首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
15N isotope effects in the nitro group and 18O isotope effects in the phenolic oxygen have been measured for the hydrolysis of ethyl p-nitrophenyl phosphate catalyzed by several metal ions. Co(III)-cyclen at pH 7, 50 degrees C, gave an 15N isotope effect of 0.12% and an 18O one of 2.23%, showing that P-O cleavage is rate limiting and the bond is approximately 50% broken in the transition state. The active catalyst is a dimer and the substrate is presumably coordinated to the open site of one Co(III), and is attacked by hydroxide coordinated to the other Co(III). Co(III)-tacn under the same conditions shows a similar 15N isotope effect (0.13%), but a smaller 18O one (0.8%). Zn(II)-cyclen at pH 8.5, 80 degrees C, gave an 15N isotope effect of 0.05% and an 18O one of 0.95%, suggesting an earlier transition state. The catalyst in this case is monomeric, and thus the substrate is coordinated to one position and attacked by a cis-coordinated hydroxide. Eu(III) at pH 6.5, 50 degrees C, shows a very large 15N isotope effect of 0.34% and a 1.6% 18O isotope effect. The large 15N isotope effect argues for a late transition state or Eu(III) interaction with the nitro group, and was also seen in Eu(III)-catalyzed hydrolysis of p-nitrophenyl phosphate.  相似文献   

2.
The early steps in dioxygen activation by the monooxygenase cytochrome P450cam (CYP101) include binding of O2 to ferrous P450cam to yield the ferric-superoxo form (oxyP450cam) followed by an irreversible, long-range electron transfer from putidaredoxin to reduce the oxyP450cam. The steady state kinetic parameter kcat/Km(O2) has been studied by a variety of probes that indicate a small D2O solvent isotope effect (1.21 +/- 0.08), a very small solvent viscosogen effect, and a 16O/18O isotope effect of 1.0147 +/- 0.0007. This latter value, which can be compared with the 16O/18O equilibrium isotope effect of 1.0048 +/- 0.0003 measured for oxyP450cam formation, is attributed to a primarily rate-limiting outer-sphere electron transfer from the heme iron center as O2 that has prebound to protein approaches the active site cofactor. The electron transfer from putidaredoxin to oxyP450cam was investigated by rapid mixing at 25 degrees C to complement previous lower-temperature measurements. A rate of 390 +/- 23 s-1 (and a near-unity solvent isotope effect) supports the view that the long-range electron transfer from reduced putidaredoxin to oxyP450cam is rapid relative to dissociation of O2 from the enzyme. P450cam represents the first enzymatic reaction of O2 in which both equilibrium and kinetic 16O/18O isotope effects have been measured.  相似文献   

3.
We measured the temperature dependence of oxygen evolution in thylakoids from tobacco using mass spectrometry and high resolution polarography. We determined the initial S-state distribution and the efficiency of the transition between these states including the probability of the O(2) yield through a fast mode. We observed discontinuous changes of the parameters at the temperatures 11 degrees C, 15 degrees C and 21 degrees C. Due to the mass spectroscopy data we think that the irregularity observed at 11 degrees C is due to conformational changes within the water catalytic site. We show that the different contributions of the slow and fast modes of oxygen evolution and of the water molecule exchange are correlated and that their behavior can be explained in terms of the H(2)O accessibility to the water splitting enzyme.  相似文献   

4.
A K Mishra  M H Klapper 《Biochemistry》1986,25(23):7328-7336
We have measured, by permeable membrane/mass spectrometry, the 16O/18O, 12C/13C, and solvent H2O/D2O kinetic isotope effects (kie) associated with acyl-alpha-chymotrypsin hydrolysis and transesterification. The hydrolysis of alpha-chymotrypsinyl 2-furoate has a 12C/13C kie of approximately 1.06. Transesterification of the same acyl enzyme shows 16O/18O, 12C/13C, and solvent H2O/D2O kinetic isotope effects of 1.015 (0.003), 1.01-1.02, and 2.226 (0.007), respectively. From the temperature independence of the 16O/18O transesterification kinetic isotope effect and kinetic data reported elsewhere [Wang, C.-L. A., Calvo, K. C., & Klapper, M. H. (1981) Biochemistry 20, 1401-1408], we conclude that there are two active forms of acylchymotrypsin. We also propose that formation of the tetrahedral intermediate is the rate-limiting step in both hydrolysis and transesterification and that the position of the transition state in the transesterification is closer to the starting enzyme ester while that for the hydrolytic reaction is closer to the tetrahedral intermediate. These results are discussed in terms of reaction mechanism plasticity.  相似文献   

5.
The physiological significance of the position and shape of the oxygen equilibrium curve (OEC) of horse hemoglobin (Hb) is considered from the viewpoint of oxygen (O2) transport efficiency and the effectiveness of the Bohr effect. In horse fetal and maternal bloods, their physiological O2 affinities are nearly optimized with respect to the effectiveness of the Bohr shift occurring at the O2 release site, when it is measured by the change in O2 saturation per unit change in P50. With relatively low cooperativity (n=2.69) of horse Hb under physiological conditions, the effectiveness of the Bohr shift for fetal blood at O2 uptake site and maternal blood at O2 release site is high. These facts imply that the position and the cooperativity of horse Hb OEC are optimized to receive maximal benefit from the double Bohr shift. Before exercise, the position of the OEC for adult mares is nearly optimized for the effectiveness of the Bohr shift occurring at the O2 release site, whereas, at maximal exercise, the position of the OEC tends to become advantageous for O2 transport efficiency.  相似文献   

6.
Individual variation in physiological traits may have important consequences for offspring survivorship and adult fitness. Variance in offspring phenotypes is due to interindividual differences in genotype, environment, and/or maternal effects. This study examined the contributions of incubation environment, maternal effects, and clutch identity to individual variation in metabolic rates in the common snapping turtle, Chelydra serpentina. We measured standard metabolic rate, as determined by oxygen consumption, for 246 individuals representing 24 clutches at 15 degrees and 25 degrees C, and we measured standard metabolic rates additionally for 34 individuals at 20 degrees and 30 degrees C. Standard metabolic rate for 34 snapping turtles measured at 15 degrees, 20 degrees, 25 degrees, and 30 degrees C increased with increasing temperature. Mean standard metabolic rate for 246 individuals was 0.247 microL O(2) min(-1) g(-1) at 15 degrees C and 0.919 microL O(2) min(-1) g(-1) at 25 degrees C. At 15 degrees C, mass at hatching, individual mass, and egg mass had no significant effects on metabolic rate, but at 25 degrees C, mass at hatching, individual mass, and egg mass did have significant effects on metabolic rate. Incubation temperature had no significant effect on metabolic rate at 15 degrees, but it did have a significant effect at 25 degrees C. Clutch identity had a significant effect on metabolic rate at both 15 degrees and 25 degrees C. Interindividual variation in standard metabolic rate due to incubation temperature, and especially clutch identity, could have large effects on energy budgets. Results suggest that there were both environmental and genetic effects on standard metabolic rate.  相似文献   

7.
Oxygen atoms in plant products originate from CO(2), H(2)O and O(2), precursors with quite different delta18O values. Furthermore their incorporation by different reactions implies isotope effects. On this base the resulting non-statistical 18O distributions in natural compounds are discussed. The delta18O value of cellulose is correlated to that of the leaf water, and the observed 18O enrichment (approximately +27 per thousand) is generally attributed to an equilibrium isotope effect between carbonyl groups and water. However, as soluble and heterotrophically synthesised carbohydrates show other correlations, a non-statistical 18O distribution - originating from individual biosynthetic reactions - is postulated for carbohydrates. Similarly, the delta18O values of organic acids, carbonyl compounds, alcohols and esters indicate water-correlated, but individual 18O abundances (e.g. O from acyl groups approximately +19% above water), depending upon origin and biosyntheses. Alcoholic groups introduced by monooxygenase reactions, e.g. in sterols and phenols, show delta18O values near +5 per thousand, in agreement with an assumed isotope fractionation factor of approximately 1.02 on the reaction with atmospheric oxygen (delta18O=+23.5 per thousand). Correspondingly, a "thermodynamically ordered isotope distribution" is only observed for oxygen in some functional groups correlated to an origin from CO(2) and H(2)O, not from O(2). The individual isotopic increments of functional groups permit the prediction of global delta18O values of natural compounds on the basis of their biosynthesis.  相似文献   

8.
Differential scanning calorimetry (DSC) has been used to investigate the macroscopic structure of photosystem II (PS II). Five endothermic transitions, A1, A2, B, C, and D, are observed in the 30-70 degrees C temperature range and are partially assigned on the basis of heat inactivation experiments, relative peak areas, and the effect of MgCl2 on the DSC trace. We suggest that peaks C and D correspond to the denaturation of the light-harvesting chlorophyll a/b proteins and peak B to the denaturation of components critical to the electron-transport chain. In a DSC study of thylakoid membranes [Cramer, W. A., Whitmarsh, J., & Low, P. S. (1981) Biochemistry 20, 157-162], the lowest temperature shoulder was assigned to the denaturation of the oxygen-evolving complex (OEC). By correlating the temperature of heat inactivation with the temperatures of the DSC peaks of PS II in a range of detergent concentrations (causing shifts in the peak positions), we assign peak A2 to the functional denaturation of the OEC. We have used peak A2 as a new probe of the OEC and have found this peak to be sensitive to the oxidation state of cytochrome b559. Oxidation of cytochrome b559 with 1 mM ferricyanide, which has no effect on oxygen evolution activity, causes peak A2 to disappear, probably by making it too broad to observe.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
We investigated the temperature dependence of some physiological parameters of common eelpout (Zoarces viviparus) from different locations (North Sea, Baltic Sea and Norwegian Sea) on acclimation temperature (3 degrees C and 12 degrees C) and acute temperature variation. The lethal limit of 12 degrees C-acclimated eelpout was determined as the critical thermal maximum [loss of equilibrium (LE) and onset of muscular spasms (OS)] and it was found to be 26.6 degrees C for LE and 28.8 degrees C for OS for all populations. However, these parameters do not have any relevant ecological interpretation. We therefore investigated the effect of gradually increased water temperature on standard metabolic rate (measured as resting oxygen consumption Mo2) and critical oxygen concentration ([O2]c) of eelpouts. Acclimation to low temperature (3 degrees C) resulted in partial compensation of Mo2, paralleled by a decrease of activation energy for Mo2 (from 82 kJ mol(-1) at 12 degrees C to about 50 kJ mol(-1) at 3 degrees C) in North Sea and Baltic Sea eelpouts. At the same time, Norwegian eelpout showed no acclimation of oxygen demand to warm temperature (12 degrees C) at all. The scope for eelpout aerobic metabolism shrank considerably with increased acclimation temperature, as [O2]c approached water oxygen concentrations. At 22.5+/-1 degrees C the [O2]c reached air saturation, which is equivalent to the upper critical temperature (TcII) and at this temperature the aerobic scope for the metabolism completely disappeared. In line with previous insight, the comparative analysis of the temperature dependence of Mo2 of Z. viviparus from different populations suggests that a pejus (sub-critical) temperature for this species is about 13-15 degrees C. In conclusion, the capacity to adjust aerobic metabolism relates to thermal tolerance and the bio-geographical distribution of the species. Global warming would thus be likely to cause a shift in the distribution of this species to the North.  相似文献   

10.
Solvent exchange of 18O-labeled buried water in bovine pancreatic trypsin inhibitor (BPTI), trypsin, and trypsin-BPTI complex is measured by high-precision isotope ratio mass spectrometry. Buried water is labeled by equilibration of the protein in 18O-enriched water. Protein samples are then rapidly dialyzed against water of normal isotope composition by gel filtration and stored. The exchangeable 18O label eluting with the protein in 10-300 s is determined by an H2O-CO2 equilibration technique. Exchange of buried waters with solvent water is complete before 10-15 s in BPTI, trypsin, and BPTI-trypsin, as well as in lysozyme and carboxypeptidase measured as controls. When in-exchange dialysis and storage are carried out at pH greater than or equal to 2.5, trypsin-BPTI and trypsin, but not free BPTI, have the equivalent of one 18O atom that exchanges slowly (after 300 s and before several days). This oxygen is probably covalently bound to a specific site in trypsin. When in-exchange dialysis and storage are carried out at pH 1.1, the equivalent of three to seven 18O atoms per molecule is associated with the trypsin-BPTI complex, apparently due to nonspecific covalent 18O labeling of carboxyl groups at low pH. In addition to 18O exchange of buried waters, the hydrogen isotope exchange of buried NH groups H bonded to buried waters was also measured. Their base-catalyzed exchange rate constants are on the order of NH groups that in the crystal are exposed to solvent (static accessibility greater than 0) and hydrogen-bonded main chain O, and their pH min is similar to that for model compounds. The pH dependence of their exchange rate constants suggests that direct exchange with water may significantly contribute to their observed exchange rate.  相似文献   

11.
Chu HA  Sackett H  Babcock GT 《Biochemistry》2000,39(47):14371-14376
We have developed conditions for recording the low-frequency S(2)/S(1) Fourier transform infrared difference spectrum of hydrated PSII samples. By exchanging PSII samples with buffered (18)O water, we found that a positive band at 606 cm(-)(1) in the S(2)/S(1) spectrum in (16)O water is clearly downshifted to 596 cm(-)(1) in (18)O water. By taking double-difference (S(2)/S(1) and (16)O minus (18)O) spectra, we assign the 606 cm(-)(1) mode to an S(2) mode and also identify a corresponding S(1) mode at about 625 cm(-)(1). In addition, by Sr and (44)Ca substitution experiments, we found that the 606 cm(-)(1) mode is upshifted to about 618 cm(-)(1) by Sr(2+) substitution but that this mode is not affected by substitution with the (44)Ca isotope. On the basis of these results and also on the basis of studies of Mn model compounds, we assign the 625 cm(-)(1) mode in the S(1) state and the 606 cm(-)(1) mode in the S(2) state to a Mn-O-Mn cluster vibration of the oxygen-evolving complex (OEC) in PSII. This structure may include additional bridge(s), which could be another oxo, carboxylato(s), or atoms derived from an amino acid side chain. Our results indicate that the bridged oxygen atom shown in this Mn-O-Mn cluster is exchangeable and accessible by water. The downshift in the Mn-O-Mn cluster vibration as manganese is oxidized during the S(1) --> S(2) transition is counterintuitive; we discuss possible origins of this behavior. Our results also indicate that Sr(2+) substitution in PSII causes a small structural perturbation that affects the bond strength of the Mn-O-Mn cluster in the PSII OEC. This suggests that Sr(2+), and by inference, Ca(2+), communicates with, but is not integral to, the manganese core.  相似文献   

12.
During dark adaptation, a change in the O2-evolving complex (OEC) of spinach photosystem II (PSII) occurs that affects both the structure of the Mn site and the chemical properties of the OEC, as determined from low-temperature electron paramagnetic resonance (EPR) spectroscopy and O2 measurements. The S2-state multiline EPR signal, arising from a Mn-containing species in the OEC, exhibits different properties in long-term (4 h at 0 degrees C) and short-term (6 min at 0 degree C) dark-adapted PSII membranes or thylakoids. The optimal temperature for producing this EPR signal in long-term dark-adapted samples is 200 K compared to 170 K for short-term dark-adapted samples. However, in short-term dark-adapted samples, illumination at 170 K produces an EPR signal with a different hyperfine structure and a wider field range than does illumination at 160 K or below. In contrast, the line shape of the S2-state EPR signal produced in long-term dark-adapted samples is independent of the illumination temperature. The EPR-detected change in the Mn site of the OEC that occurs during dark adaptation is correlated with a change in O2 consumption activity of PSII or thylakoid membranes. PSII membranes and thylakoid membranes slowly consume O2 following illumination, but only when a functional OEC and excess reductant are present. We assign this slow consumption of O2 to a catalytic reduction of O2 by the OEC in the dark. The rate of O2 consumption decreases during dark adaptation; long-term dark-adapted PSII or thylakoid membranes do not consume O2 despite the presence of excess reductant.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The primary deuterium and tritium isotope effects on Vm/Km and on Vm have been measured for the O-deethylation of 7-ethoxycoumarin catalyzed by two purified isozymes of cytochrome P-450. From these data the intrinsic isotope effects have been calculated as described by D. B. Northrop (Biochemistry (1975) 14, 2644-2651). The observed deuterium isotope effects on Vm/Km are 3.79 and 1.90 for the isozymes isolated from the livers of rats induced by phenobarbital and 3-methylcholanthrene, respectively. The calculated intrinsic isotope effects, however, are similar and much larger (kH/kD = 12.8 to 14.0) than the observed isotope effects on Vm/Km for the two enzymes. This demonstrates that the intrinsic isotope effects are attenuated by various steps preceding the isotopically sensitive C-H bond cleavage step resulting in the low values for the observed isotope effects. Thus, the observed isotope effects do not accurately reflect the magnitude of the intrinsic isotope effect associated with this reaction. No incorporation of 18O into the 7-hydroxycoumarin product was observed in studies employing H218O or 18O2 demonstrating that the phenolic oxygen arises exclusively from the substrate. Taken together, these data provide compelling evidence that both cytochrome P-450 isozymes catalyze the O-dealkylation of this substrate by an identical radical recombination mechanism during the obligatory formation of a hemiacetal intermediate.  相似文献   

14.
The purpose of this study was to identify the location of one of the two sources of carbonic anhydrase (CA) activity associated with the PSII complex in chloroplast membranes. We tested the hypothesis that the extrinsic 33 kDa protein, OEC33, associated with the oxygen-evolving complex (OEC), is one source of CA activity. We found that precursor OEC33 expressed in Escherichia coli exhibits CA activity, but the expressed precursors of OEC24 or OEC17 do not. The CA activity of OEC33 remained after treatment at 90 degrees C for 15 min. Additional biochemical evidence supports the hypothesis. Only those wash treatments that remove the OEC33 from PSII also remove CA activity. Both immunoblot and CA activity show that the CA tracks the OEC33, in parallel, when PSII undergoes washing at different CaCl2 concentrations. The OEC33 protein purified by HiTrap Q anion exchange chromatography has CA activity that is inhibited by an antibody against OEC33. PSII membranes washed with 1 M CaCl2 to remove OEC33 can be reconstituted either with extracted, purified, OEC33 or with the E. coli-expressed precursor OEC33. Reconstitution partially restores both oxygen evolution and CA activity. For maximal CA activity, OEC33 requires manganese as a cofactor.  相似文献   

15.
Orotidine-5'-monophosphate decarboxylase (ODCase) from Saccharomyces cerevisiae displays an observed 13C kinetic isotope effect of 1.0247 +/- 0.0008 at 25 degrees C, pH 6.8. The observed isotope effect is sensitive to changes in the reaction medium, such as pH, temperature, or glycerol content. The value of 1.0494 +/- 0.0006 measured at pH 4.0, 25 degrees C, is not altered significantly by temperature or glycerol, and thus the intrinsic isotope effect for the reaction is apparently being observed under these conditions and decarboxylation is almost entirely rate-determining. These data require a catalytic mechanism with freely reversible binding and one in which a very limited contribution to the overall rate is made by chemical steps preceding decarboxylation; the zwitterion mechanism of Beak and Siegel [Beak, P. & Siegel, B. (1976) J. Am. Chem. Soc. 98, 3601-3606], which involves only protonation of the pyrimidine ring, is such a mechanism. With use of an intrinsic isotope effect of 1.05, a partitioning factor of less than unity is calculated for ODCase at pH 6.0, 25 degrees C. A quantitative kinetic analysis using this result excludes the possibility of an enzymatic mechanism involving covalent attachment of an enzyme nucleophile to C-5 of the pyrimidine ring. The observed isotope effect does not rise to the intrinsic value above pH 8.5; instead, the observed isotope effects at 25 degrees C plotted against pH yield an asymmetric curve that at high pH plateaus at about 1.035. These data, in conjunction with the pH profile of Vmax/km, fit a kinetic model in which an enzyme proton necessary for catalysis is titrated at high pH, thus providing evidence for the catalytic mechanism of Beak and Siegel (1976).  相似文献   

16.
J P Jones  P M Weiss  W W Cleland 《Biochemistry》1991,30(15):3634-3639
Secondary 18O isotope effects in the gamma-position of ATP have been measured on phosphoryl transfer catalyzed by yeast hexokinase in an effort to deduce the structure of the transition state. The isotope effects were measured by the remote-label method with the exocyclic amino group of adenine as the remote label. With glucose as substrate, the secondary 18O isotope effect per 18O was 0.9987 at pH 8.2 and 0.9965 at pH 5.3, which is below the pK of 6.15 seen in the V/K profile for MgATP. With the slow substrate 1,5-anhydro-D-glucitol, the value was 0.9976 at pH 8.2. While part of the inverse nature of the isotope effect may result from an isotope effect on binding, the more inverse values when catalysis is made more rate limiting by decreasing the pH or switching to a slower substrate suggest a dissociative transition state for phosphoryl transfer, in agreement with predictions from model chemistry. The 18O equilibrium isotope effect for deprotonation of HATP3- is 1.0156, while Mg2+ coordination to ATP4- does not appear to be accompanied by an 18O isotope effect larger than 1.001.  相似文献   

17.
The isotope effect at C-1 on the H2O2-catalysed decarboxylation of pyruvate (used as a model reaction for the enzymic reaction) increases between pH 3 and 10 from 1.0007 +/- 0.0004 to 1.0283 +/- 0.0014 (25 degrees C). This result indicates a change in the rate-determining step from formation of the tetrahedral intermediate to decarboxylation of this intermediate. Practically no isotope fractionation at C-1 (1.0011 +/- 0.0002, pH 6.0, 25 degrees C) is found in the lactate oxidase-catalysed decarboxylation of lactate, which is indicative for the existence of an irreversible O2-dependent step prior to the enzyme-catalysed decarboxylation. In addition, the result provides further evidence that dissociation of pyruvate and H2O2 from the enzyme can be excluded. The isotope effect at C-2 of lactate in the enzymic reaction (1.0048 +/- 0.0004) is attributed to the hydrogen transfer step from lactate to the coenzyme.  相似文献   

18.
Tre of the suricates exhibits a marked diurnal rhythm (mean Tre at night 36.3 +/- 0.6 degrees C and 38.3 +/- 0.5 degrees C during the day). Oxygen consumption is lowest at Ta 30-32.5 degrees C (mean 0.365 +/- 0.022 ml O2 g-1 hr-1); this is 42% below the value expected from body mass. At Ta below the TNZ, oxygen uptake rises rapidly, minimal thermal conductance (0.040 ml O2 g-1 h-1 degrees C-1) being 18% above the mass-specific level. Lowest heart rates occur at Ta 30 degrees C (mean 109.6 +/- 9.8 beats min-1) and oxygen pulse is minimal at Ta 30-35 degrees C with 40-45 microliter O2 beat-1. At Ta 15-32.5 degrees C total evaporative water loss is between 0.46-0.63 ml H2O kg-1 hr-1 and increases markedly during heat stress (to a mean of 5.35 ml H2O kg-1 hr-1 at Ta 40 degrees C). This rise of TEWL is mainly attributable to the onset of panting at Ta above 35 degrees C.  相似文献   

19.
The potential immunostimulatory effects of Astralagus membranaceus polysaccharides (APS) on sea cucumber, Apostichopus japonicus (Selenka), were investigated in vitro. Phagocytosis and superoxide anion (O(2)(-)) production by phagocytic amoebocytes (PA) from A. japonicus coelomic fluid were measured during incubation at 18 degrees C, 22 degrees C, or 25 degrees C with APS at 0, 10, 20, or 40 microg mL(-1) (n=3). Phagocytic activity against yeast cells was quantified by direct visualization, and O(2)(-) production by nitroblue tetrazolium (NBT) reduction assay. Compared with controls, including APS at 20 microg mL(-1) significantly increased (P<0.05) the percentage of phagocytic capacity (PC) and phagocytic index (PI) at 18 degrees C and 22 degrees C, but no significant enhancement was observed at 25 degrees C. In contrast, the coelmocytes of A. japonicus can have an obvious generation of O(2)(-) after the stimulation. The concentration of 20 microg mL(-1) APS resulted in a significant increase in nitroblue tetrazolium (NBT) positive cells (P<0.05) at different temperature and even 10 microg mL(-1) APS could increase O(2)(-) generation significantly at 18 degrees C and 22 degrees C. Both phagocytosing and O(2)(-) production increased with the increase of APS concentration from 0 to 20 microg mL(-1) at different temperature, and when APS at 40 microg mL(-1), they were decreased. It suggested that immunocytes activity in A. japonicus decreased with the temperature increasing from 18 degrees C to 25 degrees C, and APS could be an effective immunostimulant to enhance phagocytic activity and O(2)(-) production.  相似文献   

20.
The rate of reaction of ferro- and ferricytochrome c (C(II) and C(III) with ferri- and ferrocyanide and of C(III) with 02- and CO2- was determined in H2O and in 2H2O in the temperature range 5-35 degrees C. No isotope effect was evident in any of the reductions of C(III); the apparent energy of activation was identical in H2O and 2H2O. An isotope effect with kH2O/k2H2O = 1.25 to 1.85, depending on pH for instance was observed in the oxidation of C(II), in the slow phase of oxidation which involves conformational changes. An interpretation (supported by evidence from previous work) involving water molecules in the close vicinity of the reaction site on the protein is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号