首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
With growing interest in wood bioenergy there is uncertainty over greenhouse gas emissions associated with offsetting fossil fuels. Although quantifying postharvest carbon (C) fluxes will require accurate data, relatively few studies have evaluated these using field data from actual bioenergy harvests. We assessed C reductions and net fluxes immediately postharvest from whole‐tree harvests (WTH), bioenergy harvests without WTH, and nonbioenergy harvests at 35 sites across the northeastern United States. We compared the aboveground forest C in harvested with paired unharvested sites, and analyzed the C transferred to wood products and C emissions from energy generation from harvested sites, including indirect emissions from harvesting, transporting, and processing. All harvests reduced live tree C; however, only bioenergy harvests using WTH significantly reduced C stored in snags (< 0.01). On average, WTH sites also decreased downed coarse woody debris C while the other harvest types showed increases, although these results were not statistically significant. Bioenergy harvests using WTH generated fewer wood products and resulted in more emissions released from bioenergy than the other two types of harvests, which resulted in a greater net flux of C (< 0.01). A Classification and Regression Tree analysis determined that it was not the type of harvest or amount of bioenergy generated, but rather the type of skidding machinery and specifics of silvicultural treatment that had the largest impact on net C flux. Although additional research is needed to determine the impact of bioenergy harvesting over multiple rotations and at landscape scales, we conclude that operational factors often associated with WTH may result in an overall intensification of C fluxes. The intensification of bioenergy harvests, and subsequent C emissions, that result from these operational factors could be reduced if operators select smaller equipment and leave a portion of tree tops on site.  相似文献   

2.
To integrate multiple uses (mature forest and commodity production) better on forested lands, timber management strategies that cluster harvests have been proposed. One such approach clusters harvest activity in space and time, and rotates timber production zones across the landscape with a long temporal period (dynamic zoning). Dynamic zoning has been shown to increase timber production and reduce forest fragmentation by segregating uses in time without reducing the spatial extent of timber production. It is reasonable to wonder what the effect of periodic interruptions in the implementation of such as strategy might be, as would be expected in a dynamic political environment. To answer these questions, I used a timber harvest simulation model (HARVEST) to simulate a dynamic zoning harvest strategy that was periodically interrupted by changes in the spatial dispersion of harvests, by changes in timber production levels, or both. The temporal scale (period) of these interruptions had impacts related to the rate at which the forest achieved canopy closure after harvest. Spatial dynamics in harvest policies had a greater effect on the amount of forest interior and edge than did dynamics in harvest intensity. The periodically clustered scenarios always produced greater amounts of forest interior and less forest edge than did their never clustered counterparts. The results suggest that clustering of harvests produces less forest fragmentation than dispersed cutting alternatives, even in the face of a dynamic policy future. Although periodic episodes of dispersed cutting increased fragmentation, average and maximum fragmentation measures were less than if clustered harvest strategies were never implemented. Clustering may also be useful to mitigate the fragmentation effects of socially mandated increases in timber harvest levels. Implementation of spatial clustering during periods of high timber harvest rates reduced the variation in forest interior and edge through time, providing a more stable supply of forest interior habitat across the landscape. Received 19 September 1997; accepted 6 August 1998.  相似文献   

3.
Forests of the Midwestern United States are an important source of fiber for the wood and paper products industries. Scientists, land managers, and policy makers are interested in using woody biomass and/or harvest residue for biofuel feedstocks. However, the effects of increased biomass removal for biofuel production on forest production and forest system carbon balance remain uncertain. We modeled the carbon (C) cycle of the forest system by dividing it into two distinct components: (1) biological (net ecosystem production, net primary production, autotrophic and heterotrophic respiration, vegetation, and soil C content) and (2) industrial (harvest operations and transportation, production, use, and disposal of major wood products including biofuel and associated C emissions). We modeled available woody biomass feedstock and whole‐system carbon balance of 220 000 km2 of temperate forests in the Upper Midwest, USA by coupling an ecosystem process model to a collection of greenhouse gas life‐cycle inventory models and simulating seven forest harvest scenarios in the biological ecosystem and three biofuel production scenarios in the industrial system for 50 years. The forest system was a carbon sink (118 g C m?2 yr?1) under current management practices and forest product production rates. However, the system became a C source when harvest area was doubled and biofuel production replaced traditional forest products. Total carbon stores in the vegetation and soil increased by 5–10% under low‐intensity management scenarios and current management, but decreased up to 3% under high‐intensity harvest regimes. Increasing harvest residue removal during harvest had more modest effects on forest system C balance and total biomass removal than increasing the rate of clear‐cut harvests or area harvested. Net forest system C balance was significantly, and negatively correlated (R2 = 0.67) with biomass harvested, illustrating the trade‐offs between increased C uptake by forests and utilization of woody biomass for biofuel feedstock.  相似文献   

4.
In harvested forests, the bird community is largely determined by stand structure, which itself is determined by forestry practices. This study aimed to identify habitat variables determining the presence of Corsican Nuthatch Sitta whiteheadi – a threatened island endemic – in harvested Corsican Pine Pinus nigra laricio woods, with the aim of mitigating the impact of timber harvest on the bird. Comparison of occupied and unoccupied plots showed that this bird is found mostly in pure Corsican Pine stands, and is absent when more than 50% of trees are not this species. Nests were built in decaying pine snags between 20 and 100 cm diameter at breast height (dbh), but birds avoided stands with live pines < 70 cm dbh, and selected stands with pines > 80 cm dbh. Conservation of Corsican Nuthatch therefore depends on maintaining harvest rotations of more than 200 years, reducing the size of felling coupes in clear‐cutting systems or, preferably, practising selective cutting, maintaining a sufficient density of old trees and snags, and checking the encroachment of other tree species into Corsican Pine stands.  相似文献   

5.
A carbon (C) balance indicator is presented for the evaluation of forest bioenergy scenarios as a means to reduce greenhouse gas (GHG) emissions. A bioenergy‐intensive scenario with a greater harvest is compared to a baseline scenario. The relative carbon indicator (RC) is defined as the ratio between the difference in terrestrial C stocks – that is the C debt – and the difference in cumulative bioenergy harvest between the scenarios, over a selected time frame T. A value of zero indicates no C debt from additional biomass harvests, while a value of one indicates a C debt equal to the amount of additionally harvested biomass C. Multiplying the RC indicator by the smokestack emission factor of biomass (approximately 110 t CO2/TJ) provides the net cumulative CO2 emission factor of the biomass combustion as a function of T, allowing a direct comparison with the emission factors of comparable fossil fuels. The indicator is applied to bioenergy cases in Finland, where typically the rotation length of managed forests is long and the decay rate of harvest residues is slow. The country‐level examples illustrate that although Finnish forests remain as a C sink in each of the considered scenarios, the efforts of increasing forest bioenergy may still increase the atmospheric CO2 concentrations in comparison with the baseline scenario and use of fossil fuels. The results also show that the net emission factor depends – besides on forest‐growth or residue‐decay dynamics – on the timing and evolution of harvests as well. Unlike for the constant fossil C emission factor, the temporal profile of bioenergy use is of great importance for the net emission factor of biomass.  相似文献   

6.
Carbon stocks in managed forests of Ontario, Canada, and in harvested wood products originated from these forests were estimated for 2010–2100. Simulations included four future forest harvesting scenarios based on historical harvesting levels (low, average, high, and maximum available) and a no‐harvest scenario. In four harvesting scenarios, forest carbon stocks in Ontario's managed forest were estimated to range from 6202 to 6227 Mt C (millions of tons of carbon) in 2010, and from 6121 to 6428 Mt C by 2100. Inclusion of carbon stored in harvested wood products in use and in landfills changed the projected range in 2100 to 6710–6742 Mt C. For the no‐harvest scenario, forest carbon stocks were projected to change from 6246 Mt C in 2010 to 6680 Mt C in 2100. Spatial variation in projected forest carbon stocks was strongly related to changes in forest age (r = 0.603), but had weak correlation with harvesting rates. For all managed forests in Ontario combined, projected carbon stocks in combined forest and harvested wood products converged to within 2% difference by 2100. The results suggest that harvesting in the boreal forest, if applied within limits of sustainable forest management, will eventually have a relatively small effect on long‐term combined forest and wood products carbon stocks. However, there was a large time lag to approach carbon equality, with more than 90 years with a net reduction in stored carbon in harvested forests plus wood products compared to nonharvested boreal forest which also has low rates of natural disturbance. The eventual near equivalency of carbon stocks in nonharvested forest and forest that is harvested and protected from natural disturbance reflects both the accumulation of carbon in harvested wood products and the relatively young age at which boreal forest stands undergo natural succession in the absence of disturbance.  相似文献   

7.
Clear-fell harvest of forest concerns many wildlife biologists because of loss of vital resources such as roosts or nests, and effects on population viability. However, actual impact has not been quantified. Using New Zealand long-tailed bats (Chalinolobus tuberculatus) as a model species we investigated impacts of clear-fell logging on bats in plantation forest. C. tuberculatus roost within the oldest stands in plantation forest so it was likely roost availability would decrease as harvest operations occurred. We predicted that post-harvest: (1) roosting range sizes would be smaller, (2) fewer roosts would be used, and (3) colony size would be smaller. We captured and radiotracked C. tuberculatus to day-roosts in Kinleith Forest, an exotic plantation forest, over three southern hemisphere summers (Season 1 October 2006–March 2007; Season 2 November 2007–March 2008; and Season 3 November 2008–March 2009). Individual roosting ranges (100% MCPs) post harvest were smaller than those in areas that had not been harvested, and declined in area during the 3 years. Following harvest, bats used fewer roosts than those in areas that had not been harvested. Over 3 years 20.7% of known roosts were lost: 14.5% due to forestry operations and 6.2% due to natural tree fall. Median colony size was 4.0 bats (IQR = 2.0–8.0) and declined during the study, probably because of locally high levels of roost loss. Post harvest colonies were smaller than colonies in areas that had not been harvested. Together, these results suggest the impact of clear-fell harvest on long-tailed bat populations is negative.  相似文献   

8.
Little is known about the responses of large, old trees to release from competition, though such trees are of great interest in forest ecology, conservation and silviculture. Increment cores were taken from mature eastern white pines (Pinus strobus L.) in 144 sample points in 12 partially harvested and 6 unharvested control stands in Ontario, Canada, to determine how these trees responded to a 'structural retention harvest' that had occurred 9 years previously. Prior to harvest, increment growth was slightly lower in control stands, but not significantly so. Strong correlation in diameter increments among stands indicates external climatic forcing or internal synchronicity, e.g. reproductive allocation. Three years after harvest, growth in harvested stands overtook that in control stands, and increased to 63±8% SE above expected levels by 8 years after harvest. The study demonstrates the ability of old trees to respond markedly to reduced competition, questioning the concept of an age-related decline in forest productivity. In addition to increased timber production, growth responses of old trees have important implications for stand regeneration, wind firmness, and maintenance of wildlife habitat elements following partial stand harvests. Comparison of disturbed stands with undisturbed stands allows better estimation of tree responses than methods in which disturbance is inferred from diameter increment variation within individual trees.  相似文献   

9.
An abundant supply of cavity-bearing trees is important for maintaining wildlife communities in harvested forests. During harvesting, suitable trees and cavities are directly removed, and the longevity of cavities in retained trees may be reduced by increased exposure to wind and other disturbance factors. We examined patterns of cavity survival in retained trembling aspen (Populus tremuloides) trees in harvested stands compared with those in unharvested mature stands by monitoring the persistence of individual cavities. We followed 930 cavities in 3 harvest treatments for up to 17 years in pre-cut and uncut forest, and up to 13 years post-harvest (reserve patches and dispersed retention), in temperate-mixed forests of interior British Columbia, Canada. Average annual cavity loss rates were 5.6% in pre-cut and uncut forest, 7.2% for cavities in trees retained in reserves, and 8.1% for cavities in retained trees dispersed throughout cuts. Correspondingly, median cavity longevity was 15 years for cavities in pre-cut and uncut forest, 10 years for cavities retained in reserves, and 9 years for those in dispersed retention. Risk of loss increased most for cavities in living trees (factor of 2.17), but we found no detectable difference for cavities in recently dead trees and trees with advanced decay. We suggest retention of a range of aspen size and decay classes to allow for future cavity-tree recruitment in harvested stands. Inclusion of wildlife reserves as part of an overall forest management plan will also help to mitigate the effects of windthrow and maintain long-lived cavity resources required by a large portion of forest wildlife. © 2013 The Wildlife Society  相似文献   

10.
The long‐term greenhouse gas emissions implications of wood biomass (‘bioenergy’) harvests are highly uncertain yet of great significance for climate change mitigation and renewable energy policies. Particularly uncertain are the net carbon (C) effects of multiple harvests staggered spatially and temporally across landscapes where bioenergy is only one of many products. We used field data to formulate bioenergy harvest scenarios, applied them to 362 sites from the Forest Inventory and Analysis database, and projected growth and harvests over 160 years using the Forest Vegetation Simulator. We compared the net cumulative C fluxes, relative to a non‐bioenergy baseline, between scenarios when various proportions of the landscape are harvested for bioenergy: 0% (non‐bioenergy); 25% (BIO25); 50% (BIO50); or 100% (BIO100), with three levels of intensification. We accounted for C stored in aboveground forest pools and wood products, direct and indirect emissions from wood products and bioenergy, and avoided direct and indirect emissions from fossil fuels. At the end of the simulation period, although 82% of stands were projected to maintain net positive C benefit, net flux remained negative (i.e., net emissions) compared to non‐bioenergy harvests for the entire 160‐year simulation period. BIO25, BIO50, and BIO100 scenarios resulted in average annual emissions of 2.47, 5.02, and 9.83 Mg C ha?1, respectively. Using bioenergy for heating decreased the emissions relative to electricity generation as did removing additional slash from thinnings between regeneration harvests. However, all bioenergy scenarios resulted in increased net emissions compared to the non‐bioenergy harvests. Stands with high initial aboveground live biomass may have higher net emissions from bioenergy harvest. Silvicultural practices such as increasing rotation length and structural retention may result in lower C fluxes from bioenergy harvests. Finally, since passive management resulted in the greatest net C storage, we recommend designation of unharvested reserves to offset emissions from harvested stands.  相似文献   

11.
The capacity for forests to aid in climate change mitigation efforts is substantial but will ultimately depend on their management. If forests remain unharvested, they can further mitigate the increases in atmospheric CO2 that result from fossil fuel combustion and deforestation. Alternatively, they can be harvested for bioenergy production and serve as a substitute for fossil fuels, though such a practice could reduce terrestrial C storage and thereby increase atmospheric CO2 concentrations in the near‐term. Here, we used an ecosystem simulation model to ascertain the effectiveness of using forest bioenergy as a substitute for fossil fuels, drawing from a broad range of land‐use histories, harvesting regimes, ecosystem characteristics, and bioenergy conversion efficiencies. Results demonstrate that the times required for bioenergy substitutions to repay the C Debt incurred from biomass harvest are usually much shorter (< 100 years) than the time required for bioenergy production to substitute the amount of C that would be stored if the forest were left unharvested entirely, a point we refer to as C Sequestration Parity. The effectiveness of substituting woody bioenergy for fossil fuels is highly dependent on the factors that determine bioenergy conversion efficiency, such as the C emissions released during the harvest, transport, and firing of woody biomass. Consideration of the frequency and intensity of biomass harvests should also be given; performing total harvests (clear‐cutting) at high‐frequency may produce more bioenergy than less intensive harvesting regimes but may decrease C storage and thereby prolong the time required to achieve C Sequestration Parity.  相似文献   

12.
Abstract: We used a 60-yr forest simulation of the Cherokee National Forest, Tennessee, USA, to model the effects of timber harvest and natural disturbance upon habitat availability for 6 songbird species: Acadian flycatcher (Epidonax virescens), blue-headed vireo (Vireo solitarius), chestnut-sided warbler (Dendroica pensylvanica), tufted titmouse (Parus bicolor), yellow-billed cuckoo (Coccyzus americanus), and yellow-throated warbler (Dendroica dominica). Forest simulations, based on expected harvest intensities and historic levels of natural disturbance, were used to update a stand inventory database at 10-yr intervals between 1993 and 2053. Habitat models for the 6 bird species were applied to the updated stand inventory and available habitat quantified for each decade. Late-successional species showed substantial increases in habitat availability over the 60-yr period at most harvest intensities, whereas habitat for early-successional species was stable or declined at most harvest intensities. Acadian flycatcher, yellow-throated warbler, and blue-headed vireo habitat increased by 200%, 213%, and 40%, respectively, whereas tufted titmouse habitat remained relatively constant at expected harvest levels. Chestnut-sided warbler habitat was stable at expected harvest levels but declined at lower harvest intensities, and yellow-billed cuckoo habitat declined by 37% at expected harvest levels. Natural disturbance had little effect on habitat availability for any bird species compared to the effects of timber harvests and increasing forest age. Our models suggest that anthropogenic disturbance, and lack thereof, can play a definitive role determining habitat availability and population viability for forest songbirds.  相似文献   

13.
Harvesting forests introduces substantial changes to the ecosystem, including physical and chemical alterations to the soil. In the Northeastern United States, soils account for at least 50% of total ecosystem C storage, with mineral soils comprising the majority of that storage. However, mineral soils are sometimes omitted from whole‐system C accounting models due to variability, lack of data, and sample collection challenges. This study aimed to provide a better understanding of how forest harvest affects mineral soil C pools over the century following disturbance. We hypothesized that mineral soil C pools would be lower in forests that had been harvested in the last one hundred years vs. forests that were >100 years old. We collected mineral soil cores (to 60 cm depth) from 20 forest stands across the Northeastern United States, representing seven geographic areas and a range of times since last harvest. We compared recently harvested forests to >100‐year‐old forests and used an information theoretic approach to model C pool dynamics over time after disturbance. We found no significant differences between soil C pools in >100‐year‐old and harvested forests. However, we found a significant negative relationship between time since forest harvest and the size of mineral soil C pools, which suggested a gradual decline in C pools across the region after harvesting. We found a positive trend between C : N ratio and % SOM in harvested forests, but in >100‐year‐old forests a weak negative trend was found. Our study suggests that forest harvest does cause biogeochemical changes in mineral soil, but that a small change in a C pool may be difficult to detect when comparing large, variable C pools. Our results are consistent with previous studies that found that soil C pools have a gradual and slow response to disturbance, which may last for several decades following harvest.  相似文献   

14.
Disturbance is an integral component in mangrove forest dynamics, influencing forest structure, composition, and function. The impacts of human disturbance, however, threaten mangrove forests throughout the world. Small-scale wood harvesting on the small Pacific island of Kosrae, Federated States of Micronesia, provided an instructive scenario for exploring the dynamics of human disturbance. Natural disturbances on the island are rare, but the growing island population harvests mangrove trees for firewood and construction materials, placing pressure on the forest. In order to determine recent harvest rates, we estimated gap ages by developing a time scale for mangrove wood decomposition and by quantifying growth rates for Rhizophora apiculata and Bruguiera gymnorhiza seedlings. Stump and log decomposition patterns were useful in aging gaps, although some patterns were more reliable than others. Seedlings of both species added approximately 5 nodes/year depending on light conditions. The island-wide harvest rate was 10% over the last 10 years, but the rates varied widely among different parts of the island. Rhizophora apiculata has been harvested preferentially, and a dearth of young trees where harvesting has been heaviest portends a decline of this highly desired species in the forest. Socio-economic data substantiated some but not all of the trends we observed. Even on a small island, local differences in both natural and anthropogenic factors are important to understanding forest dynamics.  相似文献   

15.
The relationship between shoot growth and rooting was examined in two, 'difficult-to root' amenity trees, Syringa vulgaris L. cv. Charles Joly and Corylus avellana L. cv. Aurea. A range of treatments reflecting severity of pruning was imposed on field-grown stock prior to bud break. To minimise variation due to the numbers of buds that developed under different treatments, bud number was restricted to 30 per plant. Leafy cuttings were harvested at different stages of the active growth phase of each species. With Syringa, rooting decreased with later harvests, but loss of rooting potential was delayed in cuttings collected from the most severe pruning treatment. Rooting potential was associated with the extent of post-excision shoot growth on the cutting but regression analyses indicated that this relationship could not entirely explain the loss of rooting with time, nor the effects due to pruning. Similarly, in Corylus rooting was promoted by severe pruning, but the relationship between apical growth on the cutting and rooting was weaker than in Syringa, and only at the last harvest did growth play a critical role in determining rooting. Another unusual factor of the last harvest of Corylus was a bimodal distribution of roots per cutting, with very few rooted cuttings having less than five roots. This implies that, for this harvest at least, the potential of an individual cutting to root is probably not limited by the number of potential rooting sites.  相似文献   

16.
Amazonian white-water (várzea) floodplains harbor many commercially important timber species which in Brazil are harvested following regulations of the Federal Environmental Agency (IBAMA). Although it is well-known that tree physiology, growth, and species distribution of Amazonian floodplain trees is linked to the heights and durations of the periodical inundations, information about timber stocks and population dynamics is lacking for most tree species. We investigated timber stocks and the population structure of four intensely logged tree species in a western Brazilian várzea forest on an area totaling 7.5 ha. Spatial distribution was investigated in all trees as a function of inundation height and duration and the distance to the river channel, and additionally for saplings (trees <10 cm diameter at breast height––DBH) as a function of the relative photosynthetically active radiation (rPAR). The diameter-class distribution in Hura crepitans and Ocotea cymbarum indicated that populations are subject to density variations that possibly are traced to small-scale flood variability. In all species, saplings concentrated at higher topographic elevations than the mature tree populations, which suggest that the physical ‘escape’ from a flooded environment is an important acclimation to flooding. While Ocotea cymbarum and Guarea guidonia were high-density wood species characterized by random dispersion and a pronounced shade-tolerance, Hura crepitans and Sterculia apetala presented lower wood density, aggregated dispersion, and were more light-demanding. All species presented exploitable stems according to the current harvest regulations, with elevated abundances in comparison to other Amazonian forest types. However, stem densities are below the harvest rates indicating that the harvest regulations are not sustainable. We recommend that the forest management in várzea forests should include specific establishment rates of timber species in dependence of the peculiar site conditions to achieve sustainability.  相似文献   

17.
Forests provide important ecological, economic, and social services, and recent interest has emerged in the potential for using residue from timber harvest as a source of renewable woody bioenergy. The long‐term consequences of such intensive harvest are unclear, particularly as forests face novel climatic conditions over the next century. We used a simulation model to project the long‐term effects of management and climate change on above‐ and belowground forest carbon storage in a watershed in northwestern Oregon. The multi‐ownership watershed has a diverse range of current management practices, including little‐to‐no harvesting on federal lands, short‐rotation clear‐cutting on industrial land, and a mix of practices on private nonindustrial land. We simulated multiple management scenarios, varying the rate and intensity of harvest, combined with projections of climate change. Our simulations project a wide range of total ecosystem carbon storage with varying harvest rate, ranging from a 45% increase to a 16% decrease in carbon compared to current levels. Increasing the intensity of harvest for bioenergy caused a 2–3% decrease in ecosystem carbon relative to conventional harvest practices. Soil carbon was relatively insensitive to harvest rotation and intensity, and accumulated slowly regardless of harvest regime. Climate change reduced carbon accumulation in soil and detrital pools due to increasing heterotrophic respiration, and had small but variable effects on aboveground live carbon and total ecosystem carbon. Overall, we conclude that current levels of ecosystem carbon storage are maintained in part due to substantial portions of the landscape (federal and some private lands) remaining unharvested or lightly managed. Increasing the intensity of harvest for bioenergy on currently harvested land, however, led to a relatively small reduction in the ability of forests to store carbon. Climate change is unlikely to substantially alter carbon storage in these forests, absent shifts in disturbance regimes.  相似文献   

18.
Accurately assessing the delay before the substitution of fossil fuel by forest bioenergy starts having a net beneficial impact on atmospheric CO2 is becoming important as the cost of delaying GHG emission reductions is increasingly being recognized. We documented the time to carbon (C) parity of forest bioenergy sourced from different feedstocks (harvest residues, salvaged trees, and green trees), typical of forest biomass production in Canada, used to replace three fossil fuel types (coal, oil, and natural gas) in heating or power generation. The time to C parity is defined as the time needed for the newly established bioenergy system to reach the cumulative C emissions of a fossil fuel, counterfactual system. Furthermore, we estimated an uncertainty period derived from the difference in C parity time between predefined best‐ and worst‐case scenarios, in which parameter values related to the supply chain and forest dynamics varied. The results indicate short‐to‐long ranking of C parity times for residues < salvaged trees < green trees and for substituting the less energy‐dense fossil fuels (coal < oil < natural gas). A sensitivity analysis indicated that silviculture and enhanced conversion efficiency, when occurring only in the bioenergy system, help reduce time to C parity. The uncertainty around the estimate of C parity time is generally small and inconsequential in the case of harvest residues but is generally large for the other feedstocks, indicating that meeting specific C parity time using feedstock other than residues is possible, but would require very specific conditions. Overall, the use of single parity time values to evaluate the performance of a particular feedstock in mitigating GHG emissions should be questioned given the importance of uncertainty as an inherent component of any bioenergy project.  相似文献   

19.
In order to maintain biodiversity in forests, it has been recommended that harvests be designed after patterns of natural disturbance. Using a long-term study that includes harvest treatments designed to emulate tree-fall gap disturbances in Maine’s Acadian forest, we examined how the species richness, abundance, diversity, and assemblage similarity of click beetles inhabiting coarse woody material (CWM) were affected by gap harvesting and CWM characteristics (diameter, degree of decay, and type of wood). There were few differences in beetle assemblages between 0.07 and 0.12 ha harvest gap treatments. Four of the most common species had higher abundances under a closed forest canopy than within harvest gaps. Species richness and total abundance were higher in CWM that had larger diameters and were more decayed. Species assemblages also differed with the degree of wood decomposition. Diversity was higher in CWM from softwood trees than hardwood trees. Results from this study suggest that small (<0.2 ha) harvest gaps with living trees retained throughout the gap can maintain click beetle assemblages similar to that of an unharvested forest. Forest managers also need to address the temporal continuity of CWM, including different types of wood (hardwood and softwood), a range of decay conditions, and a range of diameter classes, especially larger diameters (>35 cm).  相似文献   

20.
Secondary succession following land abandonment, represented by a chronosequence of 15 old fields (0–80 years old) and two old-growth forests, was studied in the tropical montane cloud forest region of Veracruz, Mexico. The objective was to determine successional trajectories in forest structure and species richness of trees ≥5 cm DBH, in terms of differences in seed dispersal mode, shade tolerance, and phytogeographical affinity. Data were analyzed using AIC model selection and logistic regressions. Mean and maximum canopy height reached values similar to old-growth forest at 35 and 80 years, respectively. Species richness and diversity values were reached earlier (15 and 25 years, respectively) while basal area and stem density tended to reach old-growth forest values within 80 years. Along the chronosequence, the proportion of species and individuals of wind-dispersed trees declined, that of bird dispersed small seeded trees remained constant, while that of gravity and animal dispersed large seeded trees increased; shade-intolerant species and individuals declined, while intermediate and shade-tolerant trees increased. Shade-tolerant canopy trees were rare during succession, even in the old-growth forest. Tropical tree species were more frequent than temperate ones throughout the chronosequence, but temperate tree individuals became canopy dominants at intermediate and old-growth forest stages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号