首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Concentrative influx of γ-aminobutyric acid (GABA) and α-aminoisobutyric acid (AIB) into incubated mouse cerebrum slices is decreased when pyruvate is substituted for glucose. Influx of GABA from pyruvate medium is not increased by presence of glucose, 2-deoxy-d -glucose (2-DOG), or 3-O-methyl-d -glucose (3-O-MeG). Influx of AIB is restored to the rate from glucose medium if 2-DOG is present initially, but is not restored if 2-DOG is added with AIB. Influx is not restored if 3-O-MeG is present initially, but is restored if 3-O-MeG is added with AIB. Influx is restored if glucose is present initially or is added with AIB.  相似文献   

2.
Abstract— Mouse brain slices were depleted of K+ by three 10-min incubations-in oxygenated HEPES-buffered medium lacking glucose and K+. Addition of K+ or Rb+ (or Cs+, to a smaller degree) with glucose, or with succinate, malate, and pyruvate (SMP) before incubation at 37°C with 14C-amino acids restored active low-affinity transport of d -Glu, α-aminoisobutyrate (AIB), GABA, Gly, His, Val, Leu, Lys, and Orn. Ouabain at 1–2μ m with Rb+ was more inhibitory with SMP than with glucose, suggesting that the glycoside may affect specific energy coupling to transport. Valinomycin, in contrast, showed no specificity of inhibition of amino acid uptake with glucose or SMP and K+ or Rb+. Cs+ partially restored amino acid uptake, but Li+ was less effective than Cs +. NaF at 10 m m with SMP + Rb+, or SMP + K+ did not inhibit amino acid uptake. Therefore, it was possible to dissociate glycolysis and Na+, K + -ATPase activity from amino acid transport. The ion replacements for K + that supported active amino acid transport indicate that the specificity of ions in possible ionic gradients for transport energetics should be reexamined.  相似文献   

3.
The function of membrane phospholipids (PL) in the regulation of gamma-aminobutyric acid (GABA) transport and GABA carrier binding has been investigated in organized cultures of rat cerebral cortex. The cellular lipid composition has been changed by growing the cells in a delipidated nutrient solution or by short-term exposure of the cells to PL emulsions. Introduction of PL into the cellular matrix was monitored by analysis of biologically active fluorescently labeled phosphatidylcholine (PC) or phosphatidylethanolamine (PE). Parinaroyl and dansyl derivatives were used. Conditions of maintenance as well as exogenously given PL affected the transport of GABA. Two transport systems were observed, one first-order system and one cooperative system. Saturated species of PC or PE reduced first-order GABA uptake with increase in chain length of the fatty acid residues. The effects of unsaturated PL were dependent upon the polar head. Unsaturated PC enhanced the capacity of the first-order transport of the amino acid. In comparison to cultures grown in lipid-free medium, introduction of diarachinoyl-PC into the cells increased the density of the first-order active transport sites by a factor of 8 and the affinity constant by a factor of 17. Diarachinoyl-PE reduced both kinetic parameters. GABA uptake via the cooperative system was enhanced by the unsaturated PE, not by PC. The role of endogenous PL and their asymmetric distribution was studied by application of phospholipase A2, C, and D. Stimulation of carrier activity was induced by hydrolysis of PL on the external leaflet. Inhibition occurred upon enzymatic degradation of external and cytoplasmic PL. Lipolysis also affected GABA receptor binding, suggesting that the effects observed represent the activity of both classes of binding sites, the carrier and the receptor. However the latter accounted for a small fraction of the binding. Transport of the amino acid was temperature sensitive. The temperature curve was shifted within two discontinuities, appearing in the Arrhenius plot as a function of membrane lipids. The results suggest a partitioning of the proteins between fluid and ordered lipid domains. Displacement of the protein may govern the rate constants and/or the effective protein concentration.  相似文献   

4.
Neuronal activity is tightly coupled with brain energy metabolism. Numerous studies have proved that glucose is not a sole energy substrate for neurons; metabolic monocarboxylate intermediates derived from glucose (pyruvate and lactate) released by astrocytes are shown to be taken up and oxidized by neurons, and, moreover, could serve as neuroprotective agents. Herein, we presented the data that extracellular pyruvate (4 mM) in the presence of glucose caused the increase in synaptosomal ATP content from 3.48+/-0.30 to 4.38+/-0.23 nmol/mg of protein. This correlates with the enhanced accumulation of fluorescent dye acridine orange in the available and the recycling synaptic vesicles within the synaptosomes reflecting the improved generation of proton gradient through the synaptic vesicle membrane. We have also demonstrated the effect of extracellular pyruvate on distribution of [3H]GABA between synaptic vesicles and cytoplasm in loaded synaptosomes. To estimate [3H]GABA accumulation into the synaptic vesicles, Ca 2+-dependent 4-aminopyridine-triggered exocytotic neurotransmitter release was studied. Evaluation of cytosolic 1H]GABA pool was performed by measuring the Ca2+-independent transporter-mediated neurotransmitter release evoked by nipecotic acid or high K+. The presence of pyruvate resulted in doubled exocytotic release of [3H]GABA, and significantly attenuated Ca2+-independent release of cytosolic [3H]GABA. Together, these observations provide insight into the important role of glucose metabolic intermediate, pyruvate, in sustaining activity of vesicular inhibitory amino acid transporter and so normal inhibitory transmission. We propose to use pyruvate for keeping up synaptosomal preparations in state of metabolic stability.  相似文献   

5.
Eleven different bacteria, isolated by enrichment procedures on alpha-aminoisobutyric (AIB) as sole fixed nitrogen source, were examined for the mechanism by which they attacked the amino acid. All eleven organisms, including one which grew well on isopropylamine, converted AIB to acetone and CO(2) and showed an absolute dependence upon pyruvate for this reaction. No organism isolated degraded AIB to isopropylamine as the primary reaction. The data suggested that the usual mode of attack upon this amino acid is by an overall reaction comprised of two half reactions, one a decarboxylation-dependent transamination and the other a normal exchange transamination.  相似文献   

6.
(R)-N-[4,4-Bis(3-methyl-2-thienyl)but-3-en-1-yl]nipecotic acid (NO 328) has previously been shown to be a potent anticonvulsant in both mice and rats. Here, we report that NO 328 is a potent inhibitor of gamma-[3H]aminobutyric acid [( 3H]GABA) uptake in a rat forebrain synaptosomal preparation (IC50 = 67 nM) and in primary cultures of neurons and astrocytes. Inhibition of [3H]GABA uptake by NO 328 is apparently of a mixed type when NO 328 is preincubated before [3H]GABA uptake; the inhibition is apparently competitive without preincubation. NO 328 itself is not a substrate for the GABA uptake carrier, but NO 328 is a selective inhibitor of [3H]GABA uptake. Binding to benzodiazepine receptors, histamine H1 receptors, and 5-hydroxytryptamine1A receptors was inhibited by NO 328 at 5-30 microM, whereas several other receptors and uptake sites were unaffected. [3H]NO 328 showed saturable and reversible binding to rat brain membranes in the presence of NaCl. The specific binding of [3H]NO 328 was inhibited by known inhibitors of [3H]GABA uptake; GABA and the cyclic amino acid GABA uptake inhibitors were, however, less potent than expected. This indicates that the binding site is not identical to, but rather overlapping with, the GABA recognition site of the uptake carrier. The affinity constant for binding of [3H]NO 328 is 18 nM, and the Bmax is 669 pmol/g of original rat forebrain tissue. The regional distribution of NaCl-dependent [3H]NO 328 binding followed that of synaptosomal [3H]GABA uptake.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Pancreatic beta cells are hyper-responsive to amino acids but have decreased glucose sensitivity after deletion of the sulfonylurea receptor 1 (SUR1) both in man and mouse. It was hypothesized that these defects are the consequence of impaired integration of amino acid, glucose, and energy metabolism in beta cells. We used gas chromatography-mass spectrometry methodology to study intermediary metabolism of SUR1 knock-out (SUR1(-/-)) and control mouse islets with d-[U-(13)C]glucose as substrate and related the results to insulin secretion. The levels and isotope labeling of alanine, aspartate, glutamate, glutamine, and gamma-aminobutyric acid (GABA) served as indicators of intermediary metabolism. We found that the GABA shunt of SUR1(-/-) islets is blocked by about 75% and showed that this defect is due to decreased glutamate decarboxylase synthesis, probably caused by elevated free intracellular calcium. Glutaminolysis stimulated by the leucine analogue d,l-beta-2-amino-2-norbornane-carboxylic acid was, however, enhanced in SUR1(-/-) and glyburide-treated SUR1(+/+) islets. Glucose oxidation and pyruvate cycling was increased in SUR1(-/-) islets at low glucose but was the same as in controls at high glucose. Malic enzyme isoforms 1, 2, and 3, involved in pyruvate cycling, were all expressed in islets. High glucose lowered aspartate and stimulated glutamine synthesis similarly in controls and SUR1(-/-) islets. The data suggest that the interruption of the GABA shunt and the lack of glucose regulation of pyruvate cycling may cause the glucose insensitivity of the SUR1(-/-) islets but that enhanced basal pyruvate cycling, lowered GABA shunt flux, and enhanced glutaminolytic capacity may sensitize the beta cells to amino acid stimulation.  相似文献   

8.
Under conditions of energy impairment, CNS tissue can utilize substrates other than glucose to maintain energy metabolism. Retinas produce large amounts of lactate, although it has not been shown that lactate can be utilized by retina to prevent the cell damage associated with hypoglycemia. To investigate this, intact, isolated retinas were subjected to aglycemic conditions in the presence or absence of 20 mM lactate. Retinas incubated in the absence of glucose for 60 min showed a threefold elevation in tissue aspartate and 60% decreases in tissue glutamate and glutamine, demonstrating a mobilization of carbon from glutamine and glutamate to the tricarboxylic acid cycle. Lactate prevented these changes in tissue amino acids, indicating metabolism of lactate with sparing of tissue glutamate and glutamine. Tissue ATP was 20 and 66% of control values with zero glucose or zero glucose plus lactate, respectively. Consistent with previous findings, incubation of retinas in the absence of glucose caused acute swelling of retinal neurons and release of GABA into the medium at 60 min. These acute toxic affects caused by the absence of glucose were completely prevented by the presence of lactate. At 24 h of recovery following 60 min of zero glucose, many pyknotic profiles were observed and lactate dehydrogenase (LDH) release into the medium was elevated sevenfold, indicating the extent of cell death. In contrast, no elevation in LDH was found and histology appeared normal in retinas exposed to zero glucose in the presence of lactate. alpha-Cyano-4-hydroxy cinnamate (4-CIN; 0.5 mM), an inhibitor of the monocarboxylic acid transporter and mitochondrial pyruvate carrier, blocked the ability of lactate to maintain ATP and protect retinas from aglycemia but had no effect on ATP or toxicity per se. Derangements in tissue aspartate, glutamate, and glutamine, which were prevented by lactate during zero glucose incubation, were again observed with lactate plus zero glucose in the presence of 4-CIN. However, 0.5 mM 4-CIN alone in the presence of glucose produced similar increases in aspartate and decreases in glutamate and glutamine as observed with zero glucose while having only modest inhibitory effects on [U-(14)C]lactate uptake, suggesting the mitochondrial pyruvate carrier as the main site of action. The above findings show that lactate is readily utilized by the chick retina during glucose deprivation to prevent derangements in tissue amino acids and ATP and retinal neuronal cell death.  相似文献   

9.
A rat four vessel occlusion model was utilized to examine the effects of ischemia/reperfusion on cortical window superfusate levels of amino acids, glucose, and lactate. Superfusate aspartate, glutamate, phosphoethanolamine, taurine, and GABA were significantly elevated by cerebral ischemia, then declined during reperfusion. Other amino acids were affected to a lesser degree. Superfusate lactate rose slightly during the initial ischemic period, declined during continued cerebral ischemia and then was greatly elevated during reperfusion. Superfusate glucose levels declined to near zero levels during ischemia and then rebounded beyond basal levels during the reperfusion period. Inhibition of neuronal lactate uptake with alpha-cyano-4-hydroxycinnamate dramatically elevated superfusate lactate levels, enhanced the ischemia/reperfusion evoked release of aspartate but reduced glutamine levels. Topical application of an alternative metabolic fuel, glutamine, had a dose dependent effect. Glutamine (1 mM) elevated basal superfusate glucose levels, diminished the decline in glucose during ischemia, and accelerated its recovery during reperfusion. Lactate levels were elevated during ischemia and reperfusion. These effects were not evident at 5 mM glutamine. At both concentrations, glutamine significantly elevated the superfusate levels of glutamate. Topical application of sodium pyruvate (20 mM) significantly attenuated the decline in superfusate glucose during ischemia and enhanced the levels of both glucose and lactate during reperfusion. However, it had little effect on the ischemia-evoked accumulation of amino acids. Topical application of glucose (450 mg/dL) significantly elevated basal superfusate levels of lactate, which continued to be elevated during both ischemia and reperfusion. The ischemia-evoked accumulations of aspartate, glutamate, taurine and GABA were all significantly depressed by glucose, while phosphoethanolamine levels were elevated. These results support the role of lactate in neuronal metabolism during ischemia/reperfusion. Both glucose and glutamine were also used as energy substrates. In contrast, sodium pyruvate does not appear to be as effectively utilized by the ischemic/reperfused rat brain since it did not reduce ischemia-evoked amino acid efflux.  相似文献   

10.
The compartmentation of amino acid metabolism is an active and important area of brain research. 13C labeling and 13C nuclear magnetic resonance (NMR) are powerful tools for studying metabolic pathways, because information about the metabolic histories of metabolites can be determined from the appearance and position of the label in products. We have used 13C labeling and 13C NMR in order to investigate the metabolic history of gamma-aminobutyric acid (GABA) and glutamate in rat brain. [1-13C]Glucose was infused into anesthetized rats and the 13C labeling patterns in GABA and glutamate examined in brain tissue extracts obtained at various times after infusion of the label. Five minutes after infusion, most of the 13C label in glutamate appeared at the C4 position; at later times, label was also present at C2 and C3. This 13C labeling pattern occurs when [1-13C]glucose is metabolized to pyruvate by glycolysis and enters the pool of tricarboxylic acid (TCA) intermediates via pyruvate dehydrogenase. The label exchanges into glutamate from the TCA cycle pool through glutamate transaminases or dehydrogenase. After 30 min of infusion, approximately 10% of the total 13C in brain extracts appeared in GABA, primarily (greater than 80%) at the amino carbon (C4), indicating that the GABA detected is labeled through pyruvate carboxylase. The different labeling patterns observed for glutamate and GABA show that the large detectable glutamate pool does not serve as the precursor to GABA. Our NMR data support previous experiments suggesting compartmentation of metabolism in brain, and further demonstrate that GABA is formed from a pool of TCA cycle intermediates derived from an anaplerotic pathway involving pyruvate carboxylase.  相似文献   

11.
The specificity of the transport mechanisms for pyruvate and lactate and their sensitivity to inhibitors were studied in L6 skeletal muscle cells. Trans- and cis-lactate effects on pyruvate transport kinetic parameters were examined. Pyruvate and lactate were transported by a multisite carrier system, i.e., by two families of sites, one with low affinity and high capacity (type I sites) and the other with high affinity and low capacity (type II). The multisite character of transport kinetics was not modified by either hydroxycinnamic acid (CIN) or p-chloromercuribenzylsulfonic acid (PCMBS), which exert different types of inhibition. The transport efficiency (TE) ratios of maximal velocity to the trans-activation dissociation constant (Kt) showed that lactate and pyruvate were preferentially transported by types I and II sites, respectively. The cis-lactate effect was observed with high Ki values for both sites. The trans-lactate effect on pyruvate transport occurred only on type I sites and exhibited an asymmetric interaction pattern (Kt of inward lactate > Kt of outward lactate). The inability of lactate to trans-stimulate type II sites suggests that intracellular lactate cannot recruit these sites. The high-affinity type II sites act as a specific pyruvate shuttle and constitute an essential relay for the intracellular lactate shuttle.  相似文献   

12.
Neutral amino acid transport is largely unexplored in astrocytes, although a role for these cells in blood-brain barrier function is suggested by their close apposition to cerebrovascular endothelium. This study examined the uptake into mouse astrocyte cultures of alpha-aminoisobutyric acid (AIB), a synthetic model substrate for Na+-dependent system A transport. Na+-dependent uptake of AIB was characteristic of system A in its pH sensitivity, kinetic properties, regulatory control, and pattern of analog inhibition. The rate of system A transport declined markedly with increasing age of the astrocyte cultures. There was an unexpectedly active Na+-independent component of AIB uptake that declined less markedly than system A transport as culture age increased. Although the saturability of the Na+-independent component and its pattern of analog inhibition were consistent with system L transport, the following properties deviated: (1) virtually complete inhibition of Na+-independent AIB uptake by characteristic L system substrates, suggesting unusually high affinity of the transporter; (2) apparent absence of trans-stimulation of AIB influx; (3) unusually concentrative uptake at steady state (the estimated distribution ratio for 0.2 mM AIB was 55); and (4) susceptibility to inhibition by N-ethylmaleimide. Direct study of the uptake of system L substrates in astrocytes is needed to confirm the present indications of high affinity and concentrative Na+-independent transport.  相似文献   

13.
The effects of N-(4,4-diphenyl-3-butenyl) derivatives of nipecotic acid (SKF-89976-A and SKF-100844-A) and guvacine (SKF-100330-A) on neuronal and astroglial gamma-aminobutyric acid (GABA) uptake were investigated. In addition, the uptake of SKF-89976-A was studied using the tritiated compound. All of the compounds were found to be competitive inhibitors of GABA uptake irrespective of the cell type, with Ki values similar to or lower than those of the parent amino acids. Moreover, none of the compounds exhibited selectivity with regard to inhibition of neuronal and glial GABA uptake. In spite of the competitive nature of SKF-89976-A, the compound was not transported by the GABA carriers in the two cell types, because no saturable uptake could be demonstrated.  相似文献   

14.
ABSTRACT. Leishmania tropica promastigotes transport α-aminoisobutyric acid (AIB), the nonmetabolizable analog of neutral amino acids, against a substantial concentration gradient. AIB is not incorporated into cellular material but accumulates within the cells in an unaltered form. Intracellular AIB exchanges with external AIB. Various energy inhibitors (amytal, HOQNO, KCN, DNP, CCCP, and arsenate) and sulfhydryl reagents (NEM, pCMB, and iodoacetate) severely inhibit uptake. The uptake system is saturable with reference to AIB-and the Lineweaver-Burk plots show biphasic kinetics suggesting the involvement of two transport systems. AIB shares a common transport system with alanine, cysteine, glycine, methionine, serine, and proline. Uptake is regulated by feedback inhibition and transinhibition.  相似文献   

15.
Abstract— The uptake and binding of [3H]GABA and the binding of [3H]muscimol were measured in cell-free fractions of crayfish muscle. The uptake of GABA was saturable, of high affinity ( K m= 0.5μ m ), and inhibited by low concentrations of compounds believed to block GABA uptake specifically, such as nipecotic acid and 2,4,diaminobutyric acid. The GABA uptake activity was localized to sucrose gradient fractions enriched in sarcolemma as demonstrated by marker enzymes and electron microscopy. The binding of the potent GABAergic agonist muscimol was also localized to the sarcolemma. The binding was saturable, of high affinity (K D = 9 n m ), and inhibited by GABA (K 1 = 125 n m ) and by low concentrations of receptor-specific GABA analogues, such as isoguvacine, imidazole acetic acid, and 3-aminopropane sulfonic acid. The rank order for inhibition by GABA analogues of [3H]muscimol binding sites correlated very well with activity on GABA synapses in invertebrates, consistent with specific postsynaptic receptor labeling.  相似文献   

16.
The AIB transport into human glia and glioma cells in culture has been studied. Because of the high affinity of AIB to the plastic culture dishes, a special washing technique had to be developed. With this technique, it was possible to perform transport experiments in a single plate containing about one million cells. The cells were viable, intact and adhered to the supporting medium throughout the experiment. The AIB transport into both types of cells was Na+-dependent and showed saturation kinetics when the small component of the transport due to diffusion had been subtracted. The AIB transport capacity of neoplastic glioma cells was 3.6 times higher than that of glia cells. This difference was related to the Vmax-values for the two types of cells. The apparent Km-values were the same. Inhibition experiments with other amino acids support the view that AIB is transported via System A in both glia and glioma cells. Sulfhydryl reagents (ethacrynic acid and NEM) and cytochalasin B clearly inhibited the AIB transport into glia cells whereas the effect on glioma cells was minimal.  相似文献   

17.
In primary cultures of mouse cerebral cortex neurons, sulphur-containing excitatory amino acids (SAAs; namely, L-cysteine sulphinate, L-cysteate, L-homocysteine sulphinate, L-homocysteate, S-sulphocysteine) at concentrations ranging from 0.1 microM to 1 mM evoked a saturable release of gamma-[3H]aminobutyric acid ([3H]GABA) in the absence of any other depolarizing agent. All SAAs exhibited essentially similar potency (EC50, 100-150 microM) in releasing [3H]GABA although a variable profile of maximal stimulatory effect was observed when compared with basal release. The intracellular accumulation of the lipophilic cation, [3H]tetraphenylphosphonium, was significantly reduced in the presence of all SAAs, thus verifying a depolarization of the neuronal plasma membrane. SAA-stimulated release of [3H]GABA was shown to comprise two distinct components, calcium-dependent and calcium-independent, which occur after activation of N-methyl-D-aspartate (NMDA) and non-NMDA receptors. Thus, all SAA-evoked responses were antagonized by the selective, competitive NMDA-receptor antagonist, 3-[(+/-)-2-carboxypiperazin-4-yl]propyl-1-phosphonic acid (IC50 range, greater than 50 microM) and the non-NMDA-receptor antagonist, 6,7-dinitroquinoxalinedione (IC50 range, 5-50 microM). Removal of magnesium ions from the superfusion medium caused a significant potentiation of SAA-evoked responses without having any effect on basal levels of [3H]GABA efflux, a result consistent with an involvement of NMDA-receptor activation. Calcium-independent release (i.e., that release remaining in the presence of 1 mM cobalt ions) was a distinct component but of smaller magnitude. Using 500 microM excitatory amino acid agonist concentrations, this component of release was (1) markedly attenuated by 15 microM SKF-89976-A, a non-transportable inhibitor of the GABA carrier, and (2) abolished when choline ions replaced sodium ions in the superfusion medium or when in the presence of excitatory amino acid receptor antagonists. These observations are clearly consistent with a receptor-mediated, depolarization-induced reversal of the GABA carrier.  相似文献   

18.
Insulin and glucagon stimulate amino acid transport in freshly prepared suspensions of isolated rat hepatocytes. The kinetic properties of alpha-amino[1-14C]isobutyric acid (AIB) transport were investigated in isolated hepatocytes following stimulation by either hormone in vitro. In nonhormonally treated cells (i.e. basal state), saturable transport occurred mainly through a low affinity (Km approximately equal to 40 mM) component. In insulin or glucagon-treated hepatocytes, saturable transport occurred through both a low affinity component (similar to that observed in the basal state) and a high affinity (Km approximately equal to 1 mM) component. At low AIB concentrations (less than 0.5 mM), insulin and glucagon at maximally stimulating doses increased AIB uptake about 2-fold and 5-fold, respectively. The high affinity component induced by either hormone exhibited the properties of the A (alanine preferring) mediation of amino acid transport. This component required 2 to 3 h for maximal expression, and its emergence was completely prevented by cycloheximide. Half-maximal stimulation was elicited by insulin at about 3 nM and by glucagon at about 1 nM. Dibutyryl cyclic AMP mimicked the glucagon effect and was not additive to it at maximal stimulation. Maximal effects of insulin and glucagon, or insulin and dibutyryl cyclic AMP, were additive. We conclude that insulin and glucagon can modulate amino acid entry in hepatocytes through the synthesis of a high affinity transport component.  相似文献   

19.
Abstract: To see the effect of a γ-aminobutyric acid GABA uptake inhibitor on the efflux and content of endogenous and labeled GABA, rat cortical slices were first labeled with [3H]GABA and then superfused in the absence or presence of 1 mM nipecotic acid. Endogenous GABA released or remaining in the slices was measured with high performance liquid chromatography, which was also used to separate [3H]GABA from its metabolites. In the presence of 3 mM K+, nipecotic acid released both endogenous and [3H]GABA, with a specific activity four to five times as high as that present in the slices. The release of labeled metabolite(s) of [3H]GABA was also increased by nipecotic acid. The release of endogenous GABA evoked by 50 mM K+ was enhanced fourfold by nipecotic acid but that of [3H]GABA was only doubled when expressed as fractional release. In a medium containing no Ca2+ and 10 mM Mg2+, the release evoked by 50 mMK+ was nearly suppressed in either the absence or the presence of nipecotic acid. In the absence of nipecotic acid electrical stimulation (bursts of 64 Hz) was ineffective in evoking release of either endogenous or [3H]GABA, but in the presence of nipecotic acid it increased the efflux of endogenous GABA threefold, while having much less effect on that of [3H]GABA. Tetrodotoxin (TTX) abolished the effect of electrical stimulation. Both high K+ and electrical stimulation increased the amount of endogenous GABA remaining in the slices, and this increase was reduced by omission of Ca2+ or by TTX. The results suggest that uptake of GABA released through depolarization is of major importance in removing GABA from extracellular spaces, but the enhancement of spontaneous release by nipecotic acid may involve intracellular heteroexchange. Depolarization in the presence of Ca2+ leads to an increased synthesis of GABA, in excess of its release, but the role of this excess GABA remains to be established.  相似文献   

20.
1. Rates of glucose synthesis from radioactive precursors and ketogenesis were determined in hepatocytes from control and lactating sheep. 2. Gluconeogenesis from propionate was the same in both groups. Gluconeogenesis from lactate + pyruvate was three-fold higher in hepatocytes from lactating sheep. Palmitate stimulated gluconeogenesis from lactate + pyruvate in both groups. 3. Rates of ketogenesis from palmitate but not butyrate were slightly higher in hepatocytes from lactating sheep. No other differences in the metabolism of palmitate or butyrate were seen in the two groups. Exogenous carnitine stimulated ketogenesis from palmitate. Propionate inhibited ketogenesis from palmitate and butyrate. Lactate + pyruvate also inhibited ketogenesis slightly but stimulated oxidation and esterification. 4. It is concluded that the major changes in glucose and ketone production seen in the lactating ruminant are not the result of long-term changes within the hepatocyte but occur because of the changes in substrate supply to the liver and changes in intracellular concentrations of metabolites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号