首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
[3H]Yohimbine, a potent alpha 2-adrenergic antagonist, was used to label the alpha-adrenergic receptors in membranes isolated from human platelets. Binding of [3H]yohimbine to platelet membranes appears to have all the characteristics of binding to alpha-adrenergic receptors. Binding reached a steady state in 2-3 min at 37 degrees C and was completely reversible upon the addition of excess phentolamine or yohimbine (both at 10(-5) M; t1/2 = 2.37 min). [3H]Yohimbine bound to a single class of noncooperative sites with a dissociation constant of 1.74 nM. At saturation, the total number of binding sites was calculated to be 191 fmol/mg protein. [3H]Yohimbine binding was stereo-specifically inhibited by epinephrine: the (-) isomer was 11-times more potent that the (+) isomer. Catecholamine agonists competed for the occupancy of the [3H]yohimbine-binding sites with an order of potency: clonidine greater than (-)-epinephrine greater than (-)-norepinephrine much greater than (-)-isoproterenol. The potent alpha-adrenergic antagonist, phentolamine, competed for the sites whereas the beta-antagonist, (+/-)-propranolol, was very weak inhibitor. 0.1 mM GTP reduced the binding affinity of the agonists, while producing no change in antagonist-binding affinity. Dopamine and serotonin competed only at very high concentrations. Similarly, muscarinic cholinergic ligands were also poor inhibitors of [3H]yohimbine binding. These results suggest that [3H]yohimbine binding to hunan platelet membranes is specific, rapid, saturable, reversible and, therefore, can be successfully used to label alpha 2-adrenergic receptors.  相似文献   

2.
Competition between cold phenytoin and [3H]phenytoin binding was observed in normal human brain. Binding was observed in all areas examined. The highest number of sites was in the amygdala (a total of 717.71 fmol/mg protein) and the lowest in the Brodman area (BA) 4 of the motor cortex (153.91 fmol/mg protein) and cerebellar cortex (154.4 fmol/mg protein). In three areas, amygdala, cortex area BA 38 (inferior parietal lobe), and cortex area BA 8 (premotor cortex), two sets of binding sites were observed. In these areas the Kd for the higher affinity sites ranged from 35 to 116 nM, and for the lower affinity site, from 328 to 866 nM. In the four areas where only one binding site was observed the KdS ranged from 164 to 311 nM and the Scatchard plot was linear.  相似文献   

3.
4.
[3H]Flunitrazepam was used to characterize benzodiazepine binding sites in human brain. The benzodiazepine binding sites exhibited high affinity, pharmacological specificity and saturability in their binding of [3H]flunitrazepam. The dissociation constant (KD) of [3H]flunitrazepam binding was determined by three different methods and found to be in the range of 2–3 nM. The potency of several benzodiazepine analogs to inhibit specific [3H]-flunitrazepam binding invitro correlated well with their potency in several invivo human and animal tests. The density of [3H]-flunitrazepam binding sites was highest in the cerebrocortical and rhinencephalic areas, intermediate in the cerebellum, and lowest in the brain stem and commissural tracts.  相似文献   

5.
Thein vivo effect of the mu agonist morphine and antagonist naloxone on [3H]nimodipine receptor binding in rat brain regions has been investigated. Morphine administration (15 mg/s.c.) for thirty minutes produced a 19% decrease in [3H]nimodipine receptor binding (B max 158.2 fmol to 128.9 fmol) in cortex and 29% decrease in cerebellum (65.3 fmol to 46.0 fmol). Lesser changes were observed in hippocampal and striatal regions with no changes in hypothalamus and brain stem. All effects were completely antagonized by naloxone pretreatment (1 mg/kg). The studies suggest that opiates in vivo can alter [3H]nimodipine binding to the Ca2+ channel receptor protein. These findings agree with the previously observed decreases in Ca2+ influx in nerve ending preparations and inhibition of ICa 2+ following opiate treatment and suggest opiates reduce Ca2+-dependent neurotransmitter release by altering the Ca2+ channel receptor protein in an allosteric fashion.  相似文献   

6.
7.
Postsynaptic alpha-adrenoceptor subtypes were studied using [3H]prazosin and [3H]rauwolscine binding to plasmalemma-enriched microsomal fractions isolated from dog saphenous veins and mesenteric veins. Both radioligands showed saturable binding consistent with the presence of a single homogeneous binding site in each case, based on Scatchard analysis. The Kd values of [3H]prazosin and [3H]rauwolscine, calculated from kinetic studies were similar to those from equilibrium binding data in both venous muscle membranes. The microsomal membranes of dog saphenous vein and mesenteric vein contained about a fourfold higher density of the high affinity [3H]rauwolscine binding sites than those for [3H]prazosin binding. In competition studies, IC50 values for displacement of rauwolscine or prazosin suggested that the sites of interaction for the antagonists prazosin and rauwolscine were independent. Phenylephrine, a functionally selective alpha-adrenoceptor agonist, competed with a similar IC50 value for the specific binding sites of [3H]prazosin and [3H]rauwolscine; but B-HT 920, a functionally selective alpha 2-adrenoceptor agonist, competed for [3H]rauwolscine and [3H]prazosin binding with distinctly different IC50 values. Our data show the existence of two populations of alpha-adrenoceptor antagonist binding sites in the plasma membranes of dog saphenous vein and mesenteric vein, and raise the question whether agonist selectively depends on different affinities or on differential efficacies at one or two sites.  相似文献   

8.
Binding of the alpha-adrenergic agonist [3H]clonidine and the alpha-adrenergic antagonist [3H]WB-4101 exhibited multiple binding site characteristics in both rat frontal cortex and cerebellum. Kinetic analysis of the dissociation of both radioligands in rat frontal cortex suggests two high affinity sites for each ligand. Competition of various noradrenergic agonists and antagonists for [3H]WB-4101 binding yielded shallow competition curves, with Hill coefficients ranging from 0.45 to 0.7. This further suggests multiplicity in [3H]WB-4101 binding. In the rat cerebellum, competition of various noradrenergic drugs for [3H]clonidine binding yielded biphasic competition curves. Furthermore Scatchard analysis of [3H]clonidine binding in rat cerebellum showed two high affinity sites with KD = 0.5 nM and 1.9 nM, respectively. Competition of various noradrenergic drugs for [3H]WB-4101 binding in the rat cerebellum yielded biphasic competition curves. Lesioning of the dorsal bundle with 6-hydroxydopamine did not significantly affect the binding of either [3H]clonidine or [3H]WB-4101. These findings for both [3H]clonidine and [3H]WB-4101 binding in rat frontal cortex and cerebellum can be explained by the existence of postsynaptic binding sites for both 3H ligands.  相似文献   

9.
M W Agey  S M Dunn 《Biochemistry》1989,28(10):4200-4208
The binding of the GABA receptor agonist [3H]muscimol to membrane preparations from bovine cerebral cortex has been investigated in equilibrium and kinetic experiments. Equilibrium binding curves are biphasic and suggest that [3H]muscimol binds to both high-affinity (Kd approximately 10 nM) and low-affinity (Kd approximately 0.5 microM) sites. Binding to each class of sites is inhibited by GABA and by the specific GABAA receptor antagonist bicuculline. The kinetics of [3H]muscimol binding have been measured by using both manual filtration assays and an automated rapid filtration technique which permits the measurement of ligand dissociation on subsecond time scales. Association and dissociation curves are biphasic at all concentrations of [3H]muscimol studied, even under conditions of low receptor saturation when no significant occupancy of the low-affinity sites would be expected. These results cannot be simply explained by the presence of two populations of binding sites in the membrane preparations but suggest the existence of two forms of the monoliganded receptor. Dissociation constants for these two forms have been estimated to be 16 and 82 nM at 23 degrees C. At higher ligand concentrations, kinetic measurements have suggested that the binding of [3H]muscimol to low-affinity sites is accompanied by a slow conformational change of the receptor-ligand complex.  相似文献   

10.
The changes of [3H]yohimbine and [3H]clonidine binding sites in rat vas deferens on treatments with adenosine receptor agonists (2-chloroadenosine, adenosine) or reserpine were examined. Treatment with adenosine agonist in vitro increased [3H]clonidine binding sites but had no influence on affinity and number of binding sites of α2-antagonist, [3H]yohimbine. Amount of [3H]yohimbine binding sites was found to be higher than that of [3H]clonidine with or without the treatment. Inhibition curves of α2-agonists, clonidine and norepinephrine, on [3H]yohimbine binding were less than unity though α2-antagonist inhibited with about 1.0 of nH. The treatment with adenosine agonist reduced the IC50 value of agonists on the [3H]yohimbine binding but had no influence on the inhibitory effect of antagonist. These effect of adenosine agonists was completely blocked by theophylline. Accordingly it was considered that activation of adenosine receptor caused configurational change in α2-adrenergic receptor from low affinity state for agonist to the high affinity state, though both states had same affinity for antagonist.On the other hand, treatment with reserpine in vivo increased the affinity of clonidine for α2-adrenergic receptors and also increased the amount of the α2-receptors.  相似文献   

11.
The investigation of [3H] PCP and [3H] TCP binding properties to rat cerebrum and cerebellum resulted in the demonstration of multiple binding sites for the two drugs. In the two tissue preparations PCP had a lower affinity than TCP. In membranes from the cerebrum an equal number of high affinity binding sites were present for [3H] PCP and [3H] TCP. However, low affinity binding sites were two times more numerous for [3H] PCP than for [3H] TCP. In the cerebellum, the number of high and low affinity sites labeled by the two radioligands was identical, but the number of high affinity sites was about 7 fold lower than in the cerebrum. Taken together these results may indicate that in the cerebrum [3H] PCP labels other sites than NMDA/PCP receptor(s), maybe sigma receptors and/or the dopamine uptake complex. In human cerebral cortex samples [3H] TCP also bound to two different sites. The number of high and low affinity sites were 12 and 3 times, respectively, less abundant than in the rat cerebrum. Low affinity sites were of higher affinity (5 times) than corresponding sites in the rat brain. In the human cerebellum [3H] TCP binding parameters were identical to those measured in the same region in the rat.  相似文献   

12.
1. The autoradiographic distribution of kappa opioid receptor binding sites in human brain was examined using two radiolabeled probes, namely [3H]U69,593 and [3H]bremazocine. 2. [3H]U69,593 binding was performed in the absence of blockers for other sites, while [3H]bremazocine binding was investigated in the presence of saturating concentrations of mu and delta blockers to ensure selective labeling of kappa opioid receptors. 3. Our results show that the autoradiographic distribution of [3H]U69,593 and [3H]bremazocine (plus blockers) binding sites is identical, with high densities of sites found in deep cortical layers and claustrum. 4. This indicates that [3H]U69,593 is a highly selective ligand of the kappa opioid receptor type.  相似文献   

13.
The binding of (1)-[3H]vesamicol was characterized in several subcellular fractions and brain regions of the rat. Binding to a lysed P2 fraction from the rat cerebral cortex reached equilibrium within 4 min at 37°C and was reversible (dissociation half-time 4.9 min). At least two binding affinities were found in P2 fractions from the cerebral cortex (Kd:21 nM and 980 nM), striatum (Kd:28 nM and 690 nM), and cerebellum (Kd:22 nM and 833 nM). High affinity Bmax values were highest in striatum (1.17 pmol/mg protein), followed by cerebellum (0.67 pmol/mg protein), and cerebral cortex (0.38 pmol/mg protein). Low affinity Bmax values were highest in cerebellum (5.2 pmol/mg protein), with similar values for cerebral cortex (3.7 pmol/mg protein) and striatum (3.8 pmol/mg protein). High affinity but not low affinity binding in each brain region was stereospecific. Another inhibitor of vesicular ACh-transport also displaced 1-vesamicol binding potently (IC50:17 nM) and efficaciously (over 90%). Both high affinity and low affinity Bmax values for [3H]vesamicol-binding were highest in a partially purified synaptic vesicle fraction, followed by puriffied synaptosomes, crude membranes and P2 fractions. Specific binding was not observed in a mitochondria-enriched fraction. Crude membrane preparations of primary, neuron-enriched whole brain cultures also exhibited high (64 nM) and low affinity (1062 nM) [3H]vesamicol binding. Isoosmotic replaement of 0.18 M KCl in the binding-buffer with NaCl had no effect on binding. These results suggest that at least some high affinity [3H]vesamicol binding in rat brain preparations may be associated with synaptic vesicles, some of which may not be cholinergic in origin.  相似文献   

14.
Norharman competitively inhibits specific binding of [3H]-diazepam in mouse brain homogenates. In vivo this β-carboline produces a striking rigid catatonic-like appearance which is abolished by diazepam. It also causes a rapid tremor but has little anticonvulsant effect. Measurement of in vivo concentrations and receptor occupancy demonstrate that these biological effects occur at doses which occupy a large proportion of benzo-diazepine receptors. It may represent a ligand of the benzo-diazepine receptors whose effects are opposite those of diazepam.  相似文献   

15.
Incubation of radiolabeled L-glutamic acid, a putative central excitatory neurotransmitter, in 50 mM Tris-acetate buffer (pH 7.4) at 30 degrees C in the absence of brain synaptic membranes resulted in a significant adsorption of the radioactivity to glass fiber filters routinely employed to trap the bound ligand in receptor binding assays. The adsorption was not only eliminated by the inclusion of L-isomers of structurally related amino acids, but also inhibited by that of most presumed agonists and antagonists for the brain glutamate receptors. This displaceable adsorption was a temperature-dependent nonreversible, and saturable phenomenon. Scatchard analysis of these data revealed that the adsorption consisted of a single component with an apparent dissociation constant of 73 nM. The displaceable adsorption was significantly attenuated by a concurrent incubation with papain, pronase E, and phospholipase C. A significant amount of the radioactivity was detected in the pass-through fraction of the Dowex column following an application of the reaction mixture incubated with purified [3H]glutamate at 30 degrees C for 60 min in the absence of membranous proteins added. Complete abolition of the displaceable adsorption resulted from the use of incubation buffer boiled at 100 degrees C as well as filtered through a nitrocellulose membrane filter with a pore size of 0.45 micron immediately before use. These results suggest that the displaceable adsorption may be attributable to the radioactive metabolite of [3H]glutamate by microorganisms contaminating the Tris-acetate buffer. This might in part contribute to some of the controversial results with regard to receptor binding studies on acidic amino acids.  相似文献   

16.
M E Goldman  J J Pisano 《Life sciences》1985,37(14):1301-1308
Phospholipase A2 from several sources inhibited [3H]nitrendipine binding to membranes from brain, heart and ileal longitudinal muscle. The enzymes from bee venom and Russell's viper venom were most potent, having IC50 values of approximately 5 and 14 ng/ml, respectively, in all three membrane preparations. Inhibition of binding by bee venom phospholipase A2 was time- and dose-dependent. Mastoparan, a known facilitator of phospholipase A2 enzymatic activity, shifted the bee venom phospholipase A2 dose-response curve to the left. Pretreatment of brain membranes with bee venom phospholipase A2 (10 ng/ml) for 15 min caused a 2-fold increase in the Kd without changing the Bmax compared with untreated membranes. Extension of the preincubation period to 30 min caused no further increase in the Kd but significantly decreased the Bmax to 71% the value for untreated membranes. [3H]Nitrendipine, preincubated with bee venom phospholipase A2, was recovered and found to be fully active, indicating that the phospholipase A2 did not modify the ligand. It is concluded that phospholipase A2 acts on the membrane at or near the [3H]nitrendipine binding site and that phospholipids play a key role in the interactions of 1,4 dihydropyridine calcium channel antagonists with the dihydropyridine binding site.  相似文献   

17.
[3H]U69,593 and [3H]ethylketazocine (mu + delta suppressed) binding was measured in homogenates of guinea-pig brain. Both ligands bind with high affinity to a single class of opioid sites. The relative equilibrium dissociation constant (KD) for [3H]U69,593 is 1.15 nM, while [3H]ethylketazocine has a KD value of 0.33 nM. Their respective maximum binding capacities are 4.49 and 4.48 pmol/g of wet tissue. Various mu-selective, delta-selective, kappa-selective, and nonselective opioids were tested in competition studies against the binding of [3H]U69,593 or [3H]ethylketazocine (in the presence of mu- and delta-blockers) to measure their relative affinity. [D-Ala2, MePhe4,Gly5-ol]enkephalin (mu-selective) has low affinity (600-3000 nM) and [D-Pen2,D-Pen5]enkephalin and [D-Ser2, Leu5, Thr6]enkephalin (delta-selective) have very low affinities (greater than 20,000 nM) at the sites labelled with [3H]U69,593 or [3H]ethylketazocine. On the other hand, unlabelled U69,593, U50,488H, and tifluadom (all three kappa-selective substances) display high affinity (1-5 nM) at those sites. Nonselective opioids, such as bremazocine, levorphanol, and ethylketazocine show similar affinities at the sites labelled with [3H]U69,593 and at the sites labelled with [3H]ethylketazocine. These data indicate that [3H]U69,593 is a selective high-affinity ligand for the same sites that are labelled with [3H]ethylketazocine (in the presence of mu- and delta-blockers) and that these are kappa-sites.  相似文献   

18.
[3H]Spiperone ([3H]SPI) binding sites in rat or bovine striata have been solubilized using CHAPS or digitonin detergents. Solubilized sites retained the binding characteristics of those in native membrane preparations. The same solubilized material, however, did not bind [3H]tyramine ([3H]PTA), thus indicating that [3H]PTA binding sites and DA receptors are different chemico-physical entities. In membrane preparations or crude synaptosomes obtained from the c.striatum of neonatally-rendered hypothyroid rats, when central DA-pathways are impaired, both [3H]PTA binding and [3H]DA uptake processes were markedly decreased, with no effect on [3H]mazindol ([3H]MAZ) binding, compared to euthyroids. Reserpine, a well-known inhibitor of DA-uptake into a variety of secretory vesicles, and a potent in vivo andin vitro inhibitor of [3H]PTA binding, did not affect the [3H]MAZ binding process. This further supported the suggestion that while [3H]PTA binding sites are almost totally associated with the vesicular transporter for DA, [3H]MAZ does label a site involved in the DA-translocation across the neuronal membrane. The latter process seems to be rather insensitive to thyroid hypofunction, when however the intracellular storage of DA might be consistently impaired. In conclusion, PTA might be well exploited as a marker of the DA vesicular transporter through its molecular characterization, whenever possible.Special issue dedicated to Dr. Paola S. Timiras  相似文献   

19.
The influence of prior incubation on [3H]tryptamine binding was investigated in rat brain synaptic plasma membranes. A 55 min preincubation of the membranes at 37 degrees C induced an approx. 2.4-fold increase in the specific binding of [3H]ligand to the subsequently washed preparations and this phenomenon was quite temperature-dependent. On the other hand, the proportion of nonspecific binding sites was significantly decreased by 70% of the original sites within 20 min of the start of preincubation. Pargyline, ascorbic acid, EGTA, metal ions (Ca2+, Mg2+, Na+) and guanine nucleotides, included in the preincubation buffer, were all inactive on the stimulation of [3H]tryptamine binding, while the pretreatment of membranes with glutaraldehyde antagonized the augmentation of this binding. Furthermore, it was revealed that the Scatchard plot of the [3H]tryptamine binding preincubated at 0 degree C conformed to a straight line (KD = 33.1 nM, Bmax = 543 fmoles/mg protein), whereas a curvilinear Scatchard plot was obtained at 37 degrees C preincubation. Nonlinear regression analysis of the latter resulted in apparent KD (nM) & Bmax (fmoles/mg protein) values of 0.45 & 102.7 and 33.7 & 603.4 for the high and low affinity sites, respectively. All these observations lead to the inference that the preincubation-induced increase in [3H]tryptamine binding (i.e., nearly high affinity proportion of sites) may occur as a result of temperature-sensitive interconvertible conformational changes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号