Increased Bax and Bak association to mitochondrial membranes was observed after paraquat treatment in cerebral cortex and striatum. Also, paraquat induced cytochrome c and AIF release from mitochondria.

These findings support the conclusion that a weekly dose of paraquat during four weeks induces oxidative damage that activates mitochondrial pathways associated with molecular mechanisms of cell death. The release of apoptogenic proteins from mitochondria to cytosol after paraquat treatment would be the consequence of an alteration in mitochondrial membrane permeability due to the presence of high superoxide anion levels. Also, our results suggest that under chronic exposure, striatal mitochondria were more sensitive to paraquat oxidative damage than cortical mitochondria. Even in the presence of a high oxidative stress in striatum, equal levels of apoptosis were attained in both brain areas.  相似文献   

16.
The role of oxidative stress in electroconvulsive therapy-related effects is not well studied. The purpose of this study was to determine oxidative stress parameters in several brain structures after a single electroconvulsive seizure or multiple electroconvulsive seizures. Rats were given either a single electroconvulsive shock or a series of eight electroconvulsive shocks. Brain regions were isolated, and levels of oxidative stress in the brain tissue (cortex, hippocampus, striatum and cerebellum) were measured. We demonstrated a decrease in lipid peroxidation and protein carbonyls in the hippocampus, cerebellum, and striatum several times after a single electroconvulsive shock or multiple electroconvulsive shocks. In contrast, lipid peroxidation increases both after a single electroconvulsive shock or multiple electroconvulsive shocks in cortex. In conclusion, we demonstrate an increase in oxidative damage in cortex, in contrast to a reduction of oxidative damage in hippocampus, striatum, and cerebellum.  相似文献   

17.
Hypobaric hypoxia is known to cause cognitive dysfunctions and memory impairment. The present study aimed at exploring the occurrence of oxidative stress in hypobaric hypoxia and the differential temporal response of the hippocampus, cerebellum following hypobaric hypoxia. Animals were divided into control, 3 days, 7 days and 14 days exposure groups and were exposed to an altitude of 25,000 ft. Our study revealed an increase in lactate dehydrogenase activity along with increase in free radical generation and lipid peroxidation. We also noted depletion in the antioxidants and decrease in glutathione reductase and superoxide dismutase activity. There was significant decrease in reduced glutathione levels in the exposure groups when compared to the control which was accompanied by a concomitant increase in oxidized glutathione levels. Increase in glutamate dehydrogenase activity was observed coinciding with the decrease in glutathione levels which was accompanied with an increase in expression of vesicular glutamate transporter. The hippocampus was found to be more vulnerable to hypobaric hypoxia-induced oxidative stress in comparison to the cortex and cerebellum. An interesting observation was the onset of acclimatization on prolonged exposure to hypobaric hypoxia for a period of 14 days. Hypobaric hypoxia was found to affect various regions of the brain differentially and the response of each region varied as a function of time.  相似文献   

18.
Abstract: Recent data from several groups suggest that the primary mechanism of β-amyloid neurotoxicity may be mediated by reactive oxygen species. To evaluate this hypothesis, we first compared the efficacy of antioxidant agents in preventing toxicity caused by oxidative insults (iron, hydrogen peroxide, and tert -butyl hydroperoxide) and β-amyloid peptides in cultured rat hippocampal neurons. Tested antioxidants (propyl gallate, Trolox, probucol, and promethazine) generally provided significant protection against oxidative insults but not β-amyloid peptides. Next, we examined whether β-amyloid causes oxidative stress, by comparing levels of lipid peroxidation after exposure to either iron or β-amyloid. In a cell-free system, iron but not β-amyloid generated lipid peroxidation. In culture, both insults caused rapid increases in lipid peroxidation, with iron inducing higher levels at later time points. Pretreatment with the antioxidant probucol significantly reduced lipid peroxidation caused by both insults but only attenuated iron toxicity, suggesting that lipid peroxidation does not contribute directly to cell death induced by β-amyloid. Finally, we observed that increasing basal levels of oxidative stress by pretreating cultures with subtoxic doses of iron significantly increased neuronal vulnerability to β-amyloid. The ability of β-amyloid to induce oxidative stress and the demonstration that oxidative stress potentiates β-amyloid toxicity support the clinical use of antioxidants for AD. However, these data do not support the theory that the primary mechanism of β-amyloid toxicity involves oxidative pathways, indicating a continued need to identify additional cellular responses to β-amyloid that underlie its neurodegenerative actions.  相似文献   

19.
The objectives were to investigate the plasma lipid peroxidation and erythrocyte antioxidants status in workers exposed to nickel. The study groups comprised 69 nickel plating workers and 50 office workers residing in the same city, but away from the place of work of the study group subjects, considered as control group. Urinary nickel concentration was determined by graphite furnace atomic absorption spectrophotometry. The plasma lipid peroxidation and erythrocyte antioxidants were measured by spectrophotmetric methods. The plasma lipid peroxidation level was significantly increased in nickel-platers and their helpers as compared with controls. Erythrocyte antioxidants were significantly decreased in the nickel-platers compared with the controls. The level of plasma lipid peroxidation was positively and erythrocyte antioxidants were negatively and significantly correlated with the urine nickel levels. Multiple regression analysis assessed the oxidative stress associated with nickel and other potential confounding factors such as body mass index, the consumption of green vegetables, coffee, tea, smoking and alcohol consumption. Analysis showed that the lifestyle confounding factors: the consumption of green vegetables, smoking and alcohol, were not significantly associated with oxidative stress. The exposure to nickel, body mass index and coffee consumption were significantly associated with oxidative stress. The results show that the increased plasma lipid peroxidation and decreased erythrocyte antioxidants levels observed in nickel-exposed workers could be used as biomarkers of oxidative stress.  相似文献   

20.
The objectives were to investigate the plasma lipid peroxidation and erythrocyte antioxidants status in workers exposed to nickel. The study groups comprised 69 nickel plating workers and 50 office workers residing in the same city, but away from the place of work of the study group subjects, considered as control group. Urinary nickel concentration was determined by graphite furnace atomic absorption spectrophotometry. The plasma lipid peroxidation and erythrocyte antioxidants were measured by spectrophotmetric methods. The plasma lipid peroxidation level was significantly increased in nickel-platers and their helpers as compared with controls. Erythrocyte antioxidants were significantly decreased in the nickel-platers compared with the controls. The level of plasma lipid peroxidation was positively and erythrocyte antioxidants were negatively and significantly correlated with the urine nickel levels. Multiple regression analysis assessed the oxidative stress associated with nickel and other potential confounding factors such as body mass index, the consumption of green vegetables, coffee, tea, smoking and alcohol consumption. Analysis showed that the lifestyle confounding factors: the consumption of green vegetables, smoking and alcohol, were not significantly associated with oxidative stress. The exposure to nickel, body mass index and coffee consumption were significantly associated with oxidative stress. The results show that the increased plasma lipid peroxidation and decreased erythrocyte antioxidants levels observed in nickel-exposed workers could be used as biomarkers of oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号