首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The musculature of the telson of Limulus polyphemus L. consists of three dorsal muscles: the medial and lateral telson levators and the telson abductor, and one large ventral muscle; the telson depressor, which has three major divisions: the dorsal, medioventral, and lateroventral heads. The telson muscles are composed of one type of striated muscle fiber, which has irregularly shaped myofibrils. The sarcomeres are long, with discrete A and I and discontinuous Z bands. M lines are not present. H zones can be identified easily, only in thick (1.0 µm) longitudinal sections or thin cross sections. In lengthened fibers, the Z bands are irregular and the A bands appear very long due to misalignment of constituent thick filaments. As the sarcomeres shorten, the Z lines straighten somewhat and the thick filaments become more aligned within the A band, leading to apparent decrease in A band length. Further A band shortening, seen at sarcomere lengths below 7.4 µm may be a function of conformational changes of the thick filaments, possibly brought about by alterations in the ordering of their paramyosin cores.  相似文献   

2.
The number of sarcomeres in a given muscle of the mite Tarsonemus randsi was constant in both larval and adult stages, with the exception of the two medial dorsal metapodosomal muscles in males. These muscles have three sarcomeres in larvae and one sarcomere in adults. This change in sarcomere number within a muscle was observed in the living animal by polarized light microscopy using parthenogenetically derived male larvae. Initially the transforming muscles shortened slowly (hours) and the appearance of the sarcomeres was comparable to that seen during normal contraction. With continued shortening there was apposition of adjacent A bands and disappearance of clearly visible Z lines, but no loss of birefringence. Over the next 12 hr there was further shortening of the muscle and loss of birefringence. This was apparent as shortening of the three apposed A regions to the length of a single A band with a small increase in muscle width and no increase in the peak retardation of the birefringent region. The observations are discussed in terms of differential loss of the A filaments of the two terminal sarcomeres.  相似文献   

3.
Transversely split sarcomeres are seen in mouthpart muscles of the blue crab in the electron microscope. Sarcomeres split only at the H zone. Two new sarcomeres are formed by a Z disk which appears in the H zone of the splitting sarcomere. Splitting may involve breaking of the thick filaments in the H zone, elongation of these filaments, and formation of both new actin filaments and Z-disk materials, Sarcomere splitting would allow longitudinal growth of muscle cells without lengthening of sarcomeres and concomitant changes in contractile properties.  相似文献   

4.
Individual cardiomyocytes are lengthened in dilated cardiomyopathy. However, it is not known how the new sarcomeres are added to preexisting myofibrils. Using a three-dimensional microtextured culturing system, a 10% mechanical static strain was applied to aligned, well-attached cardiomyocytes from neonatal rat. The morphology of the myofibrils and the ends of the myocytes were examined. Disruptions of the sarcomeric pattern for actin showed a progression from weak to intense staining over 4 hr. The lightly stained sarcomeres were common at 1 hr after being strained, peaked at 2 hr, and then subsided. In contrast, the numbers of intensely stained sarcomeres were initially low, peaked at 3 hr, and then began to decline when compared with control values. The myocyte ends showed elongations and convolutions after 3 hr and 4 hr of mechanical strain when observed with alpha-actinin and N-cadherin staining. We suggest that myocytes from neonatal rat hearts remodel by insertion of new sarcomeres throughout the cell length and also by enhancement at the intercalated discs.  相似文献   

5.
SARCOMERE SIZE IN DEVELOPING MUSCLES OF A TARSONEMID MITE   总被引:7,自引:5,他引:2       下载免费PDF全文
The embryo of a tarsonemid mite was found to be suitable for in vivo observations of muscle development by polarization microscopy. The four dorsal muscles of the metapodosoma each contain three sarcomeres, the anterior two of which can be seen clearly. These sarcomeres can be identified and followed during much of their development. Sarcomeres are about 2.5 micra long when first detected and increase in length until they are about 10 micra long. The change in length is associated with a slow, approximately constant rate of increase in the length of the A region, and an initially slow then much more rapid increase in the length of the I band. Preceding the period when the I band elongates rapidly there is an increase in the diameter of the muscle fibers and an increase in the retardation of the A band. A, I, Z, and H bands are visible during most of these changes. The change in A band length has been interpreted in terms of the growth of the A filaments which have been observed by electron microscopy in muscles of other animals. It is suggested that the exceptionally long sarcomeres in this mite result from the early fixing of the number of sarcomeres in a given muscle fiber.  相似文献   

6.
The expansion of the adult blowfly after it has emerged from the puparium was accompanied by an increase in the length of the longitudinal and tergo-sternal flight muscles by 26% and of the tergo-trochanteral leg muscle by 30%. The increases in muscle length were accompanied by similar increases in sarcomere length. Over the 2 hr between emergence and expansion the activity of the actomyosin ATPase increased by over 3 fold and the amount of actomyosin per thorax increased by 3 fold. Ligaturing the proboscis of the newly-emerged fly prevented the expansion of the fly, prevented the increase in the length of the muscles and sarcomeres and the increase in actomyosin activity and quantity. Stretching is proposed as the stimulus inducing increases in the length of the thick and thin filaments.  相似文献   

7.
The development of myofibrils in cultured myotome cells from Xenopus embryos was studied with whole-mount and thin-section electron microscopy. For whole mount, the cells were grown on Formvar-coated grids, fixed, dehydrated, critical-point dried, and examined with a conventional (100 kV) or a high-voltage (1000 kV) electron microscope. Nonstriated bundles of 6- to 8-nm microfilaments, similar to stress fibers in nonmuscle cells, appear prior to nascent myofibrils. These bundles run the whole length of the cell and are inserted into the cell cortex. The transition from striated region to nonstriated region on a single nascent myofibril can be seen in both whole-mount and thin-section images. New sarcomeres appear to be added at the distal end of existing ones. Our data also indicate that these new sarcomeres are formed on a preexisting bundle of thin filaments. This suggests that the bundles of microfilaments are precursors to myofibrils. Evidence for this hypothesis came from the following observations. (1) Nascent myofibrils are anchored to the cell cortex via thin filaments similar to microfilament bundles. (2) Thin filaments in newly formed sarcomeres are often continuous through the middle of the A band. Later they break to form the H zone. (3) Thin filaments appear to be continuous through the developing Z band. Later they interact with the filaments in the Z band to form the staggered appearance.  相似文献   

8.
The differentiation of the indirect flight muscles was studied in the various pupal stages of Drosophila. Fibrillar material originates in the young basophilic myoblasts in the form of short myofilamants distributed irregularly near the cell membranes. The filaments later become grouped into bundles (fibrils). Certain "Z bodies" appear to be important during this process. The "Z bodies" may possibly be centriolar derivatives and are the precursors of the Z bands. The first formed fibrils (having about 30 thick myofilaments) are already divided into sarcomeres by Z bands. These sarcomeres, however, seem to be shorter than those of the adult fibrils.The H band differentiates in fibrils having about 40 thick myofilaments; the fibrils constrict in the middle of each sarcomere during this process. The individual myofibrils increase from about 0.3 µ to 1.5 µ in diameter during development, apparently by addition of new filaments on the periphery of the fibrils. The ribosomes seem to be the only cytoplasmic inclusions which are closely associated with these growing myofibrils. Disintegration of the plasma membranes limiting individual myoblasts was commonly seen during development of flight muscles, supporting the view that the multinuclear condition of the fibers of these muscles is due to fusion of myoblasts.  相似文献   

9.
Resting Sarcomere Length-Tension Relation in Living Frog Heart   总被引:4,自引:3,他引:1       下载免费PDF全文
The sarcomere pattern and tension of isolated resting frog atrial trabeculae were continuously monitored. In the absence of any resting tension the sarcomere lengths varied with the diameter of the trabeculae. In over 75 % of the trabeculae the value exceeded 2.05 µm, the estimated in vivo length of the thin filaments, and it was never less than 1.89 µm. When the trabeculae were stretched the increase in length of the central undamaged portion could be completely accounted for by an increase in sarcomere length. The width of the A band was constant only at sarcomere lengths between 2.3 and 2.6 µm it decreased at smaller and increased at larger sarcomere lengths. A group of spontaneously active cells stretched the sarcomeres in cells in series to longer lengths than could be produced by passive tension applied to the ends of the trabeculae, but they did not influence the sarcomeres of adjacent cells. It is proposed that the connective tissue is a major factor in determining sarcomere length and that there are interactions between thick and thin filaments in resting muscles.  相似文献   

10.
The striated muscles of Derocheilocaris typica consist of mononucleated cells, each containing one filament bundle. Large muscles consist of two or more cells adjacent to each other. The mitochondria line up along the filament bundle on one side. The nucleus is situated in the mitochondrial row and has a small cytoplasmic area around it filled with glycogen. The sarcomeres are between 3 and 6 μm long. The Z-line and H band are present. Six thin filaments surround one thick filament. All muscles belong to the phasic type. The tubular system emanates from the ends of the muscle cell and penetrates the whole cell. The tubules are formed as cisterns, which also open at the cell membrane at the level of the I bands. They have sarcoplasmic cisterns on both sides forming a continuous triad system. Partially transformed epidermal cells mediate muscle insertions on the cuticle. Tendons are formed with the transformed epidermal cells being supplemented by fibroblasts forming collagen fibers. Dorsal and ventral abdominal muscles are innervated from the dorso-lateral nerve arising from the nerve chain. Each muscle cell receives one axon, which forms one synapse on the mitochondrial-free side of the muscles. Axons form terminal spines, which make axo-axonal synapses.  相似文献   

11.
The selective incorporation of vitellogenin into developing locust oöcytes was studied using 125I-vitellin. Vitellogenin incorporation does not start before the oöcytes are 1.5 mm in length. It increases rapidly up to a maximum at 4.7 mm oöcyte length and decreases steadily until the eggs are fully developed (6.5 mm). Concentrations of serum proteins and vitellogenin in the haemolymph show parallel changes, vitellogenin titre reaching a maximum of 7.5 mg/ml. Incorporation rates for vitellogenin increase from 1.5 μg/hr/oöcyte (2.2 mm) up to 13.8 μg/hr/oöcyte (4.7 mm). In this range incorporation per unit surface area increases 4-fold. While the vitelline and chorionic membranes are being formed, the incorporation rates as well as the protein concentrations in the haemolymph decrease steadily until the second gonotrophic cycle starts. The hormonal basis for oögenesis and the mechanism for selective uptake of locust vitellogenin are discussed.  相似文献   

12.
The myofibrils in Drosophila have thick and thin types of myofilaments arranged in the hexagonal pattern described for Calliphora by Huxley and Hanson (15). The thick filaments, along most of their length in the A band, seem to be binary in structure, consisting of a dense cortex and a lighter medulla. In the H zone, however, they show more uniform density; lateral projections (bridges) also appear to be absent in this region. The M band has a varying number of granules (probably of glycogen) distributed between the myofilaments. The myofilaments on reaching the Z region appear to change their hexagonal arrangement and become connected to one another by Z filaments. The regular arrangement of the filaments found in most regions of the fibrils is not seen in the terminal sarcomeres of some flight muscles; the two types of filaments appear to be intermingled in an irregular pattern in these parts of the fibrils. The attachment of myofibrils to the cuticle through the epidermal cells is described.  相似文献   

13.
Fine structural characteristics of the cardiac muscle and its sarcomere organization in the black widow spider, Latrodectus mactans were examined using transmission electron microscopy. The arrangement of cardiac muscle fibers was quite similar to that of skeletal muscle fibers, but they branched off at the ends and formed multiple connections with adjacent cells. Each cell contained multiple myofibrils and an extensive dyadic sarcotubular system consisting of sarcoplasmic reticulum and T‐tubules. Thin and thick myofilaments were highly organized in regular repetitive arrays and formed contractile sarcomeres. Each repeating band unit of the sarcomere had three apparent striations, but the H‐zone and M‐lines were not prominent. Myofilaments were arranged into distinct sarcomeres defined by adjacent Z‐lines with relatively short lengths of 2.0 μm to 3.3 μm. Cross sections of the A‐band showed hexagon‐like arrangement of thick filaments, but the orbit of thin filaments around each thick filament was different from that seen in other vertebrates. Although each thick filament was surrounded by 12 thin filaments, the filament ratio of thin and thick myofilaments varied from 3:1 to 5:1 because thin filaments were shared by adjacent thick filaments.  相似文献   

14.
In leg muscle sarcomeres of a beetle, approximately 6 mum sarcomere length at rest, projectin ( approximately 1200 kDa) was located on the myosin filament up to 2 mum from the both ends of the filament, using immunofluorescence and immunoelectron microscopy. On the other hand, projectin linked the Z line to the myosin filament and bound on the myosin filament in beetle flight muscle, approximately 3-4 mum sarcomere length at rest. Connectin-like protein ( approximately 3000 kDa) was detected by immunoblot tests in beetle, bumblebee and waterbug leg muscles. Immunofluorescence and immunoelectron microscopic observations revealed that the connectin-like protein linked the myosin filament to the Z line in beetle leg muscle.  相似文献   

15.
Trunk and limb muscles from fetal and newborn rabbits were investigated by means of light and electron microscopes. At 14 days gestation, the presumptive myoblasts migrate away from the myotome to form the anlage of the muscle of the trunk and limb. Among the population of undifferentiated cells, the myoblasts were recognized due to the presence of actin and myosin filaments. The aggregates of thin and thick filaments appear at the periphery of the cells. There is a great variety of filament assembly. The presence of Z band material appears to be essential for sarcomere formation. At 14 days of gestation the myotubes are more numerous in the limb than in the trunk. The presence of unmaturated fibrils with absence of the M line in the sarcomeres was observed. By day 18 of gestation the myotubes are wider and aggregate to form small bundles. The myofibrils were more numerous and the vesicles of the SR precursor, partly incrustated with ribosomes were dispersed among them. At day 22 of gestation the myotubes are thicker because of the myofibrils which are far more numberous. The sarcomeres were more fully developed, with the M line present. At day 28 of gestation and 3 days after delivery the already developed myofibers were present with a well organized SR system and fully developed sarcomeres.  相似文献   

16.
Fifty adult newts were used in this investigation; in 44 animals, the intestine was transected perpendicular to its longitudinal axis approximately midway between pylorus and rectum. The free ends of the intestine were held in apposition with a single suture and replaced into the coelom. The animals were injected intraperitoneally with [3H]thymidine from 0 to 35 days after transection of the intestine and killed 6 hr later. In nontransected, control intestines, the only tissue that incorporated [3H]thymidine was the mucosal epithelium. In transected intestines, only the mucosal epithelium labeled in animals which had been injected with [3H]thymidine from 0 to 4 days after the intestine was incised. Later on, serosal cells and smooth muscle cells of the intestinal stump underwent morphological alteration, initiated the incorporation of [3H]thymidine into DNA, and began replication. At 6 days after transection, serosal cells adjacent to the plane of transection were incorporating [3H]thymidine and, at 12 days, smooth muscle cells at the transected surface were labeling. It seems probable that they both furnished cells to the intestinal blastema; the lining epithelium of the mucosa, however, did not appear to contribute to the blastema proper.  相似文献   

17.
Contraction of individual sarcomeres within the living mite Tarsonemus sp. was observed by polarized light microscopy. In unflattened animals the usual range of contraction was such that the minimum sarcomere length approximated the length of the A region, and the maximum sarcomere length was about twice the length of the A region. The central sarcomeres of the dorsal metapodosomal muscles were observed in detail. The A band length increased slightly with increasing sarcomere length since the regression of I region length on sarcomere length had an average slope of 0.91. When the A band length in a sarcomere which was shortening was compared with the length when the same sarcomere lengthened, no significant difference was seen. The A band of each sarcomere seemed to act as a not too rigid limit to further shortening; this agreed with the reversible shortening of a muscle in which the A band had been experimentally shortened. An H region was visible at long sarcomere lengths and was not visible at short sarcomere lengths, even when the muscle was actively shortening. The rate of change of H region length with sarcomere length suggested that I filament length may increase as sarcomere length increases. Despite this effect and the small increase in A length with sarcomere length, the results are considered to be consistent with a model in which shortening occurs by the relative movement of A and I filaments, with little or no change in length of either set of filaments. Sarcomere shortening was clearly associated with an increase in the retardation of the A region.  相似文献   

18.
Rates and products of photosynthetic 14CO2 fixation by division synchronized cultures of Euglena gracilis strain Z were determined over the cycle. Rate of 14CO2 fixation doubled in a continuous manner throughout the light phase followed by a slight reduction of photosynthetic capacity in the dark phase. Greater 14C incorporation into the nucleic acid-polysaccharide fraction occurred with mature cells. Products of 14CO2 fixation varied markedly over the cycle: although with mature cells 14C-labeled sucrose was not detected, with dividing cells this was the main sugar labeled; in young cells 14C maltose was formed. Cells removed at end of dark phase accumulated 14C in glycolate, whereas at other stages over the cycle less 14C was present in glycolate, and this was accompanied by a rapid incorporation of 14C into glycine and serine. Glycerate was an early and major product of photosynthesis with cells at the mature stage of the cycle.  相似文献   

19.
Fibrils from the indirect flight muscle of Drosophila melanogaster which have been teased into a solution containing 0.1 M KCl, 2 mM EDTA, 4 mM MgCl2, and 2.5 mM ATP at pH 7.0 can be made to shorten to 10 per cent of their initial length by reducing the level of ATP at a pH of about 8 or by briefly treating the fibrils with trypsin before lowering the level of ATP. Fibrils shortened in either of these ways, when dehydrated and immersed in nitrobenzene, display a strong positively birefringent band at the level of the Z band. In the trypsin-treated fibrils the width of this Z band increases as the fibril shortens. The data obtained are in agreement with the view that the positively birefringent Z band results from the interdigitation of A filaments in adjacent sarcomeres. With shortening to about 35 per cent of the initial length, the cytological pattern suggests that the A filaments of alternate as well as of adjacent A regions interdigitate.  相似文献   

20.
THE ULTRASTRUCTURE OF STRIATED MUSCLE AT VARIOUS SARCOMERE LENGTHS   总被引:2,自引:2,他引:0       下载免费PDF全文
1. Rest and equilibrium length muscle sarcomeres are composed of thin filaments (actin) which traverse the sarcomeres from the Z membranes up to the H band; at this level the filaments are considerably thicker and less numerous. 2. Shortening of muscle is associated with a transformation of thin into thick filaments in the A band. 3. These observations are discussed in terms of interaction of actin and myosin to form a supercoiled structure as the basis of contraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号