首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adhesion and residence-time-dependent desorption of two Staphylococcus aureus strains with and without fibronectin (Fn) binding proteins (FnBPs) on Fn-coated glass were compared under flow conditions. To obtain a better understanding of the role of Fn-FnBP binding, the adsorption enthalpies of Fn with staphylococcal cell surfaces were determined using isothermal titration calorimetry (ITC). Interaction forces between staphylococci and Fn coatings were measured using atomic force microscopy (AFM). The strain with FnBPs adhered faster and initially stronger to an Fn coating than the strain without FnBPs, and its Fn adsorption enthalpies were higher. The initial desorption was high for both strains but decreased substantially within 2 s. These time scales of staphylococcal bond ageing were confirmed by AFM adhesion force measurement. After exposure of either Fn coating or staphylococcal cell surfaces to bovine serum albumin (BSA), the adhesion of both strains to Fn coatings was reduced, suggesting that BSA suppresses not only nonspecific but also specific Fn-FnBP interactions. Adhesion forces and adsorption enthalpies were only slightly affected by BSA adsorption. This implies that under the mild contact conditions of convective diffusion in a flow chamber, adsorbed BSA prevents specific interactions but does allow forced Fn-FnBP binding during AFM or stirring in ITC. The bond strength energies calculated from retraction force-distance curves from AFM were orders of magnitude higher than those calculated from desorption data, confirming that a penetrating Fn-coated AFM tip probes multiple adhesins in the outermost cell surface that remain hidden during mild landing of an organism on an Fn-coated substratum, like that during convective diffusional flow.  相似文献   

2.
Sphingomyelin (SM) is a reservoir of signaling lipids and forms specific lipid domains in biomembranes together with cholesterol. In this study, atomic force microscopy (AFM) and force measurement were applied to investigate the interaction of SM-binding protein toxin, lysenin, with N-palmitoyl-D-erythro-sphingosylphosphorylcholine (palmitoyl sphingomyelin, PSM) bilayer spread over a mica substrate, in an aqueous buffer solution. Lysenin molecules were grafted on a silicon nitride tip for AFM by siloxane-thiol-amide coupling. The bilayers were prepared by the Langmuir-Blodgett (LB)/Langmuir-Schaefer (LS) method. By repeating cycles of tip approach/retraction motion, single-molecular adhesion motions were observed on the force curve, characterized as "fishing curves". The addition of cholesterol and 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) did not alter the peak force but increased the peak extension. Mixtures of PSM/DOPC/cholesterol exhibited 2-dimensional two-phase domain separation. The characteristic fishing curves were observed exclusively in one of the phases, indicating the selective interaction of the lysenin tip to PSM-rich membrane domains. Our results indicate that the AFM tips conjugated with lysenin are useful to detect the surface distribution of SM-rich membrane domains as well as the nanomechanical properties of the domains.  相似文献   

3.
In this work we focused on quantifying adhesion between Lactococcus lactis, the model for lactic acid bacteria (LAB) and mucins. Interactions between two strains of L. lactis (IBB477 and MG1820 as control) and pig gastric mucin–based coating were measured and compared with the use of atomic force microscopy. Analysis of retraction force-distance curves shed light on the differential contributions of nonspecific and specific forces. An increased proportion of specific adhesive events was obtained for IBB477 (20% vs. 5% for the control). Blocking assays with free pig gastric mucin and its O-glycan moiety showed that oligosaccharides play a major (but not exclusive) role in L. lactis-mucins interactions. Specific interactions were analyzed in terms of kinetic constants. An increase in the loading rate of atomic force microscope tip led to a higher force between interacting biological entities, which was directly linked to the kinetic dissociation constant (Koff). Enhancing the contact time between the tip and the sample allowed an increase in the interaction probability, which can be related to the kinetic association constant (Kon). Variations in the loading rate and contact time enabled us to determine Kon (3.3 × 102 M−1·s−1) and Koff (0.46 s−1), and the latter was consistent with values given in the literature for sugar-protein interactions.  相似文献   

4.
Sample-probe contact duration (dwell time) and loading force are two important parameters for the atomic force microscopy (AFM) force spectroscopy measurements of ligand-receptor interaction. A prolonged contact time may be required to initiate ligand-receptor binding as a result of slow on-rate kinetics or low reactant density. In general, increasing contact duration promotes nonspecific interactions between the substrate and the functionalized cantilever and, thus, masking the detection of the specific interactions. To reduce the nonspecific interactions in AFM force measurements requiring extended substrate-probe contact, we investigated the interaction of bovine serum albumin (BSA)-functionalized cantilever with BSA-coated glass, polyethylene glycol (PEG)-functionalized glass, Pluronic-treated Petri dishes and agarose beads. The frequency of nonspecific interaction between the BSA-functionalized cantilever and the different samples increased with loading force and dwell time. This increase in nonspecific adhesion can be attributed to the interaction mediated by forced unfolding of BSA. By reducing the loading force, the contact duration of the AFM probe with an agarose bead can be extended to a few minutes without nonspecific adhesion.  相似文献   

5.
This report presents simple and reliable approach developed to study the specific recognition events between chlorinated ovalbumin (OVA) and macrophages using atomic force microscopy (AFM). Thanks to the elimination of nonspecific adhesion, the interactions of the native and chlorinated OVA with a membrane of macrophages could be quantified using exclusively the so-called adhesion frequency (AF). The proposed system not only enabled the application of AFM-based force measurements for such poorly defined ligand-receptor pairs but also significantly improved both the acquisition and the processing of the data. The proteins were immobilized on the gold-coated AFM tips from the aqueous solutions containing charged thiol adsorbates. Such surface dilution of the proteins ensured the presence of single or just a few macromolecules at the tip-surface contact. The formation of negatively charged monolayer on the tip dramatically limited its nonspecific interactions with the macrophage surface. In such systems, AF was used as a measure of the recognition events even if the interaction forces varied significantly for sets of measurements. The system with the native OVA, a weak immunogen, showed only negligible AF compared with 85% measured for the immunogenic chlorinated OVA. The AF values varied with the tip-macrophage contact time and loading velocity. Blocking of the receptors by the chlorinated OVA was also confirmed. The developed approach can be also used to study other ligand-receptor interactions in poorly defined biological systems with intrinsically broad distribution of the rupture forces, thus opening new fields for AFM-based recognition on molecular level.  相似文献   

6.
We developed a method to measure the rupture forces between antibody and antigen by atomic force microscopy (AFM). Previous studies have reported that in the measurement of antibody–antigen interaction using AFM, the specific intermolecular forces are often obscured by nonspecific adhesive binding forces between antibody immobilized cantilever and substrate surfaces on which antigen or nonantigen are fixed. Here, we examined whether detergent and nonreactive protein, which have been widely used to reduce nonspecific background signals in ordinary immunoassay and immunoblotting, could reduce the nonspecific forces in the AFM measurement. The results showed that, in the presence of both nonreactive protein and detergent, the rupture forces between anti-ferritin antibodies immobilized on a tip of cantilever and ferritin (antigen) on the substrate could be successfully measured, distinguishing from nonspecific adhesive forces. In addition, we found that approach/retraction velocity of the AFM cantilever was also important in the reduction of nonspecific adhesion. These insights will contribute to the detection of specific molecules at nanometer scale region and the investigation of intermolecular interaction by the use of AFM.  相似文献   

7.
An important aspect in the preparation of substrate materials to use in atomic force microscopy lies in the question of interactions introduced by treatments designed to immobilize the sample over the substrate. Here we used a mica substrate that was chemically modified with cationic nickel to immobilize actin filaments (F-actin). Chemical modification could be followed quantitatively by measuring the interaction force between the scanning tip and the mica surface. This approach allowed us to observe polymeric F-actin in a structure that resembles an actin gel. It also improved sample throughput and conferred sample stability as well as repeatability from run to run.  相似文献   

8.
We present a novel approach, based on atomic force microscopy, for exploring the local elastic properties of the membrane-skeleton complex in living cells. Three major elements constitute the basis for the proposed method: (1) pulling the cell membrane by increasing the adhesion of the tip to the cell surface provided via appropriate tip modification; (2) measuring force-distance curves with emphasis on selecting the appropriate withdrawal regions for analysis; (3) fitting of the theoretical model for axisymmetric bending of an annular thick plate to the experimental curve in the withdrawal region, prior to the detachment point of the tip from the cell membrane. This approach, applied to human erythrocytes, suggests a complimentary technique to the commonly used methods. The local use of this methodology for determining the bending modulus of the cell membrane of the human erythrocyte yields a value of (2.07+/-0.32) x 10(-19) J.  相似文献   

9.
H Mueller  H J Butt    E Bamberg 《Biophysical journal》1999,76(2):1072-1079
The mechanical and adhesion properties of myelin basic protein (MBP) are important for its function, namely the compaction of the myelin sheath. To get more information about these properties we used atomic force microscopy to study tip-sample interaction of mica and mixed dioleoylphosphatidylserine (DOPS) (20%)/egg phosphatidylcholine (EPC) (80%) lipid bilayer surfaces in the absence and presence of bovine MBP. On mica or DOPS/EPC bilayers a short-range repulsive force (decay length 1.0-1.3 nm) was observed during the approach. The presence of MBP always led to an attractive force between tip and sample. When retracting the tip again, force curves on mica and on lipid layers were different. While attached to the mica surface, the MBP molecules exhibited elastic stretching behavior that agreed with the worm-like chain model, yielding a persistence length of 0.5 +/- 0.25 nm and an average contour length of 53 +/- 19 nm. MBP attached to a lipid bilayer did not show elastic stretching behavior. This shows that the protein adopts a different conformation when in contact with lipids. The lipid bilayer is strongly modified by MBP attachment, indicating formation of MBP-lipid complexes and possibly disruption of the original bilayer structure.  相似文献   

10.
Two-dimensional crystalline bacterial surface layers (S-layers) are found in a broad range of bacteria and archaea as the outermost cell envelope component. The self-assembling properties of the S-layers permit them to recrystallize on solid substrates. Beyond their biological interest as S-layers, they are currently used in nanotechnology to build supramolecular structures. Here, the structure of S-layers and the interactions between them are studied through surface force techniques. Scanning force microscopy has been used to study the structure of recrystallized S-layers from Bacillus sphaericus on mica at different 1:1 electrolyte concentrations. They give evidence of the two-dimensional organization of the proteins and reveal small corrugations of the S-layers formed on mica. The lattice parameters of the S-layers were a=b=14 nm, gamma=90 degrees and did not depend on the electrolyte concentration. The interaction forces between recrystallized S-layers on mica were studied with the surface force apparatus as a function of electrolyte concentration. Force measurements show that electrostatic and steric interactions are dominant at long distances. When the S-layers are compressed they exhibit elastic behavior. No adhesion between recrystallized layers takes place. We report for the first time, to our knowledge, the value of the compressibility modulus of the S-layer (0.6 MPa). The compressibility modulus is independent on the electrolyte concentration, although loads of 20 mN m-1 damage the layer locally. Control experiments with denatured S-proteins show similar elastic properties under compression but they exhibit adhesion forces between proteins, which were not observed in recrystallized S-layers.  相似文献   

11.
The contrast in atomic force microscope images arises from forces between the tip and the sample. It was shown recently that specific molecular interaction forces may be measured with the atomic force microscope; consequently, we use such forces to map the distribution of binding partners on samples. Here we demonstrate this concept by imaging a streptavidin pattern with a biotinylated tip in a novel imaging mode called affinity imaging. In this mode topography, adhesion, and sample elasticity are extracted online from local force scans. We show that this technique allows the separation of these values and that the measured binding pattern is based on specific molecular interactions.  相似文献   

12.
Structure and reactivity of adsorbed fibronectin films on mica   总被引:1,自引:0,他引:1  
Understanding the interactions of adsorbed fibronectin (Fn) with other biomolecules is important for many biomedical applications. Fn is found in almost all body fluids, in the extracellular matrix, and plays a fundamental role in many biological processes. This study found that the structure (conformation, orientation) and reactivity of Fn adsorbed onto mica is dependent on the Fn surface concentration. Atomic force microscopy and x-ray photoelectron spectroscopy were used to determine the surface coverage of adsorbed Fn from isolated molecules at low surface coverage to full monolayers at high surface coverage. Both methods showed that the thickness of Fn film continued to increase after the mica surface was completely covered, consistent with Fn adsorbed in a more upright conformation at the highest surface-Fn concentrations. Time-of-flight secondary ion mass spectrometry showed that relative intensities of both sulfur-containing (cystine, methionine) and hydrophobic (glycine, leucine/isoleucine) amino acids varied with changing Fn surface coverage, indicating that the conformation of adsorbed Fn depended on surface coverage. Single-molecule force spectroscopy with collagen-related peptides immobilized onto the atomic force microscope tip showed that the specific interaction force between the peptide and Fn increases with increasing Fn surface coverage.  相似文献   

13.
Interaction between the iron transporter protein transferrin (Tf) and its receptor at the cell surface is fundamental for most living organisms. Tf receptor (TfR) binds iron-loaded Tf (holo-Tf) and transports it to endosomes, where acidic pH favors iron release. Iron-free Tf (apo-Tf) is then brought back to the cell surface and dissociates from TfR. Here we investigated the Tf-TfR interaction at the single-molecule level under different conditions encountered during the Tf cycle. An atomic force microscope tip functionalized with holo-Tf or apo-Tf was used to probe TfR. We tested both purified TfR anchored to a mica substrate and in situ TfR at the surface of living cells. Dynamic force measurements showed similar results for TfR on mica or at the cell surface but revealed striking differences between holo-Tf-TfR and apo-Tf-TfR interactions. First, the forces necessary to unbind holo-Tf and TfR are always stronger compared to the apo-Tf-TfR interaction. Second, dissociation of holo-Tf-TfR complex involves overcoming two energy barriers, whereas the apo-Tf-TfR unbinding pathway comprises only one energy barrier. These results agree with a model that proposes differences in the contact points between holo-Tf-TfR and apo-Tf-TfR interactions.  相似文献   

14.
15.
The atomic force microscope (AFM;1) can image DNA and RNA in air and under solutions at resolution comparable to that obtained by electron microscopy (EM) (2-7). We have developed a method for depositing and imaging linear DNA molecules to which 5nm gold spheres have been attached. The gold spheres facilitate orientation of the DNA molecules on the mica surface to which they are absorbed and are potentially useful as internal height standards and as high resolution gene or sequence specific tags. We show that by modulating their adhesion to the mica surface, the gold spheres can be moved with some degree of control with the scanning tip.  相似文献   

16.
To determine the intermolecular force on protein-protein interaction (PPI) by atomic force microscopy (AFM), a photograft-polymer spacer for protein molecules on both surfaces of the substrate and AFM probe tip was developed, and its effectiveness was assessed in a PPI model of a pair of human serum albumin (HSA) and its monoclonal antibody (anti-HSA). A carboxylated photoiniferter, N-(dithiocarboxy)sarcosine, was derivatized on both surfaces of the glass substrate and AFM probe tip, and subsequently water-soluble nonionic vinyl monomers, N,N-dimethylacrylamide (DMAAm), were graft-polymerized on them upon ultraviolet light irradiation. DMAAm-photograft-polymerized spacers with carboxyl groups at the growing chain end but with different chain lengths on both surfaces were prepared. The proteins were covalently bound to the carboxyl terminus of the photograft-polymer chain using a water-soluble condensation agent. The effects of the graft-spacer length on the profile of the force-distance curves and on the unbinding characteristics (unbinding force and unbinding distance) were examined in comparison with those in the case of the commercially available poly(ethylene glycol) (PEG) spacer. The frequency of the nonspecific adhesion force profile was markedly decreased with the use of the photograft spacers. Among the force curves detected, a high frequency of single-peak curves indicating the unbinding process of a single pair of proteins and a very low frequency of multiple-peak profiles were observed for the photograft spacers, regardless of the graft chain length, whereas a high frequency of no-force peaks was noted. These observations were in marked contrast with those for the PEG spacer. The force peak values determined ranged from 88 to 94 pN, irrespective of the type of spacer, while the standard deviation of force distribution observed for the photograft spacer was lower than that for the PEG spacer, indicating that the photograft spacers provide a higher accuracy of force determination.  相似文献   

17.
S Ohnishi  M Murata    M Hato 《Biophysical journal》1998,74(1):455-465
We have investigated the morphology and surface forces of protein A adsorbed on mica surface in the protein solutions of various concentrations. The force-distance curves, measured with a surface force apparatus (SFA), were interpreted in terms of two different regimens: a "large-distance" regimen in which an electrostatic double-layer force dominates, and an "adsorbed layer" regimen in which a force of steric origin dominates. To further clarify the forces of steric origin, the surface morphology of the adsorbed protein layer was investigated with an atomic force microscope (AFM) because the steric repulsive forces are strongly affected by the adsorption mode of protein A molecules on mica. At lower protein concentrations (2 ppm, 10 ppm), protein A molecules were adsorbed "side-on" parallel to the mica surfaces, forming a monolayer of approximately 2.5 nm. AFM images at higher concentrations (30 ppm, 100 ppm) showed protruding structures over the monolayer, which revealed that the adsorbed protein A molecules had one end oriented into the solution, with the remainder of each molecule adsorbed side-on to the mica surface. These extending ends of protein A overlapped each other and formed a "quasi-double layer" over the mica surface. These AFM images proved the existence of a monolayer of protein A molecules at low concentrations and a "quasi-double layer" with occasional protrusions at high concentrations, which were consistent with the adsorption mode observed in the force-distance curves.  相似文献   

18.
Some peptides have previously been reported to bind low molecular weight chemicals. One such peptide with the amino acid sequence His-Ala-Ser-Tyr-Ser was selectively screened from a phage library and bound to a cationic porphyrin, 5,10,15,20-tetrakis(N-methylpyridinium-4-yl)-21H,23H-porphine (TMpyP), with a binding constant of 10(5) M(-1) (J. Kawakami, T. Kitano, and N. Sugimoto, Chemical Communications, 1999, pp. 1765-1766). The proposed binding was due to pi-electron stacking from two aromatic amino acids of histidine and tyrosine. In this study, the weak interactions between TMpyP and the peptide were further investigated by force curve analysis using atomic force microscopy (AFM). The mechanical force required to unbind the peptide-porphyrin complex was measured by vertical movement of the AFM tip. Peptide self-assembled monolayers were formed on both a gold-coated mica substrate and a gold-coated AFM tip. The TMpyPs could bind between the two peptide layers when the peptide-immobilized AFM tip contacted the peptide-immobilized substrate in solution containing TMpyP. In the retracting process a force that ruptured the interaction between TMpyPs and peptides was observed. The unbinding force values correlated to the concentration of TMpyP. A detection limit of 100 ng/mL porphyrin was obtained for the force measurement, and was similar to surface plasmon resonance sensor detection limits. Furthermore, we calculated the product of the observed force and the length of the molecular elongation to determine the work required to unbind the complexes. The obtained values of unbinding work were in a reasonable range compared to the binding energy of porphyrin-peptide.  相似文献   

19.
Functionalized atomic force microscope tips were used to sense specific forces of interaction between ligand—receptor pairs and to map the positions of polysaccharides on a living microbial cell surface. Gold-coated tips were functionalized with concanavalin A using a cross-linker with a spacer arm of 15.6Å. It was possible to measure the binding force between concanavalin A and mannan polymers on the yeast (Saccharomyces cerevisiae) cell surface. This force ranged from 75 to 200pN. The shape of the force curve indicated that the polymers were pulled away from the cell surface for a fairly long distance that sometimes reached several hundred nanometres. The distribution of mannan on the cell surface was mapped by carrying out the force measurement in the force volume mode of atomic force microscopy (AFM). During the measurement, the maximum cantilever deflection after contact between the tip and the sample was kept constant at 10nm using trigger mode to keep the pressing force on the sample surface as gently as possible at a force of 180pN. This regime was used to minimize the non-specific adhesion between the tip and the cell surface. Specific molecular recognition events took place on specific areas of the cell surface that could be interpreted as reflecting a non-uniform distribution of mannan on the cell surface.  相似文献   

20.
The distribution of sugar chains on tissue sections of the rat vomeronasal epithelium, and the adhesive force between the sugar and its specific lectin were examined with an atomic force microscope (AFM). AFM tips were modified with a lectin, Vicia villosa agglutinin, which recognizes terminal N-acetyl-D-galactosamine (GalNAc). When a modified tip scanned the luminal surface of the sensory epithelium, adhesive interactions between the tip and the sample surface were observed. The final rupture force was calculated to be approximately 50 pN based on the spring constant of the AFM cantilever. Distribution patterns of sugar chains obtained from the force mapping image were very similar to those observed using fluorescence-labeled lectin staining. AFM also revealed distribution patterns of sugar chains at a higher resolution than those obtained with fluorescence microscopy. Most of the adhesive interactions disappeared when the scanning solution contained 1 mM GaINAc. The adhesive interactions were restored by removing the sugar from the solution. Findings suggest that the adhesion force observed are related to the binding force between the lectin and the sugars distributed across the vomeronasal epithelium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号