首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hypoxia alters the biological functions of skeletal muscle cells to proliferate and differentiate into myotubes. However, the cellular responses of myoblasts to hypoxia differ according to the levels of oxygen and the types of cells studied. This study examined the effect of hypoxia (1% oxygen) on bovine satellite cells. Hypoxia significantly increased the proliferation of satellite cells cultured in a growth medium. In addition, the levels of PCNA, cyclin D1, cyclin-dependent kinase-1 (CDK1) and CDK2 expression were increased. Hypoxia facilitated the formation of myotubes as well as the stimulation of MyoD, myogenin, and myosin heavy chain (MHC) expression in differentiating medium (DM) cultures. In particular, satellite cells cultured under hypoxic/DM conditions showed increased p21 expression but not p27. The transfection of satellite cells with antisense MyoD oligonucleotides resulted in a decrease in the MHC, myogenin, MRF4 RNA and protein levels with the concomitant decrease in fused cells to levels similar to those observed under normoxia/DM conditions. This indicates that MyoD up-regulation is closely associated with hypoxia-stimulated myogenic differentiation. In conclusion, hypoxia stimulates the proliferation of satellite cells and promotes their myogenic differentiation with MyoD playing an important role.  相似文献   

2.
3.
Myostatin inhibits myoblast differentiation by down-regulating MyoD expression   总被引:38,自引:0,他引:38  
Myostatin, a negative regulator of myogenesis, is shown to function by controlling the proliferation of myoblasts. In this study we show that myostatin is an inhibitor of myoblast differentiation and that this inhibition is mediated through Smad 3. In vitro, increasing concentrations of recombinant mature myostatin reversibly blocked the myogenic differentiation of myoblasts, cultured in low serum media. Western and Northern blot analysis indicated that addition of myostatin to the low serum culture media repressed the levels of MyoD, Myf5, myogenin, and p21 leading to the inhibition of myogenic differentiation. The transient transfection of C(2)C(12) myoblasts with MyoD expressing constructs did not rescue myostatin-inhibited myogenic differentiation. Myostatin signaling specifically induced Smad 3 phosphorylation and increased Smad 3.MyoD association, suggesting that Smad 3 may mediate the myostatin signal by interfering with MyoD activity and expression. Consistent with this, the expression of dominant-negative Smad3 rescued the activity of a MyoD promoter-reporter in C(2)C(12) myoblasts treated with myostatin. Taken together, these results suggest that myostatin inhibits MyoD activity and expression via Smad 3 resulting in the failure of the myoblasts to differentiate into myotubes. Thus we propose that myostatin plays a critical role in myogenic differentiation and that the muscular hyperplasia and hypertrophy seen in animals that lack functional myostatin is because of deregulated proliferation and differentiation of myoblasts.  相似文献   

4.
Hic-5, a focal adhesion protein, has been implicated in cellular senescence and differentiation. In this study, we examined its involvement in myogenic differentiation. The hic-5 expression level in growing C2C12 myoblasts increased slightly on the first day and then gradually decreased until no hic-5 was detectable after 7 days of differentiation. In vivo, its expression level declined in the thigh and the calf skeletal muscle of mouse embryos after birth. The introduction of an antisense expression vector of hic-5 into C2C12 cells decreased the number of clones expressing the myosin heavy chain (MHC) upon exposure to the differentiation medium. In the cloned cells with low levels of hic-5, the efficiency of myotube formation was significantly reduced. The expression levels of MyoD, myogenin, MHC and p21 were also reduced in these clones. The results suggested that hic-5 plays a role in the initial stage of myogenic differentiation.  相似文献   

5.
To understand the mechanism by which the serum response factor (SRF) is involved in the process of skeletal muscle differentiation, we have assessed the effect of inhibiting SRF activity or synthesis on the expression of the muscle-determining factor MyoD. Inhibition of SRF activity in mouse myogenic C2C12 cells through microinjection of either the SRE oligonucleotide (which acts by displacing SRF proteins from the endogenous SRE sequences), purified SRF-DB (a 30-kDa portion of SRF containing the DNA-binding domain of SRF, which acts as a dominant negative mutant in vivo), or purified anti-SRF antibodies rapidly prevents the expression of MyoD. Moreover, the rapid shutdown of MyoD expression after in vivo inhibition of SRF activity is observed not only in proliferating myoblasts but also in myoblasts cultured under differentiating conditions. Additionally, by using a cellular system expressing a glucocorticoid-inducible antisense-SRF (from aa 74 to 244) we have shown that blocking SRF expression by dexamethasone induction of antisense SRF results in the lack of MyoD expression as probed by both immunofluorescence and Northern blot analysis. Taken together these data demonstrate that SRF expression and activity are required for the expression of the muscle-determining factor MyoD.  相似文献   

6.
In this study we have investigated the effect and the mechanisms by which tumor necrosis factor-like weak inducer of apoptosis (TWEAK) modulates myogenic differentiation. Treatment of C2C12 myoblasts with TWEAK inhibited their differentiation evident by a decrease in the expression of creatine kinase, myosin heavy chain-fast twitch, myogenin, and the formation of multinucleated myotubes. TWEAK also inhibited the differentiation of mouse primary myoblasts. Conversely, the proliferation of C2C12 myoblasts and the expression of a cell-cycle regulator cyclin D1 were increased in response to TWEAK treatment. Inhibition of cellular proliferation using hydroxyurea only partially reversed the inhibitory effect of TWEAK on myogenic differentiation. Treatment of C2C12 myoblasts with TWEAK resulted in the activation of nuclear factor-kappaB (NF-kappaB), the (IkappaB) IkappaB kinase (IKK) complex, and the phosphorylation and degradation of IkappaBalpha protein. Inhibition of NF-kappaB activity by overexpression of a dominant negative mutant of IkappaBalpha (IkappaBalphaDeltaN) significantly increased the myogenic differentiation in TWEAK-treated C2C12 cultures. Furthermore, overexpression of a dominant negative mutant of IKKbeta (IKKbetaK44A) but not IKKalpha (IKKalphaK44M) reversed the inhibitory effect of TWEAK on myogenesis. TWEAK inhibited the expression of myogenic regulatory factors MyoD and myogenin and also induced the degradation of MyoD protein. Finally, inhibition of NF-kappaB activation through overexpression of IKKbetaK44A prevented the degradation of MyoD protein. Overall, our data suggest that TWEAK inhibits myogenesis through the activation of NF-kappaB signaling pathway and degradation of MyoD protein.  相似文献   

7.
8.
Fibroblast growth factor-inducible 14 (Fn14), distantly related to tumor necrosis factor receptor superfamily and a receptor for TWEAK cytokine, has been implicated in several biological responses. In this study, we have investigated the role of Fn14 in skeletal muscle formation in vitro. Flow cytometric and Western blot analysis revealed that Fn14 is highly expressed on myoblastic cell line C2C12 and mouse primary myoblasts. The expression of Fn14 was decreased upon differentiation of myoblasts into myotubes. Suppression of Fn14 expression using RNA interference inhibited the myotube formation in both C2C12 and primary myoblast cultures. Fn14 was required for the transactivation of skeletal alpha-actin promoter and the expression of specific muscle proteins such as myosin heavy chain fast type and creatine kinase. RNA interference-mediated knockdown of Fn14 receptor in C2C12 myoblasts decreased the levels of myogenic regulatory factors MyoD and myogenin upon induction of differentiation. Conversely, overexpression of MyoD increased differentiation in Fn14-knockdown C2C12 cultures. Suppression of Fn14 expression in C2C12 myoblasts also inhibited the differentiation-associated increase in the activity of serum response factor and RhoA GTPase. In addition, our data suggest that the role of Fn14 during myogenic differentiation could be independent of TWEAK cytokine. Collectively, our study suggests that the Fn14 receptor is required for the expression of myogenic regulatory factors and differentiation of myoblasts into myotubes.  相似文献   

9.
Fish satellite cells have been extracted from various species, but the myogenic characteristics of these cells in culture remain largely unknown. We show here that 60%-70% of the adherent cells are myogenic based on their immunoreactivity for the myogenic regulatory factor MyoD. In DMEM containing 10% fetal calf serum (FCS), trout myoblasts display rapid expression of myogenin (18% of myogenin-positive cells at day 2) combined with rapid fusion into myotubes (50% of myogenin-positive nuclei and 30% nuclei in myosin heavy chain [MyHC]-positive cells at day 7). These kinetics of differentiation are reminiscent of the behavior of fetal myoblasts in mammals. However, not all the myogenic cells differentiate; this subpopulation of cells might correspond to the previously named “reserve” cells. More than 90% of the BrdU-positive cells are also positive for MyoD, indicating that myogenic cells proliferate in vitro. By contrast, less than 1% of myogenin-positive cells are positive for BrdU suggesting that myogenin expression occurs only in post-mitotic cells. In order to maximize either the proliferation or the differentiation of cells, we have defined new culture conditions based on the use of a proliferation medium (F10+10%FCS) and a differentiation medium (DMEM+2%FCS). Three days after switching the medium, the differentiation index (% MyHC-positive nuclei) is 40-fold higher than that in proliferation medium, whereas the proliferation index (% BrdU-positive nuclei) is three-fold lower. Stimulation of cell proliferation by insulin-like growth factor 1 (IGF1), IGF2, and FGF2 is greater in F10 medium. The characterization of these extracted muscle cells thus validates the use of this in vitro system of myogenesis in further studies of the myogenic activity of growth factors in trout.  相似文献   

10.
11.
Cells undergo a variety of biological responses when placed in hypoxic conditions, including alterations in metabolic state and growth rate. Here we investigated the effect of hypoxia on the ability of myogenic cells to differentiate in culture. Exposure of myoblasts to hypoxia strongly inhibited multinucleated myotube formation and the expression of differentiation markers. We showed that hypoxia reversibly inhibited MyoD, Myf5, and myogenin expression. One key step in skeletal muscle differentiation involves the up-regulation of the cell cycle-dependent kinase inhibitors p21 and p27 as well as the product of the retinoblastoma gene (pRb). Myoblasts cultured under hypoxic conditions in differentiation medium failed to up-regulate both p21 and pRb despite the G1 cell cycle arrest, as evidenced by p27 accumulation and pRb hypophosphorylation. Hypoxia-dependent inhibition of differentiation was associated with MyoD degradation by the ubiquitin-proteasome pathway. MyoD overexpression in C2C12 myoblasts overrode the differentiation block imposed by hypoxic conditions. Thus, hypoxia by inducing MyoD degradation blocked accumulation of early myogenic differentiation markers such as myogenin and p21 and pRb, preventing both permanent cell cycle withdraw and terminal differentiation. Our study revealed a novel anti-differentiation effect exerted by hypoxia in myogenic cells and identified MyoD degradation as a relevant target of hypoxia.  相似文献   

12.
13.
14.
Isolated chicken myoblasts had previously been utilized in many studies aiming at understanding the emergence and regulation of the adult myogenic precursors (satellite cells). However, in recent years only a small number of chicken satellite cell studies have been published compared to the increasing number of studies with rodent satellite cells. In large part this is due to the lack of markers for tracing avian myogenic cells before they become terminally differentiated and express muscle-specific structural proteins. We previously demonstrated that myoblasts isolated from fetal and adult chicken muscle display distinct schedules of myosin heavy-chain isoform expression in culture. We further showed that myoblasts isolated from newly hatched and young chickens already possess the adult myoblast phenotype. In this article, we report on the use of polyclonal antibodies against the chicken myogenic regulatory factor proteins MyoD and myogenin for monitoring fetal and adult chicken myoblasts as they progress from proliferation to differentiation in culture. Fetal-type myoblasts were isolated from 11-day-old embryos and adult-type myoblasts were isolated from 3-week-old chickens. We conclude that fetal myoblasts express both MyoD and myogenin within the first day in culture and rapidly transit into the differentiated myosin-expressing state. In contrast, adult myoblasts are essentially negative for MyoD and myogenin by culture Day 1 and subsequently express first MyoD and then myogenin before expressing sarcomeric myosin. The delayed MyoD-to-myogenin transition in adult myoblasts is accompanied by a lag in the fusion into myotubes, compared to fetal myoblasts. We also report on the use of a commercial antibody against the myocyte enhancer factor 2A (MEF2A) to detect terminally differentiated chicken myoblasts by their MEF2+ nuclei. Collectively, the results support the hypothesis that fetal and adult myoblasts represent different phenotypic populations. The fetal myoblasts may already be destined for terminal differentiation at the time of their isolation, and the adult myoblasts may represent progenitors that reside in an earlier compartment of the myogenic lineage.  相似文献   

15.
Transformation of myoblasts by activated ras inhibits myogenic differentiation. We demonstrate that this oncogene inhibits expression of the muscle regulatory factors MyoD1 and myogenin. Expression of retroviral-encoded MyoD1 in ras-transformed myoblasts leads to the re-expression of both terminal differentiation markers and lineage markers expressed in proliferating myoblasts (including endogenous MyoD1 and myogenin), suggesting that ras inhibits myogenic differentiation in a manner dependent on the loss of MyoD1 expression. In addition, we show that fos transformation of myoblasts inhibits muscle differentiation by a similar mechanism.  相似文献   

16.
17.
A variety of differentiated cell types can be converted to skeletal muscle cells following transfection with the myogenic regulatory gene MyoD1. To determine whether multipotent embryonic stem (ES) cells respond similarly, cultures of two ES cell lines were electroporated with a MyoD1 cDNA driven by the beta-actin promoter. All transfected clones, carrying a single copy of the exogenous gene, expressed high levels of MyoD1 mRNA. Surprisingly, although maintained in mitogen-rich medium, this ectopic expression was associated with a transactivation of the endogenous myogenin and myosin light chain 2 gene but not the endogenous MyoD1, MRF4, Myf5, the skeletal muscle actin, or the myosin heavy chain genes. Preferential myogenesis and the appearance of contracting skeletal muscle fibers were observed only when the transfected cells were allowed to differentiate in vitro, via embryoid bodies, in low-mitogen-containing medium. Myogenesis was associated with the activation of MRF4 and Myf5 genes and resulted in a significant increase in the level of myogenin mRNA. Not all cells were converted to skeletal muscle cells, indicating that only a subset of stem cells can respond to MyoD1. Moreover, the continued expression of the introduced gene was not required for myogenesis. These results show that ES cells can respond to MyoD1, but environmental factors control the expression of its myogenic differentiation function, that MyoD1 functions in ES cells even under environmental conditions that favor differentiation is not dominant (incomplete penetrance), that MyoD1 expression is required for the establishment of the myogenic program but not for its maintenance, and that the exogenous MyoD1 gene can trans-activate the endogenous myogenin and MLC2 genes in undifferentiated ES cells.  相似文献   

18.
The BTB-Kelch protein Krp1 is highly and specifically expressed in skeletal muscle, where it is proposed to have a role in myofibril formation. We observed significant upregulation of Krp1 in C2 cells early in myoblast differentiation, well before myofibrillogenesis. Krp1 has a role in cytoskeletal organization and cell motility; since myoblast migration and elongation/alignment are important events in early myogenesis, we hypothesized that Krp1 is involved with earlier regulation of differentiation. Krp1 protein levels were detectable by 24 h after induction of differentiation in C2 cells and were significantly upregulated by 48 h, i.e., following the onset myogenin expression and preceding myosin heavy chain (MHC) upregulation. Upregulation of Krp1 required a myogenic stimulus as signaling derived from increased myoblast cell density was insufficient to activate Krp1 expression. Examination of putative Krp1 proximal promoter regions revealed consensus E box elements associated with myogenic basic helix-loop-helix binding. The activity of a luciferase promoter-reporter construct encompassing this 2,000-bp region increased in differentiating C2 myoblasts and in C2 cells transfected with myogenin and/or MyoD. Knockdown of Krp1 via short hairpin RNA resulted in increased C2 cell number and proliferation rate as assessed by bromodeoxyuridine incorporation, whereas overexpression of Krp1-myc had the opposite effect; apoptosis was unchanged. No effects of changed Krp1 protein levels on cell migration were observed, either by scratch wound assay or live cell imaging. Paradoxically, both knockdown and overexpression of Krp1 inhibited myoblast differentiation assessed by expression of myogenin, MEF2C, MHC, and cell fusion.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号