首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The structure of actin bundles from internodal cells of Chara australis, an algal plant, was studied by electron microscopy of negatively stained specimens and optical diffraction. Gently prepared bundles revealed paracrystalline structures resembling the Mg2+-induced paracrystals of rabbit skeletal muscle actin (Hanson, 1968). In addition, the algal actin bundles sometimes had transverse striations at intervals of about 130 Å, as has been observed in actin bundles from sea urchin eggs (DeRosier et al., 1977; Spudich & Amos, 1979) and sea urchin coelomocytes (De Rosier & Edds, 1980; Otto & Bryan, 1981). This finding suggests that a common mechanism might be working in a variety of cells to organize actin filaments into functional bundles.  相似文献   

2.
Structure of actin-containing filaments from two types of non-muscle cells   总被引:33,自引:0,他引:33  
Bundles of actin-containing filaments from the acrosomal process of horseshoe crab sperm and from sea urchin egg contain a second protein having a molecular weight of about 55,000. Electron micrographs of these filamentous bundles show features reminiscent of paracrystalline arrays of actin except that bundles from the sea urchin egg have distinctive transverse bands every 110 Å. From optical diffraction patterns of the micrographs, we deduced very similar models for both structures. The models consist of hexagonal arrays of actin filaments cross-linked by the second protein. The pattern of transverse bands in bundles derived from the sea urchin eggs is accounted for by postulating that the second protein is bonded to actin only at positions where cross-linking can occur, rather than being bonded to every actin. The helical symmetry of the actin requires that the bonding contacts involved in the cross-linking be slightly different at different positions along the length of the bundle. The technique of image reconstruction was used to obtain a three-dimensional map of the bundles from the acrosomal process.  相似文献   

3.
Drosophila singed mutants were named for their gnarled bristle phenotype but severe alleles are also female sterile. Recently, singed protein was shown to have 35% peptide identity with echinoderm fascin. Fascin is found in actin filament bundles in microvilli of sea urchin eggs and in filopodial extensions in coelomocytes. We show that Drosophila singed is required for actin filament bundle formation in the cytoplasm of nurse cells during oogenesis; in severe mutants, the absence of cytoplasmic actin filament bundles allows nurse cell nuclei to lodge in ring canals and block nurse cell cytoplasm transport. Singed is also required for organized actin filament bundle formation in the cellular extension that forms a bristle; in severe mutants, the small disorganized actin filament bundles lack structural integrity and allow bristles to bend and branch during extension. Singed protein is also expressed in migratory cells of the developing egg chamber and in the socket cell of the developing bristle, but no defect is observed in these cells in singed mutants. Purified, bacterially expressed singed protein bundles actin filaments in vitro with the same stoichiometry reported for purified sea urchin fascin. Singed-saturated actin bundles have a molar ratio of singed/actin of approximately 1:4.3 and a transverse cross-banding pattern of 12 nm seen using electron microscopy. Our results suggest that singed protein is required for actin filament bundle formation and is a Drosophila homolog of echinoderm fascin.  相似文献   

4.
Actin filaments elongate from their membrane-associated ends   总被引:22,自引:19,他引:3       下载免费PDF全文
In limulus sperm an actin filament bundle 55 mum in length extends from the acrosomal vacuole membrane through a canal in the nucleus and then coils in a regular fashion around the base of the nucleus. The bundle expands systematically from 15 filaments near the acrosomal vacuole to 85 filaments at the basal end. Thin sections of sperm fixed during stages in spermatid maturation reveal that the filament bundle begins to assemble on dense material attached to the acrosomal vacuole membrane. In micrographs fo these early stages in maturation, short bundles are seen extending posteriorly from the dense material. The significance is that these short, developing bundles have about 85 filaments, suggesting that the 85-filament end of the bundle is assembled first. By using filament bundles isolated and incubated in vitro with G actin from muscle, we can determine the end “preferred” for addition of actin monomers during polymerization. The end that would be associated with the acrosomal vacuole membrane, a membrane destined to be continuous with the plasma membrane, is preferred about 10 times over the other, thicker end. Decoration of the newly polymerized portions of the filament bundle with subfragment 1 of myosin reveals that the arrowheads point away from the acrosomal vacuole membrane, as is true of other actin filament bundles attached to membranes. From these observations we conclude that the bundle is nucleated from the dense material associated with the acrosomal vacuole and that monomers are added to the membrane-associated end. As monomers are added at the dense material, the thick first-made end of the filament bundle is pushed down through the nucleus where, upon reaching the base of the nucleus, it coils up. Tapering is brought about by the capping of the peripheral filaments in the bundle.  相似文献   

5.
A comparison of hair cells from different parts of the cochlea reveals the same organization of actin filaments; the elements that vary are the length and number of the filaments. Thin sections of stereocilia reveal that the actin filaments are hexagonally packed and from diffraction patterns of these sections we found that the actin filaments are aligned such that the crossover points of adjacent actin filaments are in register. As a result, the cross-bridges that connect adjacent actin filaments are easily seen in longitudinal sections. The cross-bridges appear as regularly spaced bands that are perpendicular to the axis of the stereocilium. Particularly interesting is that, unlike what one might predict, when a stereocilium is bent or displaced, as might occur during stimulation by sound, the actin filaments are not compressed or stretched but slide past one another so that the bridges become tilted relative to the long axis of the actin filament bundle. In the images of bent bundles, the bands of cross- bridges are then tilted off perpendicular to the stereocilium axis. When the stereocilium is bent at its base, all cross-bridges in the stereocilium are affected. Thus, resistance to bending or displacement must be property of the number of bridges present, which in turn is a function of the number of actin filaments present and their respective lengths. Since hair cells in different parts of the cochlea have stereocilia of different, yet predictable lengths and widths, this means that the force needed to displace the stereocilia of hair cells located at different regions of the cochlea will not be the same. This suggests that fine tuning of the hair cells must be a built-in property of the stereocilia. Perhaps its physiological vulnerability may result from changes of stereociliary structure.  相似文献   

6.
Effects of Cytochalasin B on Muscle Cells in Tissue Culture   总被引:12,自引:0,他引:12  
THE antibiotic cytochalasin B induces the formation of binucleated and multinucleated cells by preventing cytokinesis1 and the cleavage furrow filaments in sea urchin eggs, 50-100 Å in diameter, disappear in the presence of this compound2. It has a similar effect on the fine filaments found in embryonic pancreatic cells3 and inhibits cell migration1. Many kinds of cells displaying amoeboid movements have been reported to have 50-100 Å filaments4–6. Ishikawa et al. have demonstrated that 60–80 Å filaments in the cortex of various tissue cells bind heavy-meromyosin in a manner identical to that of actin filaments, which are also 60–80 Å in diameter7. Many investigators have referred to these thin filaments as actin or actin-like and assumed them to be responsible for, or associated with, cellular movements8,9, contraction10,11 and cytokinesis12,13.  相似文献   

7.
We have undertaken some computer modeling studies of the cross-bridge observed by Reedy in insect flight muscle so that we investigate the geometric parameters that influence the attachment patterns of cross-bridges to actin filaments. We find that the appearance of double chevrons along an actin filament indicates that the cross-bridges are able to reach 10--14 nm axially, and about 90 degrees around the actin filament. Between three and five actin monomers are therefore available along each turn of one strand of actin helix for labeling by cross-bridges from an adjacent myosin filament. Reedy's flared X of four bridges, which appears rotated 60 degrees at successive levels on the thick filament, depends on the orientation of the actin filaments in the whole lattice as well as on the range of movement in each cross-bridge. Fairly accurate chevrons and flared X groupings can be modeled with a six-stranded myosin surface lattice. The 116-nm long repeat appears in our models as "beating" of the 14.5-nm myosin repeat and the 38.5-nm actin period. Fourier transforms of the labeled actin filaments indicate that the cross-bridges attach to each actin filament on average of 14.5 nm apart. The transform is sensitive to changes in the ease with which the cross-bridge can be distorted in different directions.  相似文献   

8.
An axial rod in abalone ( Haliotis discus ) sperm is a structure composed of a bundle of actin filaments, which elongates anteriorly to form the acrosomal process during the acrosome reaction. The ultrastructure of the actin filament bundle constituting the axial rod was examined using quick freeze technique followed by either freeze-substitution or deep-etch electron microscopy. Thin sections of quick freeze and freeze-substituted sperm revealed that the actin filaments in the axial rod are hexagonally packed in a paracrystalline array through its almost entire length with an average center-to-center spacing of 12 nm. Periodic transverse bands were also observed across the actin filament bundle, which may reflect the cross-bridges interconnecting the adjacent filaments. Quick-freeze deep-etch analysis provided the three-dimensional view of the axial rod. Actin filaments exhibiting 5.5–6 nm spaced striations were observed to run in parallel with each other inside the axial rod. The existence of cross-bridging structures was also displayed between adjacent filaments. These results suggest that the actin filaments in the axial rod are probably held together by regularly spaced cross-bridges to form a well ordered hexagonally packed bundle, and also cross-linked by fibrous structure to the lateral inner acrosomal membrane which closely surrounds the anterior half of the actin filament bundle.  相似文献   

9.
《The Journal of cell biology》1983,97(6):1795-1805
We have used hydrostatic pressure to study the structural organization of actin in the sea urchin egg cortex and the role of cortical actin in early development. Pressurization of Arbacia punctulata eggs to 6,000 psi at the first cleavage division caused the regression of the cleavage furrow and the disappearance of actin filament bundles from the microvilli. Within 30 s to 1 min of decompression these bundles reformed and furrowing resumed. Pressurization of dividing eggs to 7,500 psi caused both the regression of the cleavage furrow and the complete loss of microvilli from the egg surface. Following release from this higher pressure, the eggs underwent extensive, uncoordinated surface contractions, but failed to cleave. The eggs gradually regained their spherical shape and cleaved directly into four cells at the second cleavage division. Microvilli reformed on the egg surface over a period of time corresponding to that required for the recovery of normal egg shape and stability. During the initial stages of their regrowth the microvilli contained a network of actin filaments that began to transform into bundles when the microvilli had reached approximately 2/3 of their final length. These results demonstrate that moderate levels of hydrostatic pressure cause the reversible disruption of cortical actin organization, and suggest that this network of actin stabilizes the egg surface and participates in the formation of the contractile ring during cytokinesis. The results also demonstrate that actin filament bundles are not required for the regrowth of microvilli after their removal by pressurization. Preliminary experiments demonstrate that F-actin is not depolymerized in vitro by pressures up to 10,000 psi and suggest that pressure may act indirectly in vivo, either by changing the intracellular ionic environment or by altering the interaction of actin binding proteins with actin.  相似文献   

10.
Summary Tube foot epidermal cells of the sea urchin Strongylocentrotus purpuratus were examined by transmission electron microscopy and fluorescence microscopy to identify the chemical nature of prominent bundles of cytoplasmic filaments. Cross sections revealed filaments of roughly 7–8 nm in diameter closely packed into dense bundles. These bundles, in turn, were each surrounded by a loose sheath of microtubules. The filament size and negative reaction with the fluorescent F-actin binding drug NBD-phallacidin indicated that they were not actin. Indirect immunofluorescence microscopy of whole tissues and frozen sections revealed a strong reaction of the filaments with a monoclonal antibody prepared against porcine stomach desmin. In SDS-polyacrylamide gels of whole tube foot protein, a band of apparent molecular weight around 50 000 daltons reacted with the anti-desmin monoclonal antibody. The combined data provide evidence that the epidermal filament bundles are related to vertebrate intermediate filaments, but further biochemical studies will be necessary to assign them to a particular class of filament proteins.  相似文献   

11.
Intestinal epithelia have a brush border membrane of numerous microvilli each comprised of a cross-linked core bundle of 15-20 actin filaments attached to the surrounding membrane by lateral cross-bridges; the cross-bridges are tilted with respect to the core bundle. Isolated microvillar cores contain actin (42 kD) and three other major proteins: fimbrin (68 kD), villin (95 kD), and the 110K-calmodulin complex. The addition of ATP to detergent-treated isolated microvillar cores has previously been shown to result in loss of the lateral cross-bridges and a corresponding decrease in the amount of the 110-kD polypeptide and calmodulin associated with the core bundle. This provided the first evidence to suggest that these lateral cross-bridges to the membrane are comprised at least in part by a 110-kD polypeptide complexed with calmodulin. We now demonstrate that purified 110K-calmodulin complex can be readded to ATP-treated, stripped microvillar cores. The resulting bundles display the same helical and periodic arrangement of lateral bridges as is found in vivo. In reconstitution experiments, actin filaments incubated in EGTA with purified fimbrin and villin form smooth-sided bundles containing an apparently random number of filaments. Upon addition of 110K-calmodulin complex, the bundles, as viewed by electron microscopy of negatively stained images, display along their entire length helically arranged projections with the same 33-nm repeat of the lateral cross-bridges found on microvilli in vivo; these bridges likewise tilt relative to the bundle. Thus, reconstitution of actin filaments with fimbrin, villin, and the 110K-calmodulin complex results in structures remarkably similar to native microvillar cores. These data provide direct proof that the 110K-calmodulin is the cross-bridge protein and indicate that actin filaments bundled by fimbrin and villin are of uniform polarity and lie in register. The arrangement of the cross-bridge arms on the bundle is determined by the structure of the core filaments as fixed by fimbrin and villin; a contribution from the membrane is not required.  相似文献   

12.
Myosin X is a molecular motor that is adapted to select bundled actin filaments over single actin filaments for processive motility. Its unique form of motility suggests that myosin X's stepping mechanism takes advantage of the arrangement of actin filaments and the additional target binding sites found within a bundle. Here we use fluorescence imaging with one-nanometer accuracy to show that myosin X takes steps of ∼18 nm along a fascin-actin bundle. This step-size is well short of the 36-nm step-size observed in myosin V and myosin VI that corresponds to the actin pseudohelical repeat distance. Myosin X is able to walk along bundles with this step-size if it straddles two actin filaments, but would be quickly forced to spiral into the constrained interior of the bundle if it were to use only a single actin filament. We also demonstrate that myosin X takes many sideways steps as it walks along a bundle, suggesting that it can switch actin filament pairs within the bundle as it walks. Sideways steps to the left or the right occur on bundles with equal frequency, suggesting a degree of lateral flexibility such that the motor's working stroke does not bias it to the left or to the right. On single actin filaments, we find a broad mixture of 10-20-nm steps, which again falls short of the 36-nm actin repeat. Moreover, the motor leans to the right as it walks along single filaments, which may require myosin X to adopt strained configurations. As a control, we also tracked myosin V stepping along actin filaments and fascin-actin bundles. We find that myosin V follows a narrower path on both structures, walking primarily along one surface of an actin filament and following a single filament within a bundle while occasionally switching to neighboring filaments. Together, these results delineate some of the structural features of the motor and the track that allow myosin X to recognize actin filament bundles.  相似文献   

13.
Thyone sperm were demembranated with Triton X-100 and, after washing, extracted with 30 mM Tris at pH 8.0 and 1 mM MgCl2. After the insoluble contaminants were removed by centrifugation, the sperm extract was warmed to 22 degrees C. Actin filaments rapidly assembled and aggregated into bundles when KCl was added to the extract. When we added preformed actin filaments, i.e., the acrosomal filament bundles of Limulus sperm, to the extract, the actin monomers rapidly assembled on these filaments. What was unexpected was that assembly took place on only one end of the bundle--the end corresponding to the preferred end for monomer addition. We showed that the absence of growth on the nonpreferred end was not due to the presence of a capper because exogenously added actin readily assembled on both ends. We also analyzed the sperm extract by SDS gel electrophoresis. Two major proteins were present in a 1:1 molar ratio: actin and a 12,500-dalton protein whose apparent isoelectric point was 8.4. The 12,500-dalton protein was purified by DEAE chromatography. We concluded that it is profilin because of its size, isoelectric point, molar ratio to actin, inability to bind to DEAE, and its effect on actin assembly. When profilin was added to actin in the presence of Limulus bundles, addition of monomers on the nonpreferred end of the bundle was inhibited, even though actin by itself assembled on both ends. Using the Limulus bundles as nuclei, we determined the critical concentration for assembly off each end of the filament and estimated the Kd for the profilin-actin complex (approximately 10 microM). We present a model to explain how profilin may regulate the extension of the Thyone acrosomal process in vivo: The profilin-actin complex can add to only the preferred end of the filament bundle. Once the actin monomer is bound to the filament, the profilin is released, and is available to bind to additional actin monomers. This mechanism accounts for the rapid rate of filament elongation in the acrosomal process in vivo.  相似文献   

14.
A protein similar to alpha-actinin has been isolated from unfertilized sea urchin eggs. This protein co-precipitated with actin from an egg extract as actin bundles. Its apparent molecular weight was estimated to be approximately 95,000 on an SDS gel: it co-migrated with skeletal-muscle alpha-actinin. This protein also co-eluted with skeletal muscle alpha-actinin from a gel filtration column giving a Stokes radius of 7.7 nm, and its amino acid composition was very similar to that of alpha-actinins. It reacted weakly but significantly with antibodies against chicken skeletal muscle alpha-actinin. We designated this protein as sea urchin egg alpha-actinin. The appearance of sea urchin egg alpha-actinin as revealed by electron microscopy using the low-angle rotary shadowing technique was also similar to that of skeletal muscle alpha-actinin. This protein was able to cross-link actin filaments side by side to form large bundles. The action of sea urchin egg alpha-actinin on the actin filaments was studied by viscometry at a low-shear rate. It gelled the F-actin solution at a molar ratio to actin of more than 1:20, at pH 6-7.5, and at Ca ion concentration less than 1 microM. The effect was abolished by the presence of tropomyosin. Distribution of this protein in the egg during fertilization and cleavage was investigated by means of microinjection of the rhodamine-labeled protein in the living eggs. This protein showed a uniform distribution in the cytoplasm in the unfertilized eggs. Upon fertilization, however, it was concentrated in the cell cortex, including the fertilization cone. At cleavage, it seemed to be concentrated in the cleavage furrow region.  相似文献   

15.
Organization and expression of Drosophila tropomyosin genes   总被引:12,自引:0,他引:12  
It has been shown (Jockusch &; Isenberg, 1981) that vinculin (130K protein) binds to actin and induces actin filaments to form bundles even at low ionic strength. Here, we present structural details on the vinculin molecule itself and on its interaction with actin. In negatively stained preparations, vinculin appeared as a globular protein with an average diameter of 85 Å. The ability of vinculin to form actin filament bundles was confirmed using shadowing techniques and gel analysis of sedimented material. Analysis of vinculin-induced paracrystals by optical diffraction and computer processing revealed their structural similarity to Mg-induced paracrystals. The lateral position of vinculin on surface-exposed actin filaments of such paracrystals was demonstrated directly in electron micrographs and indirectly by labelling vinculin with ferritin-coupled anti-vinculin F(ab′) fragments. Polymerization of actin in the presence of vinculin-coated polystyrene beads did not result in an “end-on” binding of filaments to the beads. Rather, actin bundles were laterally associated with the whole surface of the beads, from where they radiated in a star-like pattern. The growth of actin filaments onto myosin subfragment-I decorated, vinculin-incubated. fixed filament fragments was not inhibited, as was shown directly by electron microscopy and monitored viscometrically in a nucleation assay. These results suggest that in vivo at the site of an adhesion plaque vinculin may link actin filaments together into a suitable configuration to interact with the plasma membrane.  相似文献   

16.
We have determined the structural organization and dynamic behavior of actin filaments in entire primary locomoting heart fibroblasts by S1 decoration, serial section EM, and photoactivation of fluorescence. As expected, actin filaments in the lamellipodium of these cells have uniform polarity with barbed ends facing forward. In the lamella, cell body, and tail there are two observable types of actin filament organization. A less abundant type is located on the inner surface of the plasma membrane and is composed of short, overlapping actin bundles (0.25–2.5 μm) that repeatedly alternate in polarity from uniform barbed ends forward to uniform pointed ends forward. This type of organization is similar to the organization we show for actin filament bundles (stress fibers) in nonlocomoting cells (PtK2 cells) and to the known organization of muscle sarcomeres. The more abundant type of actin filament organization in locomoting heart fibroblasts is mostly ventrally located and is composed of long, overlapping bundles (average 13 μm, but can reach up to about 30 μm) which span the length of the cell. This more abundant type has a novel graded polarity organization. In each actin bundle, polarity gradually changes along the length of the bundle. Actual actin filament polarity at any given point in the bundle is determined by position in the cell; the closer to the front of the cell the more barbed ends of actin filaments face forward.

By photoactivation marking in locomoting heart fibroblasts, as expected in the lamellipodium, actin filaments flow rearward with respect to substrate. In the lamella, all marked and observed actin filaments remain stationary with respect to substrate as the fibroblast locomotes. In the cell body of locomoting fibroblasts there are two dynamic populations of actin filaments: one remains stationary and the other moves forward with respect to substrate at the rate of the cell body.

This is the first time that the structural organization and dynamics of actin filaments have been determined in an entire locomoting cell. The organization, dynamics, and relative abundance of graded polarity actin filament bundles have important implications for the generation of motile force during primary heart fibroblast locomotion.

  相似文献   

17.
Drosophila bristle cells are shaped during growth by longitudinal bundles of cross-linked actin filaments attached to the plasma membrane. We used confocal and electron microscopy to examine actin bundle structure and found that during bristle elongation, snarls of uncross-linked actin filaments and small internal bundles also form in the shaft cytoplasm only to disappear within 4 min. Thus, formation and later removal of actin filaments are prominent features of growing bristles. These transient snarls and internal bundles can be stabilized by culturing elongating bristles with jasplakinolide, a membrane-permeant inhibitor of actin filament depolymerization, resulting in enormous numbers of internal bundles and uncross-linked filaments. Examination of bundle disassembly in mutant bristles shows that plasma membrane association and cross-bridging adjacent actin filaments together inhibits depolymerization. Thus, highly cross-bridged and membrane-bound actin filaments turn over slowly and persist, whereas poorly cross-linked filaments turnover more rapidly. We argue that the selection of stable bundles relative to poorly cross-bridged filaments can account for the size, shape, number, and location of the longitudinal actin bundles in bristles. As a result, filament turnover plays an important role in regulating cytoskeleton assembly and consequently cell shape.  相似文献   

18.
《The Journal of cell biology》1996,135(5):1291-1308
The actin bundles in Drosophila bristles run the length of the bristle cell and are accordingly 65 microns (microchaetes) or 400 microns (macrochaetes) in length, depending on the bristle type. Shortly after completion of bristle elongation in pupae, the actin bundles break down as the bristle surface becomes chitinized. The bundles break down in a bizarre way; it is as if each bundle is sawed transversely into pieces that average 3 microns in length. Disassembly of the actin filaments proceeds at the "sawed" surfaces. In all cases, the cuts in adjacent bundles appear in transverse register. From these images, we suspected that each actin bundle is made up of a series of shorter bundles or modules that are attached end-to-end. With fluorescent phalloidin staining and serial thin sections, we show that the modular design is present in nondegenerating bundles. Decoration of the actin filaments in adjacent bundles in the same bristle with subfragment 1 of myosin reveals that the actin filaments in every module have the same polarity. To study how modules form developmentally, we sectioned newly formed and elongating bristles. At the bristle tip are numerous tiny clusters of 6-10 filaments. These clusters become connected together more basally to form filament bundles that are poorly organized, initially, but with time become maximally cross-linked. Additional filaments are then added to the periphery of these organized bundle modules. All these observations make us aware of a new mechanism for the formation and elongation of actin filament bundles, one in which short bundles are assembled and attached end-to-end to other short bundles, as are the vertical girders between the floors of a skyscraper.  相似文献   

19.
The acrosomal apparatus of a sea urchin, Echinocardium cordatum, consists of an acrosomal vesicle and a post-acrosomal rod. The rod is 2.5 μm long and extends from the acrosomal vesicle to the bottom of a nuclear invagination. The rod consists of a bundle of longitudinally disposed, 60 Å thick, actin-like filaments which bind heavy meromyosin to form arrowhead complexes. The actin-like filaments may have a dual function in the fertilization process: (1) extension of the acrosomal process through the egg investments; (2) incorporation of the sperm nucleus.  相似文献   

20.
We have examined the structure of actin-binding molecules in solution and interacting with actin filaments. At physiological ionic strength, actin-binding protein has a Mr value of 540 × 103 as determined by direct and indirect hydrodynamic measurements. It is an asymmetrical dimer composed of 270 × 103 dalton subunits. Viewed in the electron microscope after negative staining or low angle shadowing, actin-binding protein molecules assume a broad range of conformations varying from closed circular structures to fully extended strands 162 nm in contour length. All configurations are apparently derived from the same structure which consists of two monomer chains connected end-to-end. The radius of gyration determined from the electron microscopic images was 21.3 nm in agreement with the value of 17.6 nm calculated from hydrodynamic assays. The average axial ratio from hydrodynamic measurements was 17:1, whereas fully extended dimer molecules in the electron microscope would have an axial ratio of 54:1. All of these observations indicate that actin-binding protein dimers are extremely flexible. The flexibility parameter λ (Landau &; Lifshits, 1958) for actinbinding protein is 0.18 nm?1.As determined by sedimentation, actin-binding protein binds to actin filaments with a Ka value of 2 × 106m?1 and a capacity of one dimer to 14 actin monomers in filaments. After incubation of high concentrations (molar ratio to actin ≥ 1:10) of actin-binding protein with actin filaments, long filament bundles are visible in the electron microscope. Under these conditions, actin-binding protein molecules decorate the actin filaments in the bundles at regular 40 nm intervals or once every 15 monomers, approximately equivalent to the binding capacity measured by sedimentation. Low concentrations of actin-binding protein (molar ratio to actin ≥ 1:50) which promote the gelation of actin filaments in solution, did not detectably alter the isotropy of the actin filaments. Direct visualization of actinbinding protein molecules between actin filaments in the electron microscope showed that dimers are sufficient for crossbridging of actin filaments and that actinbinding protein dimers are bipolar, composed of monomers connected head-to-head and having actin-binding sites located on the free tails.We conclude that actin-binding protein is a dimer at physiological ionic strength. Each dimer has two actin filament binding sites and is therefore sufficient to gel actin filaments in solution. The length and flexibility of the actin-binding protein subunits render this molecule structurally suited for the crosslinking of large helical filaments into isotropic networks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号