共查询到20条相似文献,搜索用时 21 毫秒
1.
The structure of bovine carboxypeptidase B has been determined by X-ray diffraction techniques to 2.8 Å resolution. Instead of using the method of isomorphous replacement, we assumed that two homologous enzymes have similar three-dimensional structures and used the known structure of carboxypeptidase A as a beginning model. This model was then improved and refined. The resulting differences between the two models correlate well with chemical and physical differences between the two molecules observed by other techniques, thus validating the initial assumption of structural similarity.Refinement to date suggests that the structures of the two carboxypeptidases are remarkably similar. Differences in the folding of the main chain are confined to chain termini and external loops. The active sites of the two enzymes are also alike, with the zinc atom and its ligands (His69, Glu72 and His196), Arg145 (responsible for substrate carboxyl group binding) and Glu270 (whose side chain is involved in the peptide bond cleavage) all in nearly identical orientations in the two molecules. The presence of Asp255 in the center of the binding pocket presumably explains the difference in substrate specificities of the two enzymes. Tyr248, the proposed proton donor, was found to be disordered and its orientation about the CαCβ bond is indeterminate. 相似文献
2.
Irene M. Mavridis Marcos H. Hatada A. Tulinsky Lukasz Lebioda 《Journal of molecular biology》1982,162(2):419-444
The structure of 2-keto-3-deoxy-6-phosphogluconate aldolase has been extended to 2.8 Å resolution from 3.5 Å resolution by multiple isomorphous replacement methods using three heavy-atom derivatives and anomalous Bijvoet differences to 6 Å resolution (〈m〉 = 0.72). The replacement phases were improved and refined by electron density modification procedures coupled with inverse transform phase angle calculations. A Kendrew model of the molecule was built, which contained all 225 residues of a recently determined amino acid sequence, whereas only 173 were accounted for at 3.5 Å resolution. The missing residues were found to be part of the interior of the molecule and not simply an appendage. The molecule folds to form an eight-strand α/β-barrel structure strikingly similar to triosephosphate isomerase, the A-domain of pyruvate kinase and Taka amylase. With a knowledge of the sequence, the nature of the interfaces of the two kinds of crystallographic trimers have been examined, from which it was concluded that the choice of trimers selected in the 3.5 Å resolution work was probably correct for trimers in solution. The active site region has been established from the position of the Schiff base forming Lys144 but it has not been possible to confirm it conclusively in independent derivative experiments. An apparent anomaly exists in the location of Glu56 (about 25 Å from Lys144). The latter has been reported to assist in catalysis. 相似文献
3.
An electron density map of the FAD-containing enzyme glutathione reductase from human erythrocytes was produced at 2 Å resolution using the multi-isomorphous-replacement method. The chemically determined amino acid sequence could be fitted unambiguously to this map. The enzyme has a molecular weight of 104,800 and consists of two identical subunits. Each of them can be subdivided into four domains and a flexible segment of 18 residues at the N-terminus. A subunit contains 11 α-helices comprising 31% of all residues and 32% β-structure in five pleated sheets. An intersubunit disulfide bridge, which is not expected for an intracellular enzyme, was detected in the crystal. The heavy atom binding sites, the subunit interface, and the intermolecular contacts in the crystal are discussed. 相似文献
4.
E.J.M. van Schaick W.G. Schutter W.P.J. Gaykema A.M.H. Schepman W.G.J. Hol 《Journal of molecular biology》1982,158(3):457-485
The hemocyanin from the spiny lobster Panulirus interruptus, a hexamer with a molecular weight of approximately 540,000, was crystallized in space group P21 with two molecules in the unit cell and cell dimensions . With screened precession photographs a three-dimensional set of reflections was collected up to 10 Å resolution. Both the conventional and the fast rotation function programs were applied and gave results that were in excellent agreement with each other. The hemocyanin hexamer has 32 point group symmetry. Its 3-fold molecular axis runs approximately parallel to the crystallographic 2-fold screw axis.X-ray diffraction data to 5 Å resolution were collected by the oscillation method. Rotation function studies with data between 7 and 5 Å resolution confirmed the 10 Å studies and, furthermore, showed that the rotation axes relating subunits within one hexameric molecule can be distinguished from the rotation axes relating subunits belonging to different hexamers in the unit cell. The local 3-fold axis in the hexamer makes an angle of about 6 ° with the crystallographic 2-fold screw axis.For a mercury and a platinum derivative three-dimensional data sets were collected to 5 Å by the oscillation method. The difference Patterson of the platinum derivative could be solved. The eventual number of heavy-atom sites was 36 for the platinum derivative and 70 for the mercury derivative. From the well-occupied sites the point-group symmetry of the molecule could be established accurately. In addition, the centre of the hexamer could be located within 0.2 Å.Protein phases were obtained from isomorphous as well as anomalous differences. A “best” electron density map calculated with these phases showed the shape of the hexameric molecule as well as the boundaries of the six subunits. Correlation coefficients between the densities of the subunits showed little variation, suggesting a random distribution of the different subunit types (Van Eerd & Folkerts, 1981) over the six positions in the hexamer.The subunits are positioned at the corner of an antiprism. When viewed along the 3-fold axis the hexamer is roughly hexagonal in shape, with a diameter of approximately 120 Å. Viewed along one of the 2-fold axes the molecule is of rectangular shape with dimensions 95 Å × 120 Å. The subunit can be described as an ellipsoid of irregular shape with axes of 80 Å, 55 Å and 48 Å. Each subunit makes extensive contacts with three other subunits in the hexamer and, possibly, a much weaker contact with a fourth subunit. 相似文献
5.
E.N. Baker 《Journal of molecular biology》1980,141(4):441-484
The structure of the sulphydryl protease, actinidin, after refinement at 1.7 Å resolution, is described. The positions of most of the 1666 atoms have been determined with an accuracy better than 0.1 Å; only two residues (219 and 220) and the side-chain of a third (87) cannot be seen. In addition, the model contains 272 solvent molecules, all taken as water, except one which may be an ammonium ion. Atomic B values give a good indication of the mobility of different parts of the structure. Actinidin has a double domain structure, with one domain mostly helical in its secondary structure, and the other domain built around a twisted β-sheet. The geometry of hydrogen bonds in helices, β-structure and turns has been analysed. All are significantly non-linear, with the angle N-?…O ~160 °. Carbonyl groups are tilted outwards from the axis of each helix, the tilting apparently unaffected by whether or not additional hydrogen bonds are made (e.g. to water or side-chain atoms). Each domain is folded round a substantial core of non-polar side-chains, but the interface between domains is mostly polar. Interactions across this interface involve a network of eight buried water molecules, the buried carboxyl and amino groups of Glu35, Glu50, Lys181 and Lys17, other polar side-chains and a few hydrophobic groups. One other internal charged side-chain, that of Glu52, is adjacent to a buried solvent molecule, probably an ammonium ion. Other side-chain environments are described. One proline residue has a cis configuration. The sulphydryl group is oxidized, probably to SO2?, with one oxygen atom clearly visible but the other somewhat less certain. The active site geometry is otherwise compatible with the mechanism proposed by Drenth et al. (1975,1976) for papain. The positions of the 272 solvent molecules are described. The best-ordered water molecules are those that are internal (total of 17), in surface pockets, or in the intermolecular contact regions. These generally form three or four hydrogen bonds, two to proton acceptors and one or two to proton donors. Other water molecules make water bridges on the surface, sometimes covering the exposed edges of non-polar groups. Intermolecular contacts involve few protein atoms, but many water molecules. 相似文献
6.
A. S. McAlpine A. G. McEwan A. L. Shaw S. Bailey 《Journal of biological inorganic chemistry》1997,2(6):690-701
The 1.82-Å X-ray crystal structure of the oxidised (Mo(VI)) form of the enzyme dimethylsulfoxide reductase (DMSOR) isolated from Rhodobacter capsulatus is presented. The structure has been determined by building a partial model into a multiple isomorphous replacement map and fitting the crystal structure of DMSOR from Rhodobacter sphaeroides to the partial model. The enzyme structure has been refined, at 1.82-Å resolution, to an R factor of 14.8% (R free?=?18.4%). The molybdenum is coordinated by seven ligands: four dithiolene sulfurs, Oγ of Ser147 and two oxo groups. The four sulfur ligands, at a metal-sulfur distance of 2.4?Å or 2.5?Å, are contributed by the two molybdopterin guanine dinucleotide (MGD) cofactors. The coordination sphere of the molybdenum is different from that in previously reported structures of DMSOR from R. sphaeroides and R. capsulatus. The 2.8-Å structure of DMSOR, reduced by addition of sodium dithionite, is also described and differs from the structure of the oxidised enzyme by the removal of a single oxo ligand from the molybdenum coordination sphere. A structure, at 2.5-Å resolution, has also been obtained from crystals soaked in mother liquor buffered at pH?7.0. No differences are observed in the structure at pH?7 when compared with the native crystal structure at pH?5.5. 相似文献
7.
The three-dimensional structure of the sulfhydryl protease calotropin DI from the madar plant, Calotropis gigantea, has been determined at 3·2 Å resolution using the multiple isomorphous replacement method with five heavy atom derivatives. A Fourier synthesis based on protein phases with a mean figure of merit of 0·857 was used for model building. The polypeptide backbone of calotropin DI is folded to form two distinct lobes, one of which is comprised mainly of α-helices, while the other is characterized by a system of all antiparallel pleated sheets. The overall molecular architecture closely resembles those found in the sulfhydryl proteases papain and actinidin.Despite the unknown amino acid sequence of calotropin DI a number of residues around its active center could be identified. These amino acid side-chains were found in a similar arrangement as the corresponding ones in papain and actinidin. The polypeptide chain between residues 1 and 18 of calotropin DI folds in a unique manner, providing a possible explanation for the unusual inability of calotropin DI to hydrolyze those synthetic substrates that papain and actinidin act upon. 相似文献
8.
The structure of human lysozyme has been crystallographically refined at 1.5 Å resolution by difference map and restrained least-squares procedures to an R factor of 0.187. A comprehensive analysis of the non-bonded and hydrogen-bonded contacts in the lysozyme molecule, which were not restrained, revealed by the refinement has been carried out. The non-bonded CC contacts begin at ~3.45 Å, and the shorter contacts are dominated, as expected, by interactions between trigonal and tetrahedral carbon atoms. The CO contact distances have a “foot” at 3.05 Å. The CN distance plot shows a significant peak at 3.25 Å, which results from close contact between peptide NHs and carbonyl carbons involved in NiC′i ? 2 interactions in α-helices and reverse turns. The distances involving sulphur atoms discriminate SC trigonal interactions at 3.4 to 3.6 Å from SC tetrahedral interactions at 3.7 Å. All these types of non-bonded interactions show minimum distances close to standard van der Waals' separations.Analysis of hydrogen-bond distances has been carried out by using standard geometry to place hydrogen atoms and measuring the XHO distances. On this basis, there are 130 intramolecular hydrogens: 111 NHO bonds, of which 69 are between main-chain atoms, 13 between side-chain atoms and 29 between mainchain and side-chain atoms. If a cluster of four well-defined internal water molecules is included in the protein structure, there is a total of 19 OHO hydrogen bonds. The mean NO, NHO distances and HN?O angles are 2.96 ± 0.17 Å, 2.05 ± 0.18 Å and 18.5 ± 9.6 °, and the mean OO, OHO distances and HÔO angles are 2.83 ± 0.19 Å, 1.98 ± 0.26 Å and 23.8 ± 13.4 °. The distances agree well with standard values, although the hydrogen bonds are consistently more non-linear than in equivalent small molecules. An analysis of the hydrogen-bond angles at the receptor atom indicates that the α-helix, β-sheet and reverse turn have characteristic angular values. A detailed analysis of the regularity of the α-helices and reverse turns shows small but consistent differences between the α-helices in lysozyme and the current standard model, which may now need revision. Of the 21 reverse turns that include a hydrogen bond, the conformations of 19 agree very closely with four of the five standard types. We conclude that the restrained least-squares method of refinement has been validated by these analyses. 相似文献
9.
The crystal structure of glycolate oxidase from spinach has been determined to 5.5 Å resolution, using two isomorphous heavy-atom derivatives and their anomalous contributions. In the electron density map the boundaries of the octameric molecules are clearly seen. The subunit molecular weight is 37,000. Two protomers are in very close contact around one of the crystallographic 2-fold axes. Four such dimers are in contact around the 4-fold axis, so that the glycolate oxidase molecules are arranged as octamers with 422 symmetry in the crystal lattice. The roughly spherical octameric molecules have a diameter of approximately 100 Å. These octamers are arranged in a network, such that large solvent channels, approximately 60Å in diameter, pass right through the crystal lattice.The secondary structure of two-thirds of the subunit density has been interpreted in terms of eight consecutive β strand-α-helix units forming a cylinder very similar to the structure of triose phosphate isomerase. This interpretation is based on the very characteristic arrangement of the eight helices which form such a cylinder. The binding site of a substrate analogue, thioglycolate, has been localized in a deep cleft of the subunit at one end of the βα-barrel close to its axis. 相似文献
10.
M.R.N. Murthy R.Michael Garavito John E. Johnson Michael G. Rossmann 《Journal of molecular biology》1980,138(4):859-872
Lobster apo-glyceraldehyde-3-phosphate dehydrogenase was prepared by first lowering the pH to 4.8, thus reducing the NAD binding energy, and then separating the enzyme and coenzyme on a Sephadex column. Triclinic crystals were grown from an ammonium sulfate solution at pH 6.2. The apo-structure was initially determined approximately by comparison with the known hologlyceraldehyde-3-phosphate dehydrogenase molecule. The former was then refined using the 222 molecular symmetry with the molecular replacement technique. Only minor conformational differences were observed between apo and holo-glyceraldehyde-3-phosphate dehydrogenase. Trp193 in the “S loop” and the adenine-binding pocket showed the most significant changes. 相似文献
11.
Florence Lederer Annie Glatigny Paul H. Bethge Henry D. Bellamy F.Scott Mathews 《Journal of molecular biology》1981,148(4):427-448
The amino acid sequence of cytochrome b562 has been redetermined and fitted to a 2.5 Å electron density map. A combination of cyanogen bromide fragmentation, proteolytic cleavages and manual and automatic sequencing was used. The model was built on an MMS-X molecular graphics system by interactively fitting the model to the electron density.The results indicate that the protein is 106 rather than 110 residues in length. The largest change required has been the rearrangement and modification of a continuous stretch of 11 residues of the original sequence. The electron density map confirms most of these changes, some of which were proposed before the revised sequence became available. 相似文献
12.
Bauke W. Dijkstra Kor H. Kalk Wim G.J. Hol Jan Drenth 《Journal of molecular biology》1981,147(1):97-123
The crystal structure of bovine pancreatic phospholipase A2 has been refined to 1.7 Å resolution. The starting model for this refinement was the previously published structure at a resolution of 2.4 Å (Dijkstra et al., 1978). This model was adjusted to the multiple isomorphous replacement map with Diamond's real space refinement program (Diamond, 1971,1974) and subsequently refined using Agarwal's least-squares method (Agarwal, 1978). The final crystallographic R-factor is 17.1% and the estimated root-mean-square error in the positional parameters is 0.12 Å. The refined model allowed a detailed survey of the hydrogen-bonding pattern in the molecule. The essential calcium ion is located in the active site and is stabilized by one carboxyl group as well as by a peptide loop with many residues unvaried in all known phospholipase A2 sequences. Five of the oxygen ligands octahedrally surround the ion. The sixth octahedral position is shared between one of the carboxylate oxygens of Asp49 and a water molecule. The entrance to the active site is surrounded by residues involved in the binding of micelle substrates. The N-terminal region plays an important role here. Its α-NH+3 group is buried and interacts with Gln4, the carbonyl oxygen of Asn71 and a fully enclosed water molecule, which provides a link between the N terminus and several active site residues. A total of 106 water molecules was located in the final structure, most of them in a two-layer shell around the protein molecule. The mobility in the structure was derived from the individual atomic temperature factors. Minimum mobility is found for the main chain atoms in the central part of the two long α-helices. The active site is rather rigid. 相似文献
13.
The crystal structure of the predominant hemoglobin component of blood from the sea lamprey, Petromyzon marinus, has been determined by X-ray diffraction analysis. Crystals for this analysis were grown from cyanide methemoglobin V as crystal type D2. These crystals are in space group P212121 and have unit cell dimensions of . Isomorphous heavyatom derivatives were prepared by soaking crystals in solutions of Hg(CN)2, K2Hg(CNS)4 and KAu(CN)2. Diffracted intensities to as far as 2 Å spacings were measured on a diffractometer. Phases were found by means of the isomorphous replacements and anomalous scattering, with supplementary information provided by the tangent formula. An atomic model was fitted to the final electron density map in a Richards optical comparator. The lamprey hemoglobin molecule is generally similar in structure to other globins, but differs in many details. Each molecule is in contact with ten neighboring molecules in the crystal lattice. The nature of the binding of the heavy atoms to lamprey hemoglobin has been interpreted. 相似文献
14.
Shinya Yoshikawa Kyoko Shinzawa-Itoh Tomitake Tsukihara 《Journal of bioenergetics and biomembranes》1998,30(1):7-14
Thirteen different polypeptide subunits, each in one copy, five phosphatidyl ethanolamines and three phosphatidyl glycerols, two hemes A, three Cu ions, one Mg ion, and one Zn ion are detectable in the crystal structure of bovine heart cytochrome c oxidase in the fully oxidized form at 2.8 Å resolution. A propionate of hems a, a peptide unit (–CO–NH–), and an imidazole bound to CuA are hydrogen-bonded sequentially, giving a facile electron transfer path from CuA to heme a. The O2 binding and reduction site, heme a
3, is 4.7 Å apart from CuB. Two possible proton transfer paths from the matrix side to the cytosolic side are located in subunit I, including hydrogen bonds and internal cavities likely to contain randomly oriented water molecules. Neither path includes the O2 reduction site. The O2 reduction site has a proton transfer path from the matrix side possibly for protons for producing water. The coordination geometry of CuB and the location of Tyr244 in subunit I at the end of the scalar proton path suggests a hydroperoxo species as the two electron reduced intermediate in the O2 reduction process. 相似文献
15.
16.
Turkey egg-white lysozyme differs from hen egg-white lysozyme in its primary structure in 7 of the 129 residues. We have determined the rotational and translational parameters relating the known co-ordinates of hen egg-white lysozyme molecule to the turkey lysozyme. The rotational parameters were determined using the rotation function, the translational parameters were determined by placing the properly rotated molecule systematically at all positions within the unit cell and searching for those positions producing few intermolecular contacts between the α-carbon atoms of one molecule and all its neighbors. These parameters were refined by minimizing the conventional R factor between observed and calculated structure amplitudes. The final rotational and translational parameters give an R value of 46.7% for reflections with d spacings between 6 Å and 12 Å and have 7 intermolecular contacts closer than 5 Å between the a carbon atoms of one molecule and all its neighbors. An electron density map has been calculated at 5 Å resolution; the packing of the molecules in this form appears to present the entire length of the active cleft in the vicinity of the crystallographic 6-fold axis and does not appear to be blocked by neighboring molecules. 相似文献
17.
18.
Yoshiki Matsuura Tsunehiro Takano Richard E. Dickerson 《Journal of molecular biology》1982,156(2):389-409
The molecular structures of ferri- and ferrocytochrome c551 from Pseudomonas aeruginosa have been refined at a resolution of 1.6 Å, to an R factor of 19.5% for the oxidized molecule and 18.7% for the reduced. Reduction of oxidized crystals with ascorbate produced little change in cell dimensions, a 10% mean change in Fobs, and no damage to the crystals. The heme iron is not significantly displaced from the porphyrin plane. Bond lengths from axial ligands to the heme iron are as expected in a low-spin iron compound. A total of 67 solvent molecules were incorporated in the oxidized structure, and 73 in the reduced, of which four are found inside the protein molecule. The oxidized and reduced forms have virtually identical tertiary structures with 2 ° root-mean-square differences in main-chain torsion angles φ and ψ, but with larger differences along the two edges of the heme crevice. The difference map and pyrrole ring tilt suggest that a partially buried water molecule (no. 23) in the heme crevice moves upon change of oxidation state.Pseudomonas cytochrome c551 differs from tuna cytochrome c in having: (1) a water molecule (no. 23) at the upper left of the heme crevice; that is, between Pro62 and the heme pyrrol 3 ring on the sixth ligand Met61 side, where tuna cytochrome c has an evolutionary invariant Phe82 ring; (2) a string of hydrophobic side-chains along the left side of the heme crevice, and fewer positively charged lysines in the vicinity; and (3) a more exposed and presumably more easily ionizable heme propionate group at the bottom of the molecule. A network of hydrogen bonds in the heme crevice is reminiscent of that inside the heme crevice of tuna cytochrome c. As in tuna, a slight motion of the water molecule toward the heme is observed in the oxidized state, helping to give the heme a more polar microenvironment. The continuity of solvent environment between the heme crevice and the outer medium could explain the greater dependence of redox potential on pH in cytochrome c551 than in cytochrome c. 相似文献
19.
Yuan S Yu X Topf M Dorstyn L Kumar S Ludtke SJ Akey CW 《Structure (London, England : 1993)》2011,19(1):128-140
The Drosophila Apaf-1 related killer forms an apoptosome in the intrinsic cell death pathway. In this study we show that Dark forms a single ring when initiator procaspases are bound. This Dark-Dronc complex cleaves DrICE efficiently; hence, a single ring represents the Drosophila apoptosome. We then determined the 3D structure of a double ring at ~6.9?? resolution and created a model of the apoptosome. Subunit interactions in the Dark complex are similar to those in Apaf-1 and CED-4 apoptosomes, but there are significant differences. In particular, Dark has "lost" a loop in the nucleotide-binding pocket, which opens a path for possible dATP exchange in the apoptosome. In addition, caspase recruitment domains (CARDs) form a crown on the central hub of the Dark apoptosome. This CARD geometry suggests that conformational changes will be required to form active Dark-Dronc complexes. When taken together, these data provide insights into apoptosome structure, function, and evolution. 相似文献
20.
The structure of the protein subunit of satellite tobacco necrosis virus has been solved at 3.7 Å resolution. We have now crystallographically refined the original model and extended the resolution to 2.5 Å in order to get a model accurate enough to explain the details of the subunit interactions. The refinement was done with a novel method utilizing the icosahedral symmetry of the virus particle.The final model shows a complicated network of interactions, involving salt linkages, hydrogen bonds and hydrophobic contacts. In addition, we have located three different metal ion sites in the protein shell, linking the protein subunits together. These sites are probably occupied by calcium ions. One site is found in a general position near the icosahedral 3-fold axis of the virus. The ligands form an octahedral arrangement, with two main chain carbonyl oxygens (O-61 and O-64), one carboxylate oxygen (OD1 from Asp194) of the same subunit and a second carboxylate oxygen (OE1 of Glu25) from a 3-fold related subunit. Two water molecules complete the octahedral arrangement. A second site is on the icosahedral 3-fold axis and is liganded by the carboxylate oxygens of the 3-fold related Asp55 residues. The third metal ion site is found on the 5-fold axis, liganded by the five carbonyl oxygens of Thr138 and two water molecules.We are unable to locate the first 11 N-terminal amino acid residues, which point into the virus interior. No interpretable density for RNA has been found, indicating that the nucleic acid of the virus does not have a unique orientation in the crystal. 相似文献