首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The signal to induce diapause in H. virescens comes early in development (prior to the third instar in most insects), but the signal to break diapause can come shortly after entrance into diapause at pupation. Haemolymph ecdysteroid titres in both diapause-bound and non-diapause-bound Heliothis virescens larvae were similar in the first two thirds of the last-larval instar, when similar changes in morphology and behaviour occurred. However, the number of stepwise increases in titre and the timing of the steps was different in the two groups of larvae. Haemolymph ecdysteroid titres in the last third of the instar were approx, five times higher in non-diapause than in diapause-bound larvae. In diapausing pupae, haemolymph ecdysteroid titres dropped to levels found in larvae which had completed two thirds of the last instar. When diapausing pupae were warmed to break diapause, haemolymph ecdysteroid titres rose again. However, 2 of the 4 high ecdysteroid levels detected in pupae developing after diapause break were considerably lower than those detected for non-diapause pupae.  相似文献   

2.
The ecdysteroid titres of last-instar prediapausing, diapausing and nondiapausing larvae of Ostrinia nubilalis were determined by radioimmunoassay. In the nondiapause larvae a major peak of ecdysteroid activity preceded pupation by 24 h and continued through the pupal ecdysis. This peak was correlated with head and thorax critical periods as well as with changes in behaviour and physiology marking the transition from feeding larva to prepupa. Nondiapause larvae also displayed a rise in ecdysteroid titre during the feeding phase of development. This rise was approx one tenth that of the major peak and lasted 32 h. It was not correlated with any overt changes in larval physiology or behaviour. The diapause ecdysteroid profile was distinctive in that the levels measured were all lower than the lowest of the nondiapause curve. No peaks were observed in the diapause titres. Prepupal changes such as spinning and the cessation of feeding were not correlated with any increase in ecdysteroid levels. During diapause termination, under a long-day photoperiod, no increases in ecdysteroid titre were observed for the first 10 days. After 12 days individuals began to show ecdysteroids above the diapause levels. Pupation started after 16 long days.  相似文献   

3.
Relations between ecdysteroid levels and pupal development were studied in the temperature-sensitive mutant ecd-1, shifted from 20°C to 29°C at different stages. Ecdysteroid titration, using radioimmunoassays, revealed that the mid-pupal peak of ecdysteroids was not affected when the shift was performed at pupariation although, in this condition, pupae died at emergence. A qualitative study of ecdysteroid content using HPLC failed to show the lack of any specific product. If the shift was performed 24 hr before pupariation, the ecdysteroid level decreased significantly while animals died before emergence but after a mid-pupal peak (around 75% of pupal life). However, double-shift experi-experiments showed that, even though a partial rescue of pupal development occurred (7% emergence), a normal mid-pupal peak was not restored. Furthermore, the temperature-sensitive periods for the decrease in the ecdysteroid mid-pupal peak and for the lack of emergence were not the same. Altogether, these results suggest that a decrease in ecdysteroids might not be the primary effect of the ecd-1 mutation, as the developmental anomalies observed at the end of pupariation seemed independent of the ecdysteroid levels.  相似文献   

4.
5.
The effects of exogenous moulting hormones, ecdysone and 20-hydroxyecdysone on ecdysteroid production were studied in vivo in Pieris brassicae pupae. Both hormones inhibit ecdysteroid production; however, 20-hydroxyecdysone is much more efficient than ecdysone, and it is likely that the ecdysone effect is due to its partial conversion into 20-hydroxyecdysone. These results suggest that 20-hydroxyecdysone acts on ecdysteroid production as a negative-feedback regulator. Furthermore, since 20-hydroxyecdysone elicits inhibition in headless pupae, it is suggested that 20-hydroxyecdysone acts directly upon the prothoracic glands.  相似文献   

6.
The ecdysteroid titre and the body weight during the last-larval instar of Ephestia kuehniella were determined. Slightly elevated ecdysteroid titres occur during the first 12 h following the last larval-larval ecdysis (38 ng/g) and again some 120 h later, lasting about 48 h (33 ng/g). A high ecdysteroid peak (750 ng/g) with a maximum in prepupae of the eye-class A4 precedes the larval-pupal ecdysis. The basal levels between these increased ecdysteroid titres are between 13 ng/g and 15 ng/g. Compared with the body weight, the first sligtly increased ecdysteroid titre 12 h after ecdysis is associated with the beginning of food intake, the second increase at 144 h after ecdysis with reduced gain in body weight. The prepupal ecdysteroid peak occurs whilst the body weight remains constant. Correlations between the varying ecdysteroid titre and morphological and physiological events accompanying the progress in larval-pupal development are discussed.  相似文献   

7.
The epidermal cell commitment (to pupation or formation of immaculate larvae) and related haemolymph ecdysteroid titres of the southwestern corn borer, Diatraea grandiosella were studied in both nondiapause-bound and diapause-bound last-instar female larvae. Cell commitment was estimated by examining the characteristics of new cuticle secreted in response to an injection of 20-hydroxyecdysone. Haemolymph ecdysteroid titres were determined by radioimmunoassay. Juvenile hormone effect on epidermal cell commitment was studied by applying a juvenile hormone mimic (ZR-515) to last-instar non-diapause-bound larvae and examining the resulting cuticle.In non-diapause-bound larvae, the epidermis of different body regions was committed to pupal development at different times. When pupal cuticular characteristics were evaluated by a scoring system, it appeared that the development of normal pupal cuticle is discontinuous. Three sudden increases in pupal characteristics were observed at 1.67, 2.67 and 3.67 days into the last-larval instar. Haemolymph ecdysteroid titre changes were correlated with the sudden increases in pupal characteristics. Peak ecdysteroid titres were found at 1.67, 2.33, and 3.33 days into the final instar. A fourth ecdysteroid peak (138.8 ng/ml of haemolymph) occurred in pharate pupae. In contrast, the commitment of diapause-bound larvae to produce immaculate integument was made in a fast and continuous fashion. Full commitment was made by 50% of the individuals 4 days (ca. first quarter) into the stadium. Haemolymph ecdysteroid titres fluctuated during the first 2 weeks of the stadium but no significant peaks were observed prior to pharate stage. An ecdysteroid peak (29.8 ng/ml of haemolymph) was identified in pharate immaculate larvae.Pupal development could be completely prevented in 26.7% of nondiapause-bound larvae as late as 4 days into the last instar by topical application of ZR-515. This indicates that the commitment to pupation as revealed by 20-hydroxyecdysone injection is reversible.  相似文献   

8.
《Insect Biochemistry》1986,16(1):41-44
Three double-antibody-based separation techniques have been investigated as a basis for ecdysteroid radioimmunoassay. The best results were obtained with the pre-precipitated second-antibody procedure. Using this technique we studied the specificity of the antiserum DUL-2 (Dr J. Koolman) and we determined the ecdysteroid titres in extracts from adult female Artemia sp (Great Salt Lake strain) during their vitellogenic development.  相似文献   

9.
《Insect Biochemistry》1989,19(3):243-249
Radioimmunoassay (RIA) of whole body extracts of Drosophila melanogaster males and females demonstrates that at eclosion all individuals contain high levels of ecdysteroid. Highly polar ecdysteroids (presumably metabolites) in the meconium represent approximately half of the total ecdysteroid RIA-activity present at this time and are subsequently eliminated. Ecdysteroids remaining after the elimination of the meconium are also highly polar as shown by reverse-phase high pressure liquid chromatography (RP-HPLC). The amount of ecdysteroid RIA-activity found in whole body extracts declines in both sexes until 18 h post-eclosion when levels begin to increase in the female and drop to undetectable levels in the male. In the female the ovaries are the major source of ecdysteroid. The increase in whole body ecdysteroid in the female coincides with the initiation of ovarian ecdysteroid production and accumulation. Topical application of methoprene, a juvenile hormone (JH) analog, stimulates ovarian ecdysteroid synthesis in apterous-ts 78j (apts 78j), a temperature-sensitive juvenile hormone-deficient mutant, corroborating previous results suggesting a role of juvenile hormone in ovarian ecdysteroid production. Stage 8–9 follicles, whose development is juvenile hormone dependent, are shown to be the most active in ecdysteroid production. The regulatory potential of these stages is discussed.  相似文献   

10.
The fluctuations in haemolymph ecdysteroid levels were recorded by radioimmunoassay during the first two ovarian cycles of the tsetse fly, Glossina fuscipes. During the first ovarian cycle, the patterns of ecdysteroid levels are similar in virgin and mated females. In virgins, the first oöcyte is not ovulated and ecdysteroid levels during the second vitellogenesis remain low. In mated females, vitellogenesis of the second oöcyte is concomitant with growth of the first larva in the mother's uterus and ecdysteroid levels are higher than during the first cycle. Two ecdysteroid increases were recorded in mated females and not in virgins. One coincides with vitellogenesis of the second oöcyte and the other occurs at the end of pregnancy and finishes after larviposition. The roles of ecdysteroids in the regulation of vitellogenesis, ovulation, pregnancy and larviposition are discussed.  相似文献   

11.
Developmental switching from growth to metamorphosis in imaginal primordia is an essential process of adult body planning in holometabolous insects. Although it is disciplined by a sequential action of the ecdysteroid, molecular mechanisms linking to cell proliferation are poorly understood. In the present study, we investigated the expression control of cell cycle–related genes by the ecdysteroid using the wing disc of the final-instar larvae of the silkworm, Bombyx mori. We found that the expression level of c-myc was remarkably elevated in the post-feeding cell proliferation phase, which coincided with a small increase in ecdysteroid titer. An in vitro wing disc culture showed that supplementation of the moderate level of the ecdysteroid upregulated c-myc expression within an hour and subsequently increased the expression of cell cycle core regulators, including A-, B-, D-, and E-type cyclin genes, Cdc25 and E2F1. We demonstrated that c-myc upregulation by the ecdysteroid was not inhibited in the presence of a protein synthesis inhibitor, suggesting a possibility that the ecdysteroid directly stimulates c-myc expression. Finally, results from the administration of a c-Myc inhibitor demonstrated that c-Myc plays an essential role in 20E-inducible cell proliferation. These findings suggested a novel pathway for ecdysteroid-inducible cell proliferation in insects, and it is likely to be conserved between insects and mammals in terms of steroid hormone regulation.  相似文献   

12.
The relationships between the release of factors from the head after blood-feeding, subsequent levels of ecdysteroids and vitellin, and the ultimate maturation of eggs in Aedes aegypti were investigated. Females were decapitated at various times after a blood meal, at 20 or 48 h after feeding the animals were dissected and divided into two groups, those with arrested oöcytes (yolk length < 100 μm) and those with maturing oöcytes (yolk length > 100 μm). These yolk lengths correspond with the levels of oöcyte growth believed to accompany the proposed initiation and promotion phases of egg development. Animals dissected at 20 h were assayed for ecdysteroid by radioimmunoassay; those dissected at 48 h were assayed for vitellin by rocket immunoelectrophoresis.Non-blood-fed unoperated females contained 8% as much ecdysteroid as blood-fed controls and no measurable vitellin. Females with arrested oöcytes (< 100 μm) were obtained only if decapitations were performed before 8 h; these females had about 20% of the ecdysteroids and 8% of the vitellogenin normally found in blood-fed animals. Females decapitated between 2 and 8 h with maturing oöcytes contained 50–60% as much ecdysteroid and vitellin as blood-fed unoperated controls. Normal ecdysteroid and vitellin levels were reached only when decapitations were delayed for 12 and 24 h, respectively. The number of developing oöcytes was also decreased by early decapitation and was closely correlated with vitellin levels.We conclude that the egg development neurosecretory hormone is released twice, once before 8 h and once after 8 h, to control ecdysteroid levels. We also suggest the presence of other factors from the head that control vitellin levels, the number of developing oöcytes, and the early growth of the oöcyte (initiation).  相似文献   

13.
The relationship between the ecdysteroid titre and eclosion hormone was explored for the pupal and adult ecdyses of Manduca sexta. Ecdysteroid treatment late during either moult caused a dosedependant delay in the time of ecdysis. Sensitivity to exogenous steroid treatment dropped off as the respective moults neared completion and in both cases coincided with the time of the low point in the endogenous ecdysteroid titre. It was concluded that an ecdysteroid decline is a normal prerequisite for the ecdyses of both stages. The steroid drop is important for two aspects of the eclosion hormone system: it causes target tissues to become sensitive to the peptide and it is a prerequisite for the subsequent release of eclosion hormone itself. Thus, the dual action of the declining ecdysteroid titre insures that when eclosion hormone is released, the tissues will be competent to respond to it.  相似文献   

14.
Newly laid eggs of Locusta migratoria contain impressively high concentrations of conjugated 2-deoxyecdysone and conjugated ecdysone of maternal origin. These molecules are metabolized during embryonic development, the changes concerning not only the ecdysteroid genins but also the conjugating moieties. In the present paper the fates of the maternal conjugates were followed during embryogenesis in the eggs. The conjugates were separated both by silica gel TLC and reverse-phase HPLC and measured, before and after hydrolysis, by RIA. Fluctuations of radioactive ecdysteroid conjugates were also investigated in eggs laid by females subjected to massive injections of tritiated cholesterol. The results are discussed in relation to recent data on identification of ecdysteroid conjugates in Locusta and a model for the sequences of metabolic events leading from maternal ecdysteroid conjugates to the embryonic ecdysteroids is proposed.  相似文献   

15.
Ecdysteroid titre in the haemolymph of the housefly, Musca domestica, cycled during oögenesis and peaked at ~50 pg/μl during stages 5, 6 and 7. Levels of 10–20 pg/μl were found in houseflies with pre- and post-vitellogenic ovaries. Removal of the corpus allatum and corpus cardiacum complex resulted in low ecdysteroid levels (10 pg/μl). Ovariectomized flies also had lower ecdysteroid levels than the controls at 2 days (5 pg/μl) after emergence but not at 6 days (22 pg/μl). It is possible that the ecdysteroid peak that occurred during stages 5, 6 and 7 was produced by the ovaries because ovaries secreted and synthesized ecdysteroid in vitro. Endogenous haemolymph ecdysteroid levels had a linear correlation with the amount of vitellogenin that held for hormone concentrations of 5–43 pg/μl. Furthermore, the injection of 20-hydroxyecdysone at doses of 10 ng?1.0 μg/fly increased the amount of vitellogenin from 6 h to 12 h after injection; by 24 h, the vitellogenin returned to control levels. When 20-hydroxyecdysone was injected into ovariectomized flies, it was rapidly degraded and 96% was cleared from the haemolymph within 1 h.  相似文献   

16.
Successful insect development is achieved via appropriate fluctuation of ecdysteroid levels. When an insect's ecdysteroid level is disrupted, physiological and developmental defects occur. In the pupa of the silkworm, Bombyx mori, the rectal sac is an essential organ that operates as a repository for degraded ecdysteroids, and it can be distended by administration of 20-hydroxyecdysone (20E). Our previous study showed that rectal sac distention appears 4 days after 20E administration. Hemolymph ecdysteroid levels, however, decrease to lower level during this period. Thus, the timing of the rectal sac distention does not match with that of ecdysteroid elevation. Here, we examine how 20E induces rectal sac distention. A ligature experiment and ecdysteroid quantification showed that continuous 20E stimulation induces rectal sac distention. Thorax tissue contributed to the continuous 20E stimulation needed to induce distention. Ecdysteroid released from the thorax tissue may be converted to 20E by ecdysone 20-hydroxylase to produce continuous 20E stimulation. Thus, the ecdysone metabolic pathway plays a critical role in rectal sac distention.  相似文献   

17.
Modifications in endocrine programs are common mechanisms that generate alternative phenotypes. In order to understand how such changes may have evolved, we analyzed the pupal ecdysteroid titers in two closely related, highly social bees: the honey bee, Apis mellifera, and a stingless bee, Melipona quadrifasciata. In both species, the ecdysteroid titers in queens reached their peak levels earlier than in workers. Titer levels at peak maxima did not differ for the honey bee castes, but in Melipona they were twofold higher in queens than in workers. During the second half of pupal development, when the ecdysteroid titers decrease and the cuticle progressively melanizes, the titer in honey bee queens remained higher than in workers, while the reverse situation was observed in Melipona. Application of the juvenile hormone analog Pyriproxyfen® to spinning-stage larvae of Melipona induced queen development. Endocrinologically this was manifest in a queen-like profile of the pupal ecdysteroid titer. Comparing these data with previous results on preimaginal hormone titers in another stingless bee, we conclude that the timing and height of the pupal ecdysteroid peak may depend on the nature of the specific stimuli that initially trigger diverging queen/worker development. In contrast, the interspecific differences in the late pupal ecdysteroid titer profiles mainly seem to be related to caste-specific programs in tissue differentiation, including cuticle pigmentation.  相似文献   

18.
The free (non-conjugated) ecdysteroid in the ovaries during the first gonadotrophic cycle of Diploptera punctata was identified as 20-hydroxyecdysone. The hormone, quantified by radioimmunoassay and by ultraviolet absorbance, was detectable in the ovary toward the end of vitellogenesis; the quantity increased rapidly during chorion formation. Ovaries with chorionated eggs contained 67 μg of 20-hydroxyecdysone per g fresh weight. The haemolymph free-ecdysteroid, not identified physicochemically, was quantified by radioimmunoassays. The highest concentration was observed at adult emergence; the titre declined between days 1–3 and then remained at a relatively constant level through oviposition (which occurs between day 7 and 8); titres in pregnant females were higher. Ovariectomized females exhibited the same pattern of ecdysteroid titres in the haemolymph as the sham operated controls throughout the period corresponding to the first gonadotrophic cycle. Thus the ovary may not be the only source of haemolymph ecdysteroid related to reproduction in adult females.  相似文献   

19.
The last larval moult of Galleria mellonella is induced by an elevation of ecdysteroid titre to more than 200 ng/g. After ecdysis the titre remains very low until 70 hr of the last-instar when a slight elevation in ecdysteroid concentration initiates the onset of metamorphosis. An ecdysteroid peak (275 ng/g), which occurs between 108 and 144 hr, is associated with wandering and cocoon spinning. Pupal ecdysis follows about 20 hr after a large ecdysteroid peak (780 ng/g) with a maximum in slowly-mobile prepupae (160 hr of the last larval instar). The ecdysteroid decrease between the two peaks coincides with the period when the larvae exposed to unfavourable conditions enter diapause. The pupal-adult moult is initiated by a high ecdysteroid peak (1500–2500 ng/g) in early pupae and imaginal cuticle is secreted in response to a smaller peak (ca. 500 ng/g) in the middle of pupal instar.Until early pupae, the ecdysteroid content is regulated by the prothoracic glands. In decapitated larvae the glands become spontaneously active after 30–40 days and the body titre of ecdysteroids undergoes an increase; the glands revert to inactivity when the insects accomplish secretion of pupal cuticle. A similar ecdysteroid increase occurs within 10 days when the decapitated larvae receive implants of brains releasing the prothoracicotropic neurohormone (PTTH). In either case, the pupation-inducing increase of ecdysteroids is 3 times higher than the large ecdysteroid peak in the last-instar of intact larvae. This indicates that the function of prothoracic glands in intact larvae is restrained, probably by the juvenile hormone (JH). Exogenous JH suppresses the spontaneous activation of the prothoracic glands in decapitated larvae and reduces the ecdysteroid concentration in those larvae (both decapitated and intact), whose glands were activated by PTTH. Furthermore, JH influences the PTTH release from the brain in situ: depending on JH concentration and the age and size of treated larvae, the PTTH liberation is either accelerated or delayed.Neither in G. mellonella larvae, nor in the diapausing pupae of Hyalophora cecropia and Celerio euphorbiae, does JH directly activate the prothoracic glands. It is suggested that the induction of the moult by JH in decerebrate insects, which has been observed in some species, is either due to indirect stimulation of ecdysteroid production or to increased sensitivity of target tissues to ecdysteroids. In G. mellonella, a moult occurs at a 5–15 times lower than usual ecdysteroid concentration when the last-instar larvae are exposed to JH.  相似文献   

20.
In Spodoptera littoralis, testicular sperm release occurs in a daily rhythm, which is controlled by endogenous circadian oscillator located in the male reproductive system. Although this rhythm is essential for male fertility, factors that initiate and maintain daily sperm release are not understood. In this study, we investigated a modulatory role for ecdysteroids in the sperm release rhythm and identified the source of ecdysteroids in adult males. We found that the onset of sperm release occurs two days pre-eclosion and coincides with a significant decrease in haemolymph ecdysteroids levels. 20-HE injection into the pupae prior to the first sperm release delayed its initiation and disrupted the developing rhythm in a dose dependent manner. 20-HE injection into adults depressed the number of sperm bundles leaving the testes. A day before the initial sperm release, ecdysteroid levels in the haemolymph and testes begin to oscillate in a circadian fashion. Ecdysteroid rhythms continue throughout imaginal life and correlate with the rhythm of sperm release. In each cycle, testicular sperm release coincides with a trough in testicular ecdysteroid concentration. Rhythmic changes in ecdysteroid levels are regulated by an endogenous circadian oscillator that continues to function in decapitated males. The generation of a complete cycle of ecdysteroid release by testes cultured in vitro indicates that this oscillator is located in the gonads. The haemolymph ecdysteroid levels are significantly lower and arrhythmic in males with removed testes, indicating that the testes are an important ecdysteroid source that may contribute to oscillations in haemolymph ecdysteroid levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号