首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 108 毫秒
1.
Tomato (Lycopersicon esculentum Mill.) seedlings, susceptible (cv. Pearson A-I Improved) and resistant (cv. Pearson Improved) to race 1 Fusarium oxysporum f. sp. lycopersici (Sacc.) Snyd &Hans., were inoculated with Meloidogyne javanica (Trueb) Chitwood second-stage juveniles and 3 weeks later with race 1 F. oxysporum f. sp. lycopersici spores. One week after fungal inoculation, no fungus was visible in root tissue of the tomato cultivars and the giant cells were normal. Two weeks after fungal inoculation, abundant hyphae were visible in xylem tissues of Fusarium-susceptible but not of Fusarium-resistant plants. In susceptible plants, giant cell degeneration occurred, characterized by membrane and organelle disruption. In addition, where hyphae were in direct contact with the giant cell, dissolution of the giant cell wall occurred. Three weeks after fungal inoculation, fungal hyphae and spores were visible inside xylem tissues and giant cells in Fusarium-susceptible plants and in xylem tissue of the resistant plants. In susceptible and resistant plants, giant cell degeneration was apparent. Giant cell walls were completely broken down in Fusarium-susceptible tomato plants. In both cultivars infected by Fusarium, giant cell nuclei became spherical and dark inclusions occurred within the chromatin material which condensed adjacent to the fragmented nuclear membrane. No such ultrastructural changes were seen in the giant cells of control plants inoculated with nematode alone. Giant cell deterioration in both cultivars is probably caused by toxic fungal metabolites.  相似文献   

2.
Fusarium crown and root rot of tomato (Lycopersicon esculentum) caused by Fusarium oxysporum f. sp. radicis‐lycopersici is a new devastative disease of tomato greenhouse crops in Tunisia. Nothing is known neither about the population of this pathogen in this region, nor about the population of F. oxysporum f. sp. lycopersici the causal agent of Fusarium wilt of tomato. In order to examine the genetic relatedness among the F. oxysporum isolates by intergenic spacer restriction fragment length polymorphism (IGS‐RFLP) analysis and to elucidate the origin of the formae specialesradicis‐lycopersici in Tunisia by looking for genetic similarity of Tunisians isolates with isolates from a foreign source, the genetic diversity among F. oxysporum f. sp. radicis‐lycopersici and F. oxysporum f. sp. lycopersici populations was investigated. A total of 62 isolates of F. oxysporum, obtained from symptomless tomato plants, were characterized using IGS typing and pathogenicity tests on tomato plants. All Fusarium isolates were highly pathogenic on tomato. Fusarium oxysporum f. sp. radicis‐lycopersici isolates were separated into five IGS types. From the 53 F. oxysporum f. sp. radicis‐lycopersici isolates, 34 isolates have the same IGS types (IGS type 25), and the remaining 19 isolates were distributed into four IGS types. However, the only nine isolates of F. oxysporum f. sp. lycopersici have six different IGS types. This difference of diversity between the two formae speciales suggests that F. oxysporum f. sp. radicis‐lycopersici isolates have a foreign origin and may have been accidentally introduced into Tunisia.  相似文献   

3.
The behaviour of Tomato cultures from known resistant and susceptible cultivars and lines was examined for callus growth on culture media containing increasing concentrations of Fusarium oxysporum f. sp. lycopersici race 1 culture filtrate and phytoalexin synthesis elicited by Fusarium cell wall components. A strict correlation was found between in vivo resistance to the fungus and in vitro hypersensitive response and phytoalexin induction. On the other hand in vitro tolerance to toxic filtrate does not seem in this case a good indicator of in vivo resistance to the pathogen.  相似文献   

4.
Jojoba [Simmondsia chinensis (Link) Schneider] plantations in Israel originated from vegetative propagation, planted during 1991–92, have shown symptoms of wilting and subsequent death. Verticillium dahliae was only rarely isolated from these plants and artificial inoculation showed only mild disease symptoms. Fusarium oxysporum caused severe chlorosis, desiccation, defoliation and wilt in leaves of jojoba plants, resulting in plant death. Recovery of the fungus from artificially inoculated stem cuttings and seedlings showed for the first time that F. oxysporum was the primary pathogen. Inoculated cuttings exhibited wilt within 3 weeks, while in seedlings wilt occurred 10–24 weeks after inoculation. Seedlings and cuttings of jojoba which were inoculated with other Fusarium isolates originating from different crops (F. oxysporum f. sp. vasinfectum from cotton, F. oxysporum f. sp. dianthi from carnation, F. oxysporum f. sp. lycopersici from tomato and F. oxysporum f. sp. basilicum from basil) did not develop symptoms. Moreover, cotton, tomato, melon and cucumber seedlings inoculated with several virulent F. oxysporum isolates from jojoba did not show any symptoms of wilt or defoliation. These results indicate a high degree of specificity of the Fusarium isolates from jojoba; therefore, it is suggested that this isolate be defined as F. oxysporum f. sp. simmondsia.  相似文献   

5.
18份广东香蕉种质对枯萎病的抗性评价   总被引:1,自引:0,他引:1       下载免费PDF全文
【背景】香蕉枯萎病是世界性的香蕉毁灭性病害,尚无有效药剂防控,筛选抗病品种是目前理想的防治方法。【方法】采用组培苗伤根接种法,研究了18份香蕉种质对香蕉枯萎病菌4号生理小种的抗性水平,并根据病情指数进行抗性分级。【结果】在供试的18份香蕉种质中,2份(东莞大蕉、抗枯5号)高抗,2份(碧盛、大丰)抗病,3份(抗枯1号、粉杂、农科1号)中抗,7份(粤优抗1号、广东-741、泰国B9、大蕉、台湾8号、海贡蕉、威廉斯8818)感病,4份(巴西、广东2号、广粉1号、粉蕉)高感。【结论与意义】不同香蕉种质对香蕉枯萎病菌4号生理小种的抗病性存在较大差异,本研究初步筛选出7份抗枯萎病的香蕉种质,为香蕉枯萎病抗病育种提供了依据,为病区种植香蕉品种提供了有效参考。  相似文献   

6.
Ramamoorthy  V.  Raguchander  T.  Samiyappan  R. 《Plant and Soil》2002,239(1):55-68
Pseudomonas fluorescens isolate Pf1 was found to protect tomato plants from wilt disease caused by Fusarium oxysporum f. sp. lycopersici. Induction of defense proteins and chemicals by P. fluorescens isolate Pf1 against challenge inoculation with F. oxysporum f. sp. lycopersici in tomato was studied. Phenolics were found to accumulate in bacterized tomato root tissues challenged with F. oxysporum f. sp. lycopersici at one day after pathogen challenge. The accumulation of phenolics reached maximum at the 5th day after pathogen challenge. In pathogen-inoculated plants, the accumulation started at the 2nd day and drastically decreased 4 days after the pathogen inoculation. Activities of phenylalanine ammonia-lyase (PAL), peroxidase (PO) and polyphenol oxidase (PPO) increased in bacterized tomato root tissues challenged with the pathogen at one day after pathogen challenge and activities of PAL and PO reached maximum at the 4th day while activity of PPO reached maximum at the 5th day after challenge inoculation. Isoform analysis revealed that a unique PPO1 isoform was induced and PO1 and PPO2 isoforms were expressed at higher levels in bacterized tomato root tissues challenge inoculated with the pathogen. Similarly, -1,3 glucanase, chitinase and thaumatin-like proteins (TLP) were induced to accumulate at higher levels at 3-5 days of challenge inoculation in bacterized plants. Western blot analysis showed that chitinase isoform Chi2 with a molecular weight of 46 kDa was newly induced due to P. fluorescens isolate Pf1 treatment challenged with the pathogen. TLP isoform with molecular weight of 33 kDa was induced not only in P. fluorescens isolate Pf1-treated root tissues challenged with the pathogen but also in roots treated with P. fluorescens isolate Pf1 alone and roots inoculated with the pathogen. These results suggest that induction of defense enzymes involved in phenylpropanoid pathway and accumulation of phenolics and PR-proteins might have contributed to restriction of invasion of F. oxysporum f. sp. lycopersici in tomato roots.  相似文献   

7.
The response of seedling roots of near-isogenic tomato varieties to infection by Verticillium albo-atrum or Fusarium oxysporum f. sp. lycopersici was investigated. Studies of the infection of seedling roots not artificially damaged indicated that there was an extra-vascular expression of resistance towards V. albo-atrum but not to F. oxysporum. Roots of resistant tomato seedlings infected by V. albo-atrum contained the fungus in the epidermis and outer cortex while susceptible roots became heavily colonised. Observations made by transmission electron microscopy showed that the fungus appeared to be abnormal in growth and appearance in the epidermal and cortical cells of resistant seedling roots but normal in susceptible roots. Two preformed antifungal terpenoids were detected in seedling roots in greater amounts in resistant that in susceptible varieties. The possible mechanisms of seedling root resistance to vascular wilts are discussed.  相似文献   

8.
Fungus gnat adults transported Fusarium oxysporum f.sp. radicis-lycopersici from Petri dish culture and infected host plants to the roots and hypocotyls of healthy tomato and bean plants. The source of the fungus did not affect the ability of fungus gnats to transport the fungus to healthy hosts. The presence of fungus gnat larvae in media in which young tomato plants were grown did not increase the incidence of plant infection by the pathogen. Fungus gnat adults appear to aid in the dissemination of F. oxysporum f.sp. radicis-lycopersici.  相似文献   

9.
Pre-emergence soil application of the herbicide diphenamid in concentrations exceeding the normal field rate increased the resistance of tomato plants towards infection by the wilt fungus Fusarium oxysporum f.sp. lycopersici. This was detected as significant increases in the percentage emergence of seedlings although growth parameters of the raised seedlings were reduced. Treated plants exhibited no wilt symptoms, although the pathogen maintained its population at detectable levels in the rhizosphere of tomato plants. However, the growth inhibition caused by diphenamid alone was much less than that reported for the combined application of pathogen and herbicide. Growth activities of F. oxysporum f.sp. lycopersici were inhibited by high concentrations of diphenamid in vitro. It is possible that the biodegradation of this herbicide by species such as Aspergillus candidus (present in substantial counts in treated rhizospheres) was one of the causes of increased tolerence of the pathogen to the herbicide in situ.  相似文献   

10.
11.
12.
The utility of fatty acid methyl ester (FAME) profiles for characterization and differentiation of isolates of Fusarium oxysporum f. sp. lycopersici and F. oxysporum f. sp. radicis-lycopersici was investigated. Two fatty acid analysis protocols of the normal (MIDI) and a modified MIDI method were used for their utility. Only the modified MIDI method allowed a clear differentiation between F. oxysporum f. sp. lycopersici and F. oxysporum f. sp. radicislycopersici. FAME profiles using the modified MIDI method gave the most consistent and reproducible analyzed fatty acid data. Evaluation of the FAME profiles based on cluster analysis and principal-component analysis revealed that FAME profiles from tested isolates were correlated with the same vegetative compatibility groups (VCGs) compared to the same races in F. oxysporum f. sp. lycopersici. Results indicated that FAME profiles could be an additional tool useful for characterizing isolates and forma species of F. oxysporum obtained from tomato.  相似文献   

13.
The influence of culture filtrates of Fusarium oxysporum f.sp. dianthi which causes Fusarium wilt was investigated on growth and viability of carnation tissue cultures and leaf segments. Culture filtrates of avirulent race 1 of this fungus did not affect calli and leaf segments of cultivars both susceptible and resistant to Fusarium wilt. However, culture filtrates of virulent race 2 decreased viability and suppressed growth of callus of the susceptible cultivar. In contrast, callus of the resistant cultivar showed resistance to the culture filtrates. The results of these experiments may provide information on methods of selection of new wilt resistant carnation varieties.Abbreviations A270 absorbance at 270 nm - 2,4-d 2,4-dichlorophenoxyacetic acid - CF-MCD culture filtrate of 16064 grown in MCD medium - MCD medium modified Czapeck-Dox medium - MS medium basal medium of Murashige and Skoog - MW molecular weight - PD medium potato dextrose medium - TTC 2,3,5-triphenyl tetrazolium chloride  相似文献   

14.
A group of differential tomato lines was used to identify the races of Fusarium oxysporum f. sp. lycopersici in Zhejiang, China. Marmande verte carries no resistant genes and Marporum carries gene I-1. Both lines Motelle and Mogeor have Gene I-1 and I-2. Tomato seedlings of eighteen days after sowing were inoculated with an isolate of Fusarium oxysporum f. sp. lycopersici, No. 98-2 and kept in a growth chamber. The seedlings were evaluated at fourteen days after inoculation. Results showed that Marmande verte and Marporum were severely infected by the pathogen and established as susceptible. Motelle and Mogeor were not infected and established as resistant. These results indicated that the isolate No. 98-2 represented the race 2 of Fusarium oxysporum f. sp. lycopersici and gene I-2 is necessary for obtaining resistance to this pathogen in the Zhejiang region.  相似文献   

15.
Pathogenecity and race classification of some isolates of V. dahliae from resistant tomato in Morocco In Morocco, the cv. H 204, resistant to Verticillium dahliae race 1 is widely used under plastic tunnels. Use of this cultivar controlled the disease for many years but recently a high incidence of Verticillium on this hybird was obsereved. V. dahliae was isolated from 90 % of the wilted plants.The other 10 % were infected by F. oxysporum f. sp. lycopersici alone (7 %) or in association with V dabliae (3 %). The inoculation of the Verticillium susceptible cv. Vemone and of the race 1 resistant cv. H 204 by 120 isolates obtained from the resistant hybird, showed that (69 %) of the isolates are race 1 and 31 % are race 2. There are different virulence levels of V. dahliae race 2 both on the susceptible cv. Vemone and on the race 1 resistant cv. H 204. Race 2 on the average was less virulenton the susceptible than on the resistant cultivar.  相似文献   

16.
The β‐glucuronidase (gus) reporter gene was integrated into the phytopathogenic fungus Fusarium oxysporum f. sp. radicis‐lycopersici (FORL) in a co‐transformation experiment using the hygromycin B resistance (hph) gene as selective marker, which resulted in the generation of 10 mitotically stable transformants. One transformant, F30, was selected based on the results of prior detailed characterization of the 10 transformants for growth rate, conidia production and pathogenicity in comparison with the wild‐type strain. A strong positive correlation was found between GUS activity and accumulated biomass of in vitro‐grown fungus and therefore GUS activity was used to study fungal growth quantitatively in two tomato lines. Although a parallel increase in lesion development and GUS activity was noted for both tomato lines, a correlation between the GUS activity and disease progression was not always possible. Interestingly, the levels of GUS activity obtained for the more resistant line were higher than those obtained for the susceptible line, indicating that disease progression in tomato caused by FORL may not be related only to the amount of fungal biomass within the root tissue.  相似文献   

17.
Fusarium oxysporum f. sp. lycopersici Snyder & Hans. (FOL) is a major soil-borne pathogen and the causal agent of Fusarium wilt of tomato, resulting in significant production yield losses. Resistant cultivars have become the most effective method for controlling this fungal disease, and the most important resistance locus to F. oxysporum f. sp. lycopersici in tomato is I2, conferring resistance to race 2 of the pathogen, and widely used in breeding programs. Although this locus was cloned, a robust codominant DNA marker for the I2 locus is not available to date. The development of such a marker has been hindered by the presence of seven homologous sequences at this locus that tend to amplify, and by the absence of information about the structure of the recessive I2 locus. We performed a comparative analysis of the I2 locus nucleotide sequences of tomato genotypes resistant and susceptible to Fusarium wilt. We developed a breeder-friendly functional codominant cleaved amplified polymorphic sequence marker of I2 based on this analysis that can be used in tomato breeding programs for resistance to FOL race 2.  相似文献   

18.
Arbuscular mycorrhizal fungi (AMF) and their bioprotective aspects are of great interest in the context of sustainable agriculture. Combining the benefits of AMF with the utilisation of plant species diversity shows great promise for the management of plant diseases in environmentally compatible agriculture. In the present study, AMF were tested against Fusarium oxysporum f. sp. lycopersici with tomato intercropped with either leek, cucumber, basil, fennel or tomato itself. Arbuscular mycorrhizal (AM) root colonisation of tomato was clearly affected by its intercropping partners. Tomato intercropped with leek showed even a 20 % higher AM colonisation rate than tomato intercropped with tomato. Positive effects of AMF expressed as an increase of tomato biomass compared to the untreated control treatment could be observed in root as well as in shoot weights. A compensation of negative effects of F. oxysporum f. sp. lycopersici on tomato biomass by AMF was observed in the tomato/leek combination. The intercropping partners leek, cucumber, basil and tomato had no effect on F. oxysporum f. sp. lycopersici disease incidence or disease severity indicating no allelopathic suppression; however, tomato co-cultivated with tomato clearly showed a negative effect on one plant/pot with regard to biomass and disease severity of F. oxysporum f. sp. lycopersici. Nonetheless, bioprotective effects of AMF resulting in the decrease of F. oxysporum f. sp. lycopersici disease severity were evident in treatments with AMF and F. oxysporum f. sp. lycopersici co-inoculation. However, these bioprotective effects depended on the intercropping partner since these effects were only observed in the tomato/leek and tomato/basil combination and for the better developed plant of tomato/tomato. In conclusion, the effects of the intercropping partner on AMF colonisation of tomato are of great interest for crop plant communities and for the influences on each other. The outcome of the bioprotective effects of AMF resulting in the decrease on F. oxysporum f. sp. lycopersici disease severity and/or compensation of plant biomass does not depend on the degree of AM colonisation but more on the intercropping partner.  相似文献   

19.
The wheat rhizosphere-inhabiting nonpathogenic Fusarium sambucinum isolate FS-94 protected tomato from Fusarium wilt (F. oxysporum f. sp. lycopersici) in laboratory experiments. Seed soaking or immersion of seedling roots in a FS-94 spore suspension prior to inoculation with the pathogen delayed the appearance of wilt symptoms and significantly reduced disease severity in plants of a susceptible tomato cultivar. Quantification of fungal ergosterol in infected tomato showed that protection against wilt agent was related to limitation of the pathogen growth in plants exposed to FS-94. Incubation of tomato seedlings in a FS-94 spore suspension for 48 or 72 h led to plant protection and increased the salicylic acid (SA) concentration in their roots, suggesting that this isolate was involved in a plant-mediated mode of action and induced resistance. Soaking tomato seeds in the spore suspension did not induce SA accumulation in seedling roots, but nevertheless resulted in a significant reduction in wilt severity when the seedlings were challenged with the pathogen. In response to pathogen attack, the SA content in susceptible seedlings grown from FS-94-treated seeds started to increase within 1 day and remained elevated for 72 h. This suggests that F. sambucinum isolate FS-94 primed a SA-dependent signaling system in tomato.  相似文献   

20.
Methyl salicylate production in tomato affects biotic interactions   总被引:1,自引:0,他引:1  
The role of methyl salicylate (MeSA) production was studied in indirect and direct defence responses of tomato (Solanum lycopersicum) to the spider mite Tetranychus urticae and the root‐invading fungus Fusarium oxysporum f. sp. lycopersici, respectively. To this end, we silenced the tomato gene encoding salicylic acid methyl transferase (SAMT). Silencing of SAMT led to a major reduction in SAMT expression and MeSA emission upon herbivory by spider mites, without affecting the induced emission of other volatiles (terpenoids). The predatory mite Phytoseiulus persimilis, which preys on T. urticae, could not discriminate between infested and non‐infested SAMT‐silenced lines, as it could for wild‐type tomato plants. Moreover, when given the choice between infested SAMT‐silenced and infested wild‐type plants, they preferred the latter. These findings are supportive of a major role for MeSA in this indirect defence response of tomato. SAMT‐silenced tomato plants were less susceptible to a virulent strain of F. oxysporum f. sp. lycopersici, indicating that the direct defense responses in the roots are also affected in these plants. Our studies show that the conversion of SA to MeSA can affect both direct and indirect plant defence responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号