首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The conformational stability of the histidine-containing phosphocarrier protein (HPr) from Bacillus subtilis has been determined using a combination of thermal unfolding and solvent denaturation experiments. The urea-induced denaturation of HPr was monitored spectroscopically at fixed temperatures and thermal unfolding was performed in the presence of fixed concentrations of urea. These data were analyzed in several different ways to afford a measure of the cardinal parameters (delta Hg, Tg, delta Sg, and delta Cp) that describe the thermodynamics of folding for HPr. The method of Pace and Laurents (Pace CN, Laurents DV, 1989, Biochemistry 28:2520-2525) was used to estimate delta Cp as was a global analysis of the thermal- and urea-induced unfolding data. Each method used to analyze the data gives a similar value for delta Cp (1,170 +/- 50 cal mol-1K-1). Despite the high melting temperature for HPr (Tg = 73.5 degrees C), the maximum stability of the protein, which occurs at 26 degrees C, is quite modest (delta Gs = 4.2 kcal mol-1). In the presence of moderate concentrations of urea, HPr exhibits cold denaturation, and thus a complete stability curve for HPr, including a measure of delta Cp, can be achieved using the method of Chen and Schellman (Chen B, Schellman JA, 1989, Biochemistry 28:685-691). A comparison of the different methods for the analysis of solvent denaturation curves is provided and the effects of urea on the thermal stability of this small globular protein are discussed. The methods presented will be of general utility in the characterization of the stability curve for many small proteins.  相似文献   

2.
The equilibrium behaviour of the bovine phosphatidylethanolamine-binding protein (PEBP) has been studied under various conditions of pH, temperature and urea concentration. Far-UV and near-UV CD, fluorescence and Fourier transform infrared spectroscopies indicate that, in its native state, PEBP is mainly composed of beta-sheets, with Trp residues mostly localized in a hydrophobic environment; these results suggest that the conformation of PEBP in solution is similar to the three-dimensional structure determined by X-ray crystallography. The pH-induced conformational changes show a transition midpoint at pH 3.0, implying nine protons in the transition. At neutral pH, the thermal denaturation is irreversible due to protein precipitation, whereas at acidic pH values the protein exhibits a reversible denaturation. The thermal denaturation curves, as monitored by CD, fluorescence and differential scanning calorimetry, support a two-state model for the equilibrium and display coincident values with a melting temperature Tm = 54 degrees C, an enthalpy change DeltaH = 119 kcal.mol-1 and a free energy change DeltaG(H2O, 25 degrees C) = 5 kcal.mol-1. The urea-induced unfolding profiles of PEBP show a midpoint of the two-state unfolding transition at 4.8 M denaturant, and the stability of PEBP is 4.5 kcal.mol-1 at 25 degrees C. Moreover, the surface active properties indicate that PEBP is essentially a hydrophilic protein which progressively unfolds at the air/water interface over the course of time. Together, these results suggest that PEBP is well-structured in solution but that its conformation is weakly stable and sensitive to hydrophobic conditions: the PEBP structure seems to be flexible and adaptable to its environment.  相似文献   

3.
J W Shriver  B D Sykes 《Biochemistry》1982,21(12):3022-3028
A new fluorine-containing reagent has been synthesized and used to specifically label the reactive sulfhydryl [sulfhydryl-1 (SH1)] of myosin subfragment 1 (S-1). The labeled S-1 (S-1-CF3) demonstrates activated calcium and magnesium adenosinetriphosphatase (ATPase) activities relative to S-1 and a lower potassium ethylenediaminetetraacetate (EDTA) ATPase activity. Maximal effect is obtained with the modification of one thiol per S-1. The 19F NMR spectrum of S-1 CF3 contains only one resonance with a line width of 110 Hz, which implies a rotational correlation time of 2.3 X 10(-7) s. The chemical shift of this resonance is sensitive to temperature, PH, ionic strength, and nucleotides bound in the active site. The temperature dependence of the chemical shift clearly indicates two limiting states for the S-1-CF3 with a highly temperature-dependent equilibrium between 5 and 40 degrees C. The low-temperature state appears to be identical with the state resulting from the binding of Mg.ADP or Mg.AMPPNP at 25 degree C. The energetics of the conformational change have been studied under various conditions. At pH 7 in 25 mM cacodylate, 0.1 M KCl, and 1 mM EDTA, delta H degree = 30 kcal/mol and delta S degree = 105 cal deg-1 mol-1. A decrease in pH to 6.5 results in an increased population of the low-temperature state with delta H degree = 31 kcal/mol and delta S degree = 107 cal deg-1 mol-1. Similarly, the low-temperature state is favored by low ionic strength. In 5.8 mM piperazine-N,N'bis(2-ethanesulfonic acid) and 1 mM EDTA (pH 7), delta H degree = 8 kcal/mol and delta S degree = 27 cal deg-1 mol-1. We have also obtained 19F NMR spectra of S-1-CF3 in D2O solution with 30% ethylene glycol at pH 7.1. Increasing concentrations of ethylene glycol progressively stabilize the high-temperature states.  相似文献   

4.
Differential scanning calorimetry has been used to investigate the thermodynamics of denaturation of ribonuclease T1 as a function of pH over the pH range 2-10, and as a function of NaCl and MgCl2 concentration. At pH 7 in 30 mM PIPES buffer, the thermodynamic parameters are as follows: melting temperature, T1/2 = 48.9 +/- 0.1 degrees C; enthalpy change, delta H = 95.5 +/- 0.9 kcal mol-1; heat capacity change, delta Cp = 1.59 kcal mol-1 K-1; free energy change at 25 degrees C, delta G degrees (25 degrees C) = 5.6 kcal mol-1. Both T1/2 = 56.5 degrees C and delta H = 106.1 kcal mol-1 are maximal near pH 5. The conformational stability of ribonuclease T1 is increased by 3.0 kcal/mol in the presence of 0.6 M NaCl or 0.3 M MgCl2. This stabilization results mainly from the preferential binding of cations to the folded conformation of the protein. The estimates of the conformational stability of ribonuclease T1 from differential scanning calorimetry are shown to be in remarkably good agreement with estimates derived from an analysis of urea denaturation curves.  相似文献   

5.
The irreversible unfolding of covalently inhibited swine pepsin by urea was studied by spectrophotometric and viscosity measurements. At pH 4.5 and 25 degrees C in 8 M urea, a stable intermediate form of the protein was detected. It differed from the native protein by a slight loss of secondary structure and an increased intrinsic viscosity ([pi] = 7.5 mL g-1), indicating the intermediate to have an increased molecular volume or to be more asymmetric in shape. The protein was transformed into a random coil form by increases of temperature and pH. Comparison with other results suggested that at pH 6 pepsin is less stable than its inactive precursor, pepsinogen, by about 3 Kcal mol-1 (1 cal = 4.187 J).  相似文献   

6.
To investigate the pH dependence of the conformational stability of barnase, urea denaturation curves were determined over the pH range 2-10. The maximum conformational stability of barnase is 9 kcal mol-1 and occurs between pH 5 and 6. The dependence of delta G on urea concentration increases from 1850 cal mol-1 M-1 at high pH to about 3000 cal mol-1 M-1 near pH 3. This suggests that the unfolded conformations of barnase become more accessible to urea as the net charge on the molecule increases. Previous studies suggested that in 8 M urea barnase unfolds more completely than ribonuclease T1, even with the disulfide bonds broken [Pace, C.N., Laurents, D. V., & Thomson, J.A. (1990) Biochemistry 29, 2564-2572]. In support of this, solvent perturbation difference spectroscopy showed that in 8 M urea the Trp and Tyr residues in barnase are more accessible to perturbation by dimethyl sulfoxide than in ribonuclease T1 with the disulfide bonds broken.  相似文献   

7.
We have used thermal and chemical denaturation to characterize the thermodynamics of unfolding for turkey ovomucoid third domain (OMTKY3). Thermal denaturation was monitored spectroscopically at a number of wave-lengths and data were subjected to van't Hoff analysis; at pH 2.0, the midpoint of denaturation (Tm) occurs at 58.6 +/- 0.4 degrees C and the enthalpy of unfolding at this temperature (delta Hm) is 40.8 +/- 0.3 kcal/mol. When Tm was perturbed by varying pH and denaturant concentration, the resulting plots of delta Hm versus Tm yield a mean value of 590 +/- 120 cal/(mol.K) for the change in heat capacity upon unfolding (delta Cp). A global fit of the same data to an equation that includes the temperature dependence for the enthalpy of unfolding yielded a value of 640 +/- 110 cal/(mol.K). We also performed a variation of the linear extrapolation method described by Pace and Laurents, which is an independent method for determining delta Cp (Pace, C.N. & Laurents, D., 1989, Biochemistry 28, 2520-2525). First, OMTKY3 was thermally denatured in the presence of a variety of denaturant concentrations. Linear extrapolations were then made from isothermal slices through the transition region of the denaturation curves. When extrapolated free energies of unfolding (delta Gu) were plotted versus temperature, the resulting curve appeared linear; therefore, delta Cp could not be determined. However, the data for delta Gu versus denaturant concentration are linear over an extraordinarily wide range of concentrations. Moreover, extrapolated values of delta Gu in urea are identical to values measured directly.  相似文献   

8.
To investigate the pH dependence of the conformational stability of ribonucleases A and T1, urea and guanidine hydrochloride denaturation curves have been determined over the pH range 2-10. The maximum conformational stability of both proteins is about 9 kcal/mol and occurs near pH 4.5 for ribonuclease T1 and between pH 7 and 9 for ribonuclease A. The pH dependence suggests that electrostatic interactions among the charged groups make a relatively small contribution to the conformational stability of these proteins. The dependence of delta G on urea concentration increases from about 1200 cal mol-1 M-1 at high pH to about 2400 cal mol-1 M-1 at low pH for ribonuclease A. This suggests that the unfolded conformations of RNase A become more accessible to urea as the net charge on the molecule increases. For RNase T1, the dependence of delta G on urea concentration is minimal near pH 6 and increases at both higher and lower pH. An analysis of information of this type for several proteins in terms of a model developed by Tanford [Tanford, C. (1964) J. Am. Chem. Soc. 86, 2050-2059] suggests that the unfolded states of proteins in urea and GdnHCl solutions may differ significantly in the extent of their interaction with denaturants. Thus, the conformations assumed by unfolded proteins may depend to at least some extent on the amino acid sequence of the protein.  相似文献   

9.
Heat-denaturation of tryptophan synthase alpha-subunit from E. coli and two mutant proteins (Glu 49 leads to Gln or Ser; called Gln 49 or Ser 49, respectively) has been studied by the scanning microcalorimetric method at various pH, in an attempt to elucidate the role of individual amino acid residues in the conformational stability of a protein. The partial specific heat capacity in the native state at 20 degrees, Cp20, has been found to be (0.43 +/- 0.02) cal . k-1 . g-1, the unfolding heat capacity change, delta dCp, (0.10 +/- 0.01) cal . K-1 . g-1, and the unfolding enthalpy value extrapolated to 110 degrees, delta dh110, (9.3 +/- 0.5) cal . g-1 for the three proteins. The value of Cp20 was larger than those found for "fully compact protein" and that of delta dh110 was smaller. Unfolding Gibbs energy, delta dG at 25 degrees for Wild-type, Gln 49, and Ser 49 were 5.8, 8.4, and 7.1 kcal . mol-1 at pH 9.3, respectively. Unfolding enthalpy, delta dH, of the three proteins seemed to be the same and equal to (23.2 +/- 1.2) kcal . mol-1 at 25 degrees. As a consequence of the same value of delta dH and the different value in delta dG, substantial differences in unfolding entropy, delta dS, were found for the three proteins. The values of delta dG for the three proteins at 25 degrees coincided with those from equilibrium methods of denaturation by guanidine hydrochloride.  相似文献   

10.
D K Blumenthal  J T Stull 《Biochemistry》1982,21(10):2386-2391
The reversible association of Ca42+-calmodulin with the inactive catalytic subunit of myosin light chain kinase results in the formation of the catalytically active holoenzyme complex [Blumenthal, D. K., & Stull, J. T. (1980) Biochemistry 19, 5608--5614]. The present study was undertaken in order to determine the effects of pH, temperature, and ionic strength on the processes of activation and catalysis. The catalytic activity of myosin light chain kinase, when fully activated by calmodulin, exhibited a broad pH optimum (greater than 90% of maximal activity from pH 6.5 to pH 9.0), showed only a slight inhibition by moderate ionic strengths (less than 20% inhibition at mu = 0.22), and displayed a marked temperature dependence (Q10 congruent to 2; Ea = 10.4 kcal mol-1). Thermodynamic parameters calculated from Arrhenius plots indicate that the Gibb's energy barrier associated with the rate-limiting step of catalysis is primarily enthalpic. The process of kinase activation by calmodulin had a narrower pH optimum (pH 6.0--7.5) than did catalytic activity, was markedly inhibited by increasing ionic strength (greater than 70% inhibition at mu = 0.22), and exhibited nonlinear van't Hoff plots. Between 10 and 20 degrees C, activation was primarily entropically driven (delta S degrees congruent to 40 cal mol-1 deg-1; delta H degrees = -900 cal mol-1), but between 20 and 30 degrees C, enthalpic factors predominated in driving the activation process (delta S degrees congruent to 10 cal mol-1 deg-1; delta H degrees = -9980 cal mol-1). The apparent change in heat capacity (delta Cp) accompanying activation was estimated to be -910 cal mol-1 deg-1. On the basis of these data we propose that although hydrophobic interactions between calmodulin and the kinase are necessary for the activation of the enzyme, other types of interactions such as hydrogen bonding, ionic, and van der Waals interactions also make significant and probably obligatory contributions to the activation process.  相似文献   

11.
The thermotropic properties of triolein-rich, low-cholesterol dipalmitoyl phosphatidylcholine (DPPC) emulsion particles with well-defined chemical compositions (approximately 88% triolein, 1% cholesterol, 11% diacyl phosphatidylcholine) and particle size distributions (mean diameter, approximately 1000-1100 A) were studied in the absence and presence of apolipoprotein-A1 by a combination of differential scanning and titration calorimetry. The results are compared to egg yolk PC emulsions of similar composition and size. Isothermal titration calorimetry at 30 degrees C was used to saturate the emulsion surface with apo-A1 and rapidly quantitate the binding constants (affinity Ka = 11.1 +/- 3.5 x 10(6) M-1 and capacity N = 1.0 +/- 0.09 apo-A1 per 1000 DPPC) and heats of binding (enthalpy H = -940 +/- 35 kcal mol-1 apo-A1 or -0.92 +/- 0.12 kcal mol-1 DPPC). The entropy of association is -3070 cal deg-1 mol-1 protein or -3 cal deg-1 mol-1 DPPC. Without protein on the surface, the differential scanning calorimetry heating curve of the emulsion showed three endothermic transitions at 24.3 degrees C, 33.0 degrees C, and 40.0 degrees C with a combined enthalpy of 1.53 +/- 0.2 kcal mol-1 DPPC. With apo-A1 on the surface, the heating curve showed the three transitions more clearly, in particular, the second transition became more prominent by significant increases in both the calorimetric and Van't Hoff enthalpies. The combined enthalpy was 2.70 +/- 0.12 kcal mol-1 DPPC and remained constant upon repeated heating and cooling. Indicating that the newly formed DPPC emulsion-Apo-A1 complex is thermally reversible during calorimetry. Thus there is an increase in delta H of 1.17 kcal mol-1 DPPC after apo-A1 is bound, which is roughly balanced by the heat released during binding (-0.92 kcal) of apo-A1. The melting entropy increase, +3.8 cal deg-1 mol-1 DPPC of the three transitions after apo-A1 binds, also roughly balances the entropy (-3 cal deg-1 mol-1 DPPC) of association of apo-A1. These changes indicate that apo-A1 increases the amount of ordered gel-like phase on the surface of DPPC emulsions when added at 30 degrees C. From the stoichiometry of the emulsions we calculate that the mean area of DPPC at the triolein/DPPC interface is 54.5 A2 at 41 degrees C and 54.2 A2 at 30 degrees C. The binding of apo-A1 at 30 degrees C to the emulsion reduces the surface area per DPPC molecule from 54.2 A2 to 50.8 A2. At 30 degrees apo-A1 binds with high affinity and low capacity to the surface of DPPC emulsions and increases the packing density of the lipid domain to which it binds. Apo-A1 was also titrated onto DPPC emulsions at 45 degrees C. This temperature is above the gel liquid crystal transition. No heat was released or adsorbed. Furthermore, egg yolk phosphatidylcholine emulsions of nearly identical composition were also titrated at 30 degrees C with apo-A1 and were euthermic. Association constants were previously measured using a classical centrifugation assay and were used to calculate the entropy of apo-A1 binding (+28 cal deg-1 mol-1 apo-A1). This value indicates that apo-A1 binding to a fluid surface like egg yolk phosphatidylcholine or probably DPPC at 45 degrees C is hydrophobic and is consistent with hydrocarbon lipid or protein moities coming together and excluding water. Thus the binding of apo-A1 to partly crystalline surfaces is entropically negative and increases the order of the already partly ordered phases, whereas binding to liquid surfaces is mainly an entropically driven hydrophobic process.  相似文献   

12.
J Carey  O C Uhlenbeck 《Biochemistry》1983,22(11):2610-2615
A filter retention assay is used to examine the kinetic and equilibrium properties of the interaction between phage R17 coat protein and its 21-nucleotide RNA binding site. The kinetics of the reaction are consistent with the equilibrium association constant and indicate a diffusion-controlled reaction. The temperature dependence of Ka gives delta H = -19 kcal/mol. This large favorable delta H is partially offset by a delta S = -30 cal mol-1 deg-1 to give a delta G = -11 kcal/mol at 2 degrees C in 0.19 M salt. The binding reaction has a pH optimum centered around pH 8.5, but pH has no effect on delta H. While the interaction is insensitive to the type of monovalent cation, the affinity decreases with the lyotropic series among monovalent anions. The ionic strength dependence of Ka reveals that ionic contacts contribute to the interaction. Most of the binding free energy, however, is a result of nonelectrostatic interactions.  相似文献   

13.
Thermodynamic study of yeast phosphoglycerate kinase   总被引:2,自引:0,他引:2  
Enthalpies of binding of MgADP, MgATP, and 3-phosphoglycerate to yeast phosphoglycerate kinase have been determined by flow calorimetry at 9.95-32.00 degrees C. Combination of these data with published dissociation constants [Scopes, R.K. (1978) Eur. J. Biochem. 91, 119-129] yielded the following thermodynamic parameters for the binding of 3-phosphoglycerate at 25 degrees C: delta Go = -6.76 +/- 0.11 kcal mol-1, delta H = 3.74 +/- 0.08 kcal mol-1, delta So = 35.2 +/- 0.6 cal K-1 mol-1, and delta Cp = 0.12 +/- 0.32 kcal K-1 mol-1. The thermal unfolding of phosphoglycerate kinase in the absence and presence of the ligands listed above was studied by differential scanning calorimetry. The temperature of half-completion, t 1/2, of the denaturation and the denaturational enthalpy are increased by the binding of the ligands, the increase in t 1/2 being a manifestation of Le Chatelier's principle and that in enthalpy reflecting the enthalpy of dissociation of the ligand. Only one denaturational peak was observed under all conditions, and in contrast with the case of yeast hexokinase [Takahashi, K., Casey, J.L., & Sturtevant, J.M. (1981) Biochemistry 20, 4693-4697], no definitive evidence for the unfolding of more than one domain was obtained.  相似文献   

14.
Felitsky DJ  Record MT 《Biochemistry》2003,42(7):2202-2217
Thermodynamic and structural evidence indicates that the DNA binding domains of lac repressor (lacI) exhibit significant conformational adaptability in operator binding, and that the marginally stable helix-turn-helix (HTH) recognition element is greatly stabilized by operator binding. Here we use circular dichroism at 222 nm to quantify the thermodynamics of the urea- and thermally induced unfolding of the marginally stable lacI HTH. Van't Hoff analysis of the two-state unfolding data, highly accurate because of the large transition breadth and experimental access to the temperature of maximum stability (T(S); 6-10 degrees C), yields standard-state thermodynamic functions (deltaG(o)(obs), deltaH(o)(obs), deltaS(o)(obs), deltaC(o)(P,obs)) over the temperature range 4-40 degrees C and urea concentration range 0 相似文献   

15.
Denaturation of the protein phycocyanin in urea solution was investigated by microcalorimetry, ultraviolet and visible spectroscopy, circular dichroism and sedimentation equilibrium. The results consistently demonstrated that in the presence of 7 M urea this protein is completely denatured. By assumings a two-state mechanism, an apparent free energy of unfolding at zero denaturant concentration, (formula: see text) was found to be 4.4 kcal/mole at pH 6.0 and 25 degrees C. By microcalorimetry the enthalpy of denaturation of phycocyanin app was found to be -230 kcal/mole at 25 degrees C. The relatively large negative enthalpy change results from protein unfolding and changes in protein solvation.  相似文献   

16.
Y Chi  T K Kumar  H M Wang  M C Ho  I M Chiu  C Yu 《Biochemistry》2001,40(25):7746-7753
The thermodynamic parameters characterizing the conformational stability of the human acidic fibroblast growth factor (hFGF-1) have been determined by isothermal urea denaturation and thermal denaturation at fixed concentrations of urea using fluorescence and far-UV CD circular dichroism (CD) spectroscopy. The equilibrium unfolding transitions at pH 7.0 are adequately described by a two-state (native <--> unfolded state) mechanism. The stability of the protein is pH-dependent, and the protein unfolds completely below pH 3.0 (at 25 degrees C). hFGF-1 is shown to undergo a two-state transition only in a narrow pH range (pH 7.0-8.0). Under acidic (pH <6.0) and basic (pH >8.0) conditions, hFGF-1 is found to unfold noncooperatively, involving the accumulation of intermediates. The average temperature of maximum stability is determined to be 295.2 K. The heat capacity change (DeltaC(p)()) for the unfolding of hFGF-1 is estimated to be 2.1 +/- 0.5 kcal.mol(-1).K(-1). Temperature denaturation experiments in the absence and presence of urea show that hFGF-1 has a tendency to undergo cold denaturation. Two-dimensional (1)H-(15)N HSQC spectra of hFGF-1 acquired at subzero temperatures clearly show that hFGF-1 unfolds under low-temperature conditions. The significance of the noncooperative unfolding under acidic conditions and the cold denaturation process observed in hFGF-1 are discussed in detail.  相似文献   

17.
Conformational changes of apo A-1, the principal apoprotein of human plasma high density lipoprotein, have been studied by differential scanning calorimetry and ultraviolet difference spectroscopy as a function of temperature, pH, concentration of apoprotein, and urea concentration. Calorimetry shows that apo A-1 (5 to 40 mg/ml, pH 9.2) undergoes a two-state, reversible denaturation (enthalpy = 64 +/- 8.9 kcal/mole), between 43--71 degrees (midpoint temperature, Tm = 54 degrees), associated with a rise in heat capacity (deltaCvd) of 2.4 +/- 0.5 kcal/mole/degrees C. Apo A-1 (0.2 to 0.4 mg/ml, pH 9.2) develops a negative difference spectrum between 42--70 degrees, with Tm = 53 degrees. The enthalpy (deltaH = 59 +/- 5.7 kcal/mole at Tm) and heat capacity change (2.7 +/- 0.9 kcal/mole/degrees C) in the spectroscopic experiments were not significantly different from the calorimetric values. Below pH 9 and above pH 11, the calorimetric Tm and deltaH of denaturation are decreased. In the pH range of reversible denaturation (6.5 to 11.8), delatH and Tm are linearly related, showing that the heat capacity change (ddeltaH/dT) associated with denaturation is independent of Tm. In urea solutions, the calorimetric Tm and deltaH of denaturation are decreased. At 25 degrees, apo A-1 develops a negative difference spectrum between 1.4 and 3 M urea. Fifty per cent of the spectral change occurs in 2.4 M urea, which corresponds to the urea concentration obtained by extrapolation of the calorimetric Tm to 25 degrees. In urea solution of less than 0.75 M there is hyperchromicity at 285 nm (delta epsilon = 264 in 0.75 M urea), indicating strong interaction of aromatic amino acid residues in the native molecule with the solvent. Spectrophotometric titration of apo A-1 shows that 6.6 of the 7 tyrosine groups of apo A-1 titrate at pH less than 11.9, with similar titration curves obtained in aqueous solutions and in 6 M urea. The free energy of stabilization (deltaG) of the native conformation of apo A-1 was estimated, (a) at 37 degrees, using the calorimetric deltaA and deltaCvd, and (b) at 25 degrees, by extrapolation of spectroscopic data to zero urea concentration. The values (deltaG (37 degrees) = 2.4 and deltaG (25 degrees) = 2.7 kcal/mole) are small compared to typical globular proteins, indicating that native apo A-1 has a loosely folded tertiary structure. The low values of deltaG reflect the high degree of exposure of hydrophobic areas in the native protein molecule. The loosely folded conformation of apo A-1 allows extensive binding of lipid, since this can involve both surface hydrophobic sites and hydrophobic areas exposed by a cooperative, low energy unfolding process.  相似文献   

18.
Thermodynamics of reversible monomer-dimer association of tubulin   总被引:1,自引:0,他引:1  
D L Sackett  R E Lippoldt 《Biochemistry》1991,30(14):3511-3517
The equilibrium between the rat brain tubulin alpha beta dimer and the dissociated alpha and beta monomers has been studied by analytical ultracentrifugation with use of a new method employing short solution columns, allowing rapid equilibration and hence short runs, minimizing tubulin decay. Simultaneous analysis of the equilibrium concentration distributions of three different initial concentrations of tubulin provides clear evidence of a single equilibrium characterized by an association constant, Ka, of 4.9 X 10(6) M-1 (Kd = 2 X 10(-7) M) at 5 degrees, corresponding to a standard free energy change on association delta G degrees = -8.5 kcal mol-1. Colchicine and GDP both stabilize the dimer against dissociation, increasing the Ka values (at 4.5 degrees C) to 20 X 10(6) and 16 X 10(6) M-1, respectively. Temperature dependence of association was examined with multiple three-concentration runs at temperatures from 2 to 30 degrees C. The van't Hoff plot was linear, yielding positive values for the enthalpy and entropy changes on association, delta S degrees = 38.1 +/- 2.4 cal deg-1 mol-1 and delta H degrees = 2.1 +/- 0.7 kcal mol-1, and a small or zero value for the heat capacity change on association, delta C p degrees. The entropically driven association of tubulin monomers is discussed in terms of the suggested importance of hydrophobic interactions to the stability of the monomer association and is compared to the thermodynamics of dimer polymerization.  相似文献   

19.
Thermal denaturation of Streptomyces subtilisin inhibitor was studied by means of circular dichroism (CD) measurements in the far-UV and near-UV regions. The denaturation was found to be largely reversible; the partial irreversibility was associated with a slight loss of the inhibitory activity. Difference CD spectra in the far-UV region clarified the existence of two distinct steps in the thermal transition of the secondary structure. The first step below 80 degrees C is attributable to a partial conformational change in the alpha-helix portion, whereas the second step between 80 degrees C and 94 degrees C is attributable to a major conformational change involving the beta-sheet portion. On the assumption that the major denaturation involves dissociation of the SSI into its subunits, the enthalpy and entropy changes were determined to be 216 kcal X mol-1 and to be 603 cal X deg-1 X mol-1, respectively.  相似文献   

20.
The unfolding equilibrium of beta-trypsin induced by thermal and chemical denaturation was thermodynamically characterized. Thermal unfolding equilibria were monitored using UV absorption and both far- and near-UV CD spectroscopy, while fluorescence was used to monitor urea-induced transitions. Thermal and urea transition curves are reversible and cooperative and both sets of data can be reasonably fitted using a two-state model for the unfolding of this protein. Plots of the fraction denatured, calculated from thermal denaturation curves at different wavelengths, versus temperature are coincident. In addition, the ratio of the enthalpy of denaturation obtained by scanning calorimetry to the van't Hoff enthalpy is close to unity, which supports the two-state model. Considering the differences in experimental approaches, the value for the stability of beta-trypsin estimated from spectroscopic data (deltaGu = 6.0 +/- 0.2 kcal/mol) is in reasonable agreement with the value calculated from urea titration curves (deltaGUH2O = 5.5 +/- 0.3 kcal/mol) at pH 2.8 and 300 degrees K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号