首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present study we have investigated the reactivity of rat muscle to a specific monoclonal antibody directed against alpha cardiac myosin heavy chain. Serial cross sections of rat hindlimb muscles from the 17th day in utero to adulthood, and after neonatal denervation and de-efferentation, were studied by light microscope immunohistochemistry. Staining with anti-alpha myosin heavy chain was restricted to intrafusal bag fibres in all specimens studied. Nuclear bag2 fibres were moderately to strongly stained in the intracapsular portion and gradually lost their reactivity towards the ends, whereas nuclear bag1 fibres were stained for a short distance in each pole. Nuclear bag2 fibres displayed reactivity to anti-alpha myosin heavy chain from the 21st day of gestation, whereas nuclear bag1 fibres only acquired reactivity to anti-alpha myosin heavy chain three days after birth. After neonatal de-efferentation, the reactivity of nuclear bag2 fibres to anti-alpha myosin heavy chain was decreased and limited to a shorter portion of the fibre, whereas nuclear bag1 fibres were unreactive. We showed that a myosin heavy chain isoform hitherto unknown for skeletal muscle is specifically expressed in rat nuclear bag fibres. These findings add further complexity to the intricate pattern of isomyosin expression in intrafusal fibres. Furthermore, we show that motor innervation influences the expression of this isomyosin along the length of the fibres.  相似文献   

2.
A number of single fibres were isolated by dissection of four bovine masseter (ma) muscles, three rectus abdominis (ra) muscles and eight sternomandibularis (sm) muscles. By histochemical criteria these muscles contain respectively, solely slow fibres (often called type I), predominantly fast fibres (type II), and a mixture of fast and slow. The fibres were analysed by conventional sodium dodecyl sulphate/polyacrylamide-gel electrophoresis and the gels stained with Coomassie Blue. Irrespective of the muscle, every fibre could be classed into one of two broad groups based on the mobility of proteins in the range 135000-170000 daltons. When zones containing myosin heavy chain were cut from the single-fibre gel tracks and 'mapped' [Cleveland, Fischer, Kirschner & Laemmli (1977) J. Biol. Chem. 252, 1102-1106] with Staphylococcus proteinase, it was found that one group always contained fast myosin heavy chain, whereas the second group always contained the slow form. Moreover, a relatively fast-migrating alpha-tropomyosin was associated with the fast myosin group and a slow-migrating form with the slow myosin group. All fibres also contained beta-tropomyosin; the coexistence of alpha- and beta-tropomyosin is at variance with evidence that alpha-tropomyosin is restricted to fast fibres [Dhoot & Perry (1979) Nature (London) 278, 714-718]. Fast fibres containing the expected fast light chains and troponins I and C fast were identified in the three ra muscles, but in only four sm muscles. In three other sm muscles, all the fast fibres contained two troponins I and an additional myosin light chain that was more typical of myosin light chain 1 slow. The remaining sm muscle contained a fast fibre type that was similar to the first type, except that its myosin light chain 1 was more typical of the slow polymorph. Troponin T was bimorphic in all fast fibres from a ra muscles and in at least some fast fibres from one sm muscle. Peptide 'mapping' revealed two forms of fast myosin heavy chain distributed among fast fibres. Each form was associated with certain other proteins. Slow myosin heavy chain was unvarying in three slow fibre types identified. Troponin I polymorphs were the principal indicator of slow fibre types. The myofibrillar polymorphs identified presumably contribute to contraction properties, but beyond cud chewing involving ma muscle, nothing is known of the conditions that gave rise to the variable fibre composites in sm and ra muscles.  相似文献   

3.
We have studied the morphology and pattern of expression of myosin heavy chain (MHC) isoforms of intrafusal fibres in a human first lumbrical muscle. Each intrafusal fibre type, namely nuclear bag1, nuclear bag2 and nuclear chain fibres, had a distinct MHC composition and distribution of different MHC isoforms along the whole length of intrafusal fibres. However, most muscle spindles analyzed also contained one or several intrafusal fibres exhibiting an extrafusal or mixed pattern of immunoreactivity which did not correspond to any of the described intrafusal fibre types. We conclude that the latter fibres do not represent new intrafusal fibre types, but their morphology and expression of MHC merely reflects the differences in their innervation owing to their unusual localization at the edge or outside the axial bundle of intrafusal fibres.  相似文献   

4.
The fibre type composition of the striated muscle layer of the oesophagus of the cow, sheep, donkey, dog and cat was examined with standard histochemical methods and immunohistochemical staining using type-specific antimyosin sera. The heavy chain and light chain composition of oesophageal myosin was also examined using electrophoretic peptide mapping and 2-dimensional gel electrophoresis respectively. In the ruminants and donkey the oesophagus was composed of fibre types I, IIA and IIC with immunohistochemical characteristics identical to those of the same fibre types found in control skeletal muscle. In the ruminants there was a gradient in the proportion of type I fibres from 1% (at the cervical end) to about 30% (at the caudal end). In the carnivores the oesophageal muscle was composed of a very small percentage of type I and IIC fibres, but the predominant type was very different histochemically and immunohistochemically from all the fibre types (I, IIA, IIB, IIC) present in the control muscles. This oesophageal fibre type ( IIoes ) had an acid- and alkaline-stable m-ATPase activity, a moderate histochemical Ca-Mg actomyosin ATPase activity, and reacted weakly with anti-IIA and anti-IIB myosin sera. Although the light chains of the IIoes myosin were the same as the light chains of a mixture of IIA and IIB myosins, their respective heavy chains gave different peptide maps. Greater differences were obtained between the heavy chains of IIoes and other striated muscle myosins. These observations lead us to conclude that this predominant fibre type of the carnivore oesophageal striated muscle is of the 'fast' type, and contains a distinct isoform of myosin similar but not identical to the other fast type myosins.  相似文献   

5.
Summary We have found evidence for two beta-like myosin heavy chains in humans, one cardiac and one skeletal. The cDNA sequences of the cardiac beta myosin heavy chain cDNA clone pHMC3 and the skeletal beta-like myosin heavy chain cDNA clone pSMHCZ, were compared to each other. It was found that the 3 untranslated regions as well as 482 nucleotides specifying the carboxyl coding region, were 100% homologous. Further examination revealed that the skeletal clone pSMHCZ diverges from the human cardiac beta myosin heavy chain cDNA clone pHMC3 at the 5 end. We present evidence in this report which indicates that the cardiac beta myosin heavy chain mRNA is expressed in skeletal muscle tissues. The human cardiac beta myosin heavy chain cDNA clone, pHMC3, which codes for a portion of the light meromyosin section of the myosin heavy chain, was used as a probe for S1 nuclease mapping studies with RNA derived from cardiac tissue, smooth muscle and skeletal muscle tissues consisting of fast-twitch, slow-twitch and mixed fast- and slow-twitch muscle fibres. Two probes were used to examine the expression of the mRNA. One probe (406 nucleotides) constitutes the 3 untranslated region and a portion of the coding region of the beta cardiac myosin heavy chain cDNA clone, which is 100% homologous to pSMHCZ, the skeletal cDNA clone. The other constitutes the majority of the coding region (1017 nucleotides) of the cardiac clone pHMC3 in which the first 216 nucleotides from the labelled end are 100% homologous to the skeletal clone pSMHCZ. In the soleus muscle, which is rich in slow-twitch type I muscle fibres, the expression of the cardiac beta myosin heavy chain mRNA was very prominent. In gastrocnemius muscle, a mixed fibre muscle, the expression of this mRNA was detected to a lesser degree than that for the soleus muscle. In vastus lateralis and vastus medialis, which consist of predominantly type II, fast-twitch fibres, there were trace amounts of the cardiac beta myosin heavy chain mRNA. When expression of this mRNA was tested in smooth muscle tissue none could be detected.  相似文献   

6.
The relationship between the myosin heavy chain (HC) IId isoform and histochemically defined fibre types was investigated in the rat soleus muscle after hindlimb suspension. After 4 weeks of suspension, right and left muscles were removed and fibre type composition and total fibre number were examined by histochemical myosin adenosine triphosphatase staining sections. Myosin HC isoforms were analysed by sodium dodecyl sulphate polyacrylamide gel electrophoresis. After the suspension, there was a significant decrease in the percentage of type I fibres and a concomitant increase in that of type IIa fibres. However, the total number of fibres was not affected by suspension. The synthesis of HC IId isoform, which was not found in the control, and the decrease in the ratio of slow type myosin heavy chain isoform (HC I) were observed after suspension. These results would may suggest that the change of fibre type composition was caused by a shift from type I to IIa fibres after suspension. Furthermore, it could be suggested that the synthesis of HC IId isoform occurred during the stage of type shift from type I to IIa fibres.  相似文献   

7.
Summary In the present study we have investigated the reactivity of rat muscle to a specific monoclonal antibody directed against alpha cardiac myosin heavy chain. Serial cross sections of rat hindlimb muscles from the 17th day in utero to adulthood, and after neonatal denervation and de-efferentation, were studied by light microscope immunohistochemistry. Staining with anti- myosin heavy chain was restricted to intrafusal bag fibres in all specimens studied. Nuclear bag2 fibres were moderately to strongly stained in the intracapsular portion and gradually lost their reactivity towards the ends, whereas nuclear bag1 fibres were stained for a short distance in each pole. Nuclear bag2 fibres displayed reactivity to anti- myosin heavy chain from the 21st day of gestation, whereas nuclear bag1 fibres only acquired reactivity to anti- myosin heavy chain three days after birth. After neonatal de-efferentation, the reactivity of nuclear bag2 fibres to anti- myosin heavy chain was decreased and limited to a shorter portion of the fibre, whereas nuclear bag1 fibres were unreactive. We showed that a myosin heavy chain isoform hitherto unknown for skeletal muscle is specifically expressed in rat nuclear bag fibres. These findings add further complexity to the intricate pattern of isomyosin expression in intrafusal fibres. Furthermore, we show that motor innervation influences the expression of this isomyosin along the length of the fibres.  相似文献   

8.
Summary The fibre type composition of the striated muscle layer of the oesophagus of the cow, sheep, donkey, dog and cat was examined with standard histochemical methods and immunohistochemical staining using type-specific antimyosin sera. The heavy chain and light chain composition of oesophageal myosin was also examined using electrophoretic peptide mapping and 2-dimensional gel electrophoresis respectively. In the ruminants and donkey the oesophagus was composed of fibre types I, IIA and IIC with immunohistochemical characteristics identical to those of the same fibre types found in control skeletal muscle. In the ruminants there was a gradient in the proportion of type I fibres from 1% (at the cervical end) to about 30% (at the caudal end).In the carnivores the oesophageal muscle was composed of a very small percentage of type I and IIC fibres, but the predominant type was very different hisotchemically and immunohistochemically from all the fibre types (I, IIA, IIB, IIC) present in the control muscles. This oesophageal fibre type (IIoes) had an acid- and alkaline-stable m-ATP-ase activity, a moderate histochemical Ca-Mg actomyosin ATPase activity, and reacted weakly with anti-IIA and antiIIB myosin sera. Although the light chains of the IIoes myosin were the same as the light chains of a mixture of IIA and IIB myosins, their respective heavy chains gave different peptide maps. Greater differences were obtained between the heavy chains of IIoes and other striated muscle myosins.These observations lead us to conclude that this predominant fibre type of the carnivore oesophageal striated muscle is of the fast type, and contains a distinct isoform of myosin similr but not identical to the other fast type myosins.  相似文献   

9.
Abstract. The myofibrillar ATPase (mATPase) activity and the pattern of expression of several myosin heavy chain (MHC) isoforms and of M-protein (Mr 165000) were studied in serial cross sections of neonatally deefferented 5- to 8-week-old rat hindlimb muscle spindles with supernumerary intrafusal fibres. In a sample of 5- to 6-week-old neonatally deefferented muscle spindles cut through the A region, the average number of intrafusal fibres per spindle was 8.4 in comparison to 4.2 in control spindles. Parent fibres extended throughout the whole encapsulated portion of the spindle, whereas supernumerary fibres were found only in the A region. The diameters of the supernumerary intrafusal fibres varied from less than 1 μ up to 10 μ approximately. On the basis of the mATPase activity and the pattern of expression of MHC isoforms and of M-protein, the vast majority of the supernumerary fibres could be classified as nuclear bag2, bag1 or chain fibres. However, some supernumerary fibres with small diameters exhibited features that did not fit any of the three known intrafusal fibre types. Two major processes, namely fibre splitting versus activation and fusion of satellite cells, might account for the formation of supernumerary fibres. The data presented suggest the existence of at least two types of intrafusal satellite cells. One type of satellite cell is related to the nuclear bag fibres and gives rise to myotubes which, if they have sensory innervation, can express slow tonic MHC and, therefore, differentiate into a phenotype similar to that seen in nuclear bag fibres. The other type of satellite cells form myotubes which attain a fast phenotype similar to that seen in nuclear chain fibres irrespective of the presence or absence of sensory innervation.  相似文献   

10.
The classification of bovine muscle fibres is of particular interest for the food industry because meat tenderness depends in part on the proportion of the different types of fibres. It is, therefore, important to define reliable methods for classifying fibre types. There are several classification systems. One is based on contractile type alone, as revealed by myofibrillar ATPase activity or with antibodies against myosin heavy chain. Others take both contractile and metabolic types into account. In this study, the classifications of fibres obtained by these three systems were compared on the semitendinosus and longissimus thoracis muscles of 35 Charolais bulls. Only the use of antibodies allowed the identification of a proportion of hybrid fibres containing two isoforms of fast myosin heavy chain (2a and 2b). In addition, the combination of metabolic types showed that the metabolism of these hybrid fibres differed according to the muscle.  相似文献   

11.
No classical type IIB fibres in dog skeletal muscle   总被引:1,自引:0,他引:1  
Summary To analyse the fibre type composition of adult dog skeletal muscle, enzyme histochemistry, immunohistochemistry for type I, IIA and IIB myosins, and peptide mapping of myosin heavy chains isolated from typed single fibres were combined. Subdivision of type II fibres into two main classes according to the activity of the m-ATPase after acidic and alkaline preincubation proved to be rather difficult and was only consistently achieved after a very careful adjustment of the systems used. One of these sub-classes of type II fibres stained more strongly for m-ATPase activity after acidic and alkaline preincubation, was oxidative-glycolytic and showed a strong reaction with an anti-type IIA myosin. The other one, however, although unreactive with anti-IIA myosin, was also oxidative-glycolytic, and only showed a faint reaction with an anti-type IIB myosin. Peptide mapping of the myosin heavy chains of typed single fibres revealed two populations of heavy chains among the type II fibre group. Thus, in dog muscle, we are confronted with the presence of two main classes of type II fibres, both oxidative-glycolytic, but differing in the structure of their myosin heavy chains. In contrast to some reports in the literature, no classical type IIB fibres could be detected.  相似文献   

12.
The aim of our study was to explore the age related changes of the fibre type composition of the human psoas major muscle. Moreover, we wanted to compare the fibre type composition of the left and right muscle. Muscle samples were collected from 15 young and 15 old males. Type I, IIA and IIX muscle fibres were typed using myosin heavy chain identification. The serial transverse sections were analysed using a light microscope. Results of our study showed that the age-related atrophy affected all three fibre types. Type IIA fibres were affected most profoundly while type I fibres were affected most weakly. The percentage of the different fibre types did not change during aging. There were no differences in the fibre type composition between the left and right muscle. Human psoas major muscle undergoes normal aging changes with the atrophy of all three fibre types, whereas atrophy most profoundly affects type IIA fibres. No differences in the fibre type composition between the left and right muscle point to the equal engagement of both legs in normal everyday activities of human.  相似文献   

13.
The differentiation of both original muscle fibres and the regenerated muscle fibres following necrosis in mdx muscles was investigated using immunoblotting and immunocytochemical procedures. Before the onset of necrosis, postnatal skeletal muscles in mdx mouse differentiated well with only a slight delay in differentiation indicated by the level of developmental isoforms of troponin T. Prior to the onset of apparent myopathic change, both fast and slow skeletal muscle fibre types in mdx leg muscles also differentiated well when investigated by analysis of specific myosin heavy chain expression pattern. While the original muscle fibres in mdx leg muscles developed well, the differentiation of regenerated myotubes into both slow and distinct fast muscle fibre types, however, was markedly delayed or inhibited as indicated by several clusters of homogeneously staining fibres even at 14 weeks of age. The number of slow myosin heavy chain-positive myotubes amongst the regenerated muscle clusters was quite small even in soleus. This study thus established that while muscle fibres initially develop normally with only a slight delay in the differentiation process, the differentiation of regenerated myotubes in mdx muscles is markedly compromised and consequently delayed.  相似文献   

14.
The intrinsic laryngeal muscles of the horse, donkey, sheep, ox, pig, dog and cat were examined for myosin ATPase, following acid and alkali pre-incubation, SDH and M-alphaGPDH activities. In all laryngeal muscles two fibre types, betaR and alphaR, belonging to slow and fast-contracting, fatigue-resistant motor units (types S and FR) were present in different proportions. The alphaW fibre type, belonging to fast-contracting and fatigue-resistant motor units was absent (type FF). The alphaR fibres of the dog and the cat were subdivided into groups by the various degrees of acid stable myosin ATPase, oxidative and glycolytic activities. In the ox and pig laryngeal muscles, the same fibres showed an atypical myosin ATPase activity, as high as the fast-contracting fibres but acid-resistant like the slow-twitch fibres. The most uniform muscle was the CAD, which was formed of a higher percentage of slow-twitch fibres than the other laryngeal muscles of the same species. Also the VE muscle was very uniform in the dog, horse and donkey but the fast-twitch fibres were by far the most numerous, the highest in fact among all the laryngeal muscles. In the TA muscle of the cat, sheep and ox, the percentage of fast-twitch fibres was very high in the rostral portion decreasing gradually towards the caudal portion. Thus it was possible to separate histochemically the TA muscle in the rostral (pars ventricularis) and caudal (pars vocalis) portions which are related to the VE and the VO muscles of the dog, horse and donkey. In the VO muscle the slow-twitch fibres are more numerous than in the VE. The two portions of the TA were not detected by histochemical methods in the pig. However, this muscle has the highest percentage of fast-twitch fibres. The qualitative and quantitative data presented in this paper together with the data reported in the literature, enable us to correlate morphological and functional aspects of fibre composition among the species.  相似文献   

15.
Summary Mammalian intrafusal fibre types (nuclear chain, nuclear bag1 and nuclear bag2 fibres) are known to differ in their ultrastructure, intensity of the myofibrillar histochemical ATP-ase reaction, type of innervation and time course of contraction. The present study concerns the myosin composition of these intrafusal fibre types in the soleus muscle (mouse) and the extensor digitorum longus muscle (rat). We used an immunohistochemical method with three myosin antisera raised in rabbits: anti chicken pectoral myosin, anti chicken heart myosin (1) and anti chicken heart myosin (2) (=anti chicken heart myosin (1) adsorbed with muscle powder from soleus muscle of guinea pig). The results showed that three intrafusal fibre types differed in their myosin composition. A comparison of intrafusal fibre types with extrafusal fibre types for the histochemical myofibrillar ATP-ase reactivity and the reactivity with myosin antisera showed a resemblance of nuclear chain fibres with extrafusal type II fibres and a difference between nuclear bag1 and nuclear bag2 fibres and all other fibre types.  相似文献   

16.
Three monoclonal antibodies, LM5, F2 and F39 raised to chicken fast skeletal muscle myosin, specific for myosin heavy chain (MHC) subunit, were used to study the composition and distribution of this protein in some vertebrate skeletal muscles. These antibodies in immunohistochemical investigations did not react with the majority of the type I fibres in most muscles. Antibodies LM5 and F39 stained all the type II fibres in all the adult chicken skeletal muscles studied. Antibody F2 also stained all the type II fibres in most chicken skeletal muscles tested except in gastrocnemius in which a proportion of both the type IIA and IIB fibres either did not stain or stained only weakly. Antibody F2 unlike LM5 and F39 stained most of the type IIIB fibres in anterior latissimus dorsi (ALD) and IB fibres in red strip of chicken Pectoralis muscle. Antibodies LM5 and F2 in the rat diaphragm reacted with all the type IIA and IIB fibres, while antibody F39 stained only the type IIB fibres darkly with most IIA fibres being either not stained or only weakly stained. In the rat extensor digitorum longus (EDL) and tibialis anterior (TA) muscles, antibody LM5 stained all the IIA and IIB fibres. Antibody F2 in these muscles stained all the type IIA fibres but only a proportion of the IIB fibres. The remaining IIB fibres were either unstained or only weakly positive. Antibody F39 in rat EDL and TA muscles did not only distinguish subgroups of IIB fibres (dark, intermediate and negative or very weak) but also of the IIA fibres. These three antibodies used together therefore detected a great deal of heterogeneity in the myosin heavy chain composition and muscle fibre types of several skeletal muscles.  相似文献   

17.
Summary A quantitative histochemical technique was developed for determining the kinetics of the calcium-activated myosin ATPase (Ca2+-myosin ATPase) reaction in rat skeletal muscle fibres. Using this technique, the maximum velocity (Vmax) and the apparent Michaelis-Menten rate constant for ATP (Kapp) of the Ca2+-myosin ATPase reaction were measured in type-identified fibres of the rat medial gastrocnemius (MG) muscle. The Vmax and the Kapp of the Ca2+-myosin ATPase reaction were lowest in type I fibres and highest (i.e., approx. two times greater) in type IIb fibres. The Kapp in type IIa fibres was similar to that in type I. However, the Vmax was 1.5 times greater in type IIa fibres, compared to type I fibres. Evidence is presented to suggest that the type IIb fibre population in the MG does not represent a single myosin isozyme. In addition, the broad range of Vmax and Kapp values indicates that there is marked heterogeneity in the myosin heavy chain and myosin light chain composition of myosin isozymes among individual fibres.  相似文献   

18.
Summary Three monoclonal antibodies, LM5, F2 and F39 raised to chicken fast skeletal muscle myosin, specific for myosin heavy chain (MHC) subunit, were used to study the composition and distribution of this protein in some vertebrate skeletal muscles. These antibodies in immunohistochemical investigations did not react with the majority of the type I fibres in most muscles. Antibodies LM5 and F39 stained all the type II fibres in all the adult chicken skeletal muscles studied. Antibody F2 also stained all the type II fibres in most chicken skeletal muscles tested except in gastrocnemius in which a proportion of both the type IIA and IIB fibres either did not stain or stained only weakly. Antibody F2 unlike LM5 and F39 stained most of the type IIIB fibres in anterior latissimus dorsi (ALD) and IB fibres in red strip of chicken Pectoralis muscle. Antibodies LM5 and F2 in the rat diaphragm reacted with all the type IIA and IIB fibres, while antibody F39 stained only the type IIB fibres darkly with most IIA fibres being either not stained or only weakly stained. In the rat extensor digitorum longus (EDL) and tibialis anterior (TA) muscles, antibody LM5 stained all the IIA and IIB fibres. Antibody F2 in these muscles stained all the type IIA fibres but only a proportion of the IIB fibres. The remaining IIB fibres were either unstained or only weakly positive. Antibody F39 in rat EDL and TA muscles did not only distinguish subgroups of IIB fibres (dark, intermediate and negative or very weak) but also of the IIA fibres. These three antibodies used together therefore detected a great deal of heterogeneity in the myosin heavy chain composition and muscle fibre types of several skeletal muscles.  相似文献   

19.
Parvalbumin in mouse muscle in vivo and in vitro   总被引:1,自引:0,他引:1  
Parvalbumin is a cytosolic calcium-binding protein found in adult fast-twitch mammalian muscle. Using an antibody to paravalbumin, we have shown that its distribution in adult mouse muscles is associated with certain fibre types. It is absent from slow-twitch type 1 fibres, is absent or at low levels in fast-twitch type 2A fibres, but is present at moderate or high levels in fast-twitch type 2B fibres. When adult mouse muscle is cultured with embryonic mouse spinal cord, the regenerated fibres become innervated, express the adult fast isoform of myosin heavy chain and appear histochemically as fast-twitch fibres. We therefore investigated whether these apparently mature fibres also contained parvalbumin. Parvalbumin was not found in any fibres of twenty mature cultures, suggesting that neurotrophic activity in the absence of specific adult nerve activity patterns was insufficient to cause the expression of parvalbumin in the cultures.  相似文献   

20.
Cellular adaptation of the trapezius muscle in strength-trained athletes   总被引:16,自引:4,他引:12  
 The aim of this study was to elucidate the cellular events that occur in the trapezius muscle following several years of strength training. In muscle biopsies from ten elite power lifters (PL) and six control subjects (C), several parameters were studied: cross-sectional area of muscle fibres, myosin heavy chain composition (MHC) and capillary supply [capillaries around fibres (CAF) and CAF/fibre area]. A method was also developed for counting the number of myonuclei and satellite cell nuclei. The proportion of fibres expressing MHC IIA, the cross-sectional area of each fibre type and the number of myonuclei, satellite cells and fibres expressing markers for early myogenesis were significantly higher in PL than in C (P<0.05). A significant correlation between the myonuclear number and the cross-sectional area was observed. Since myonuclei in mature muscle fibres are not able to divide, we suggest that the incorporation of satellite cell nuclei into muscle fibres resulted in the maintenance of a constant nuclear to cytoplasmic ratio. The presence of small diameter fibres expressing markers for early myogenesis indicates the formation of new muscle fibres. Accepted: 17 November 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号