首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Metacercariae of Clinostomum marginatum excysted from yellow perch, Perca flavescens, appear to have two systems for transporting glucose across the tegument, facilitated diffusion and active transport. These systems were distinguished by their differential sensitivities to Na+, phlorizin and phloretin. In Ringer's saline for cold-blooded vertebrates, 0.1 mm phlorizin and phloretin were incomplete, but similarly effective inhibitors of glucose uptake in 3 min incubations; worms accumulated in 1 h nonmetabolized 3-O-methylglucose against an apparent concentration difference demonstrating the active transport component. In Na+-free saline, phlorizin sensitivity and active transport capacity disappeared, but a phloretin sensitive, Na+-independent component remained. The Vmax and K1 of the Na+-independent system were 3.0 ± 0.54 μmol/g ethanol-extracted dry wt/h, and 0.8 ± 0.36 mm, respectively. Vmax and K1 of the Na+-dependent system, estimated by subtracting the Na+-independent values from those obtained in Ringer's saline, were 1.3 ± 0.27 μ mol/g ethanol-extracted dry wt/h, and0.7 ± 0.36mm, respectively.  相似文献   

2.
The manner in which the flatworm, Hymenolepis diminuta (Cestoda), regulates the transport of glucose and Na+ across the brush border was examined. While the presence of an unstirred region in the brush border may favor the reabsorption of leaked glucose, some leaked glucose was lost to the ambient medium. This loss was markedly enhanced by preloading the worms with glucose and by removing Na+ from the incubation medium. Since glucose and Na+ influxes are coupled, glucose leakage stimulated the influx of 22Na+. However, this 22Na+ influx was balanced by a simultaneous increased 22Na+ efflux. The presence of phlorizin inhibited both unidirectional fluxes of 22Na+ indicating that efflux of 22Na+ occurred by counter-transport; countertransport of [14C]glucose appeared to be negligible. A model has been proposed in which the transport of glucose and compensating transfers of Na+ across the membrane occur via the same carrier.  相似文献   

3.
An indicator dilution technique with 22Na+ as the intravascular marker was used to measure unidirectional transport of d-[6-3H]glucose from blood into the isolated, perfused dog brain. 18 compounds which are structurally related to glucose were tested for their ability to inhibit glucose transport. The data suggest that no single hydroxyl group is absolutely required for glucose transport, but rather that glucose binding to the carrier probably occurs through hydrogen bonding at several sites (hydroxyls on carbons 1, 3, 4 and 6). In addition, α-d-glucose has higher affinity for the carrier than does β-d-glucose.A separate series of experiments demonstrated that phlorizin and phloretin are competitive inhibitors of glucose transport into brain; however, phloretin is partially competitive and inhibits at lower concentrations than does phlorizin. Inhibition by phlorizin and phloretin is mutually competitive, indicating that these compounds compete for binding to the glucose carrier. Comparison with the results reported in the literature for similar studies using the human erythrocyte demonstrates a fundamental similarity between glucose transport systems in the blood-brain barrier and erythrocyte.  相似文献   

4.
《Molecular membrane biology》2013,30(3-4):221-237
Flavanones and flavones are structural analogues of phloretin. Like phloretin they inhibit the non-Na+-dependent, facilitated diffusion transport system for sugars associated with the lateral serosal boundary of intestinal epithelial cells. The degree of inhibition varies with the extent and position of hydroxylation of the flavonoid nucleus. Flavones are more potent than corresponding flavanones. Tri- and tetrahydroxylated forms are more inhibitory than similar penta- and hexahydroxylated molecules. With one exception, none of the 18 flavonoids tested has secondary effects as metabolic inhibitors, as does phloretin. Inhibition of the passive sugar transport system with flavonoids allows the concentrative Na+-dependent sugar transport system to establish a better concentration gradient than is observed in untreated cells. The degree of gradient enhancement is proportional to the degree of inhibition of the sugar “leak.” The flavonoid glycosides, which can be considered as phlorizin analogues, also inhibit the non-Na+-dependent sugar carrier, but less well than corresponding nonglycosylated agents. Only one of the glycosides inhibits the Na+-dependent transport system, and much less potently than phlorizin.  相似文献   

5.
Summary The recent demonstration that the human colon adenocarcinoma cell line Caco-2 was susceptible to spontaneous enterocytic differentiation led us to consider the question as to whether Caco-2 cells would exhibit sodium-coupled transport of sugars. This problem was investigated using isotopic tracer flux measurements of the nonmetabolizable sugar analog -methylglucoside (AMG). AMG accumulation in confluent monolayers was inhibited to the same extent by sodium replacement, 200 m phlorizin, 1mm phloretin, and 25mm d-glucose, but was not inhibited further in the presence of both phlorizin and phloretin. Kinetic studies were compatible with the presence of both a simple diffusive process and a single, Na+-dependent, phlorizin-and phloretin-sensitive AMG transport system. These results also ruled out any interaction between AMG and a Na+-independent, phloretin-sensitive, facilitated diffusion pathway. The brush-border membrane localization of the Na+-dependent system was inferred from the observations that its functional differentiation was synchronous with the development of brush-border membrane enzyme activities and that phlorizin and phloretin addition 1 hr after initiating sugar transport produced immediate inhibition of AMG uptake as compared to ouabain. Finally, it was shown that brush-border membrane vesicles isolated from the human fetal colonic mucosa do possess a Na+-dependent transport pathway(s) ford-glucose which was inhibited by AMG and both phlorizin and phloretin. Caco-2 cells thus appear as a valuable cell culture model to study the mechanisms involved in the differentiation and regulation of intestinal transport functions.  相似文献   

6.
The ionic dependencies of stimulated and unstimulated Locusta tubules have been studied. K+, Na+, Cl? are essential to both basal and stimulated secretion. K+ is secreted against a concentration gradient in unstimulated tubules. In response to diuretic hormone or cAMP application, there is a dramatic influx of K+ into the lumen. A high level of Na+ and Cl? in the bathing medium is required to allow maximal fluid secretion. The tubules show an apparent impermeability to Na+; its concentration in the secreted fluid is always much less than in the bathing medium. If Na+ is omitted from the medium and excess K+ added (80 mM K), then although basal secretion occurs (2.5 nl/min), the tubules fail to respond to stimulation. Clearly Na+ has an important indirect role to play in stimulated fluid secretion.  相似文献   

7.
The uptake of glucose and amino acids by the euryhaline diatom Cyclotella cryptica Reimann, Lewin & Guillard does not appear to be related to proton gradients. Instead, the transport systems for these organic solutes show a strong requirement for the presence of NaCl. The relationship between uptake and NaCl concentration is hyperbolic, with optimal uptake rates being approached at 100 mM NaCl. High concentrations of KCl cause strong reductions in uptake rates. The (Na+, K+)-stimulated ATPase inhibitor ouabain has no effect on glucose uptake, whereas the diphenolic glucoside phlorizin and its aglucone phloretin are strongly inhibitory. The proton translocating uncoupler CCCP (carbonylcyanide m-chlorophenyl hydrazone) and the ATPase inhibitor DCCD (dicyclohexylcarbodiimide) both almost completely abolish glucose transport, and low concentrations of the ionophares monensin and valenomycin strongly inhibit glucose uptake by the diatom. The requirement of high external NaCl concentrations for glucose transport, and the inhibitory effect an transport of the Na+-specific ionophore monensin are consistent with a coupling of Na+ and organic substrate transport, but could also be explained by a Na+ requirement for glucose binding to a transport carrier, and/or a possible interference with energy producing reactions associated with a monensin-induced collapse of the normal Na+ gradient.  相似文献   

8.
The Malpighian (renal) tubules play important roles in ionic and osmotic homeostasis in insects. In Lepidoptera, the Malpighian tubules are structurally regionalized and the concentration of Na+ and K+ in the secreted fluid varies depending on the segment of tubule analyzed. In this work, we have characterized fluid and ion (Na+, K+, H+) transport by tubules of the larval stage of the cabbage looper Trichoplusia ni; we have also evaluated the effects of fluid secretion inhibitors and stimulants on fluid and ion transport. Ramsay assays showed that fluid was secreted by the iliac plexus but not by the yellow and white regions of the tubule. K+ and Na+ were secreted by the distal iliac plexus (DIP) and K+ was reabsorbed in downstream regions. The fluid secretion rate decreased > 50% after 25 μM bafilomycin A1, 500 μM amiloride or 50 μM bumetanide was added to the bath. The concentration of K+ in the secreted fluid did not change, whereas the concentration of Na+ in the secreted fluid decreased significantly when tubules were exposed to bafilomycin A1 or amiloride. Addition of 500 μM cAMP or 1 μM 5-HT to the bath stimulated fluid secretion and resulted in a decrease in K+ concentration in the secreted fluid. An increase in Na+ concentration in the secreted fluid was observed only in cAMP-stimulated tubules. Secreted fluid pH and the transepithelial electrical potential (TEP) did not change when tubules were stimulated. Taken together, our results show that the secretion of fluid is carried out by the upper regions (DIP) in T. ni Malpighian tubules. Upper regions of the tubules secrete K+, whereas lower regions reabsorb it. Stimulation of fluid secretion is correlated with a decrease in the K+/Na+ ratio.  相似文献   

9.
Experiments in vitro on everted sacs of rat small intestine have shown that phloretin (an inhibitor of basolatheral glucose GLUT2 transporter) added from mucosal side of the sacs decreases release of glucose from enterocytes into serosal fluid without changing glucose accumulation in tissue of the preparations. Addition of phloridzin (an inhibitor of Na+ and glucose co-transporter SGLT1) from mucosal side inhibited both glucose accumulation in the tissue and its release into serosal fluid. Unspecific effects of phloretin and phloridzin on activities of several digestive enzymes (in particular, alkaline phosphatase, amino peptidase, and glycyl-L-leucine dipeptidase) has been revealed in homogenates of the rat small intestine mucosa. In chronic experiments on rats, absorption of glycine from the isolated small intestinal loop was inhibited in the presence of phloretin in perfusate. The obtained results indicate that the experimental approach of inhibition of glucose absorption by phloretin used from mucosal side in vitro appears to give a significant overestimation of contribution of facilitated diffusion (with participation of the GLUT2 transporter inserted in the apical enterocyte membrane) to glucose transport across this membrane. Thus, the role of the GLUT2 transporter in the mechanism of glucose absorption in the small intestine under its physiological conditions does not seem to be as great as it is thought by the authors of the recently proposed hypothesis.  相似文献   

10.
  • 1.1. Uptake of [14C]-labelled d-glucose, l-arabinose and d-fructose by intestinal and renal brush border and basolateral membrane vesicles was studied in the absence of Na+ .
  • 2.2. The Na+-independent d-glucose transport system in these membrane vesicles was saturable, sensitive to phloretin, stereospecific and accessible only to d-glucose and d-galactose.
  • 3.3. Na+-independent l-arabinose transport was not saturable even when its concentration was raised to 300 mM and it was insensitive to phloretin.
  • 4.4. Na+-independent d-fructose transport demonstrated saturation kinetics with only renal brush border membrane vesicles, but it was not inhibited by either phloretin or phlorizin.
  • 5.5. These studies indicated that the Na+-independent carrier-mediated d-glucose/d-galactose transport system of intestinal and renal brush border and basolateral membranes is clearly not shared by other monosaccharides.
  相似文献   

11.
Kidney proximal tubules are a key segment in the reabsorption of solutes and water from the glomerular ultrafiltrate, an essential process for maintaining homeostasis in body fluid compartments. The abundant content of Na+ in the extracellular fluid determines its importance in the regulation of extracellular fluid volume, which is particularly important for different physiological processes including blood pressure control. Basolateral membranes of proximal tubule cells have the classic Na+ + K+-ATPase and the ouabain-insensitive, K+-insensitive, and furosemide-sensitive Na+-ATPase, which participate in the active Na+ reabsorption. Here, we show that nanomolar concentrations of ceramide-1 phosphate (C1P), a bioactive sphingolipid derived in biological membranes from different metabolic pathways, promotes a strong inhibitory effect on the Na+-ATPase activity (C1P50 ≈ 10 nM), leading to a 72% inhibition of the second sodium pump in the basolateral membranes. Ceramide-1-phosphate directly modulates protein kinase A and protein kinase C, which are known to be involved in the modulation of ion transporters including the renal Na+-ATPase. Conversely, we did not observe any effect on the Na+ + K+-ATPase even at a broad C1P concentration range. The significant effect of ceramide-1-phosphate revealed a new potent physiological and pathophysiological modulator for the Na+-ATPase, participating in the regulatory network involving glycero- and sphingolipids present in the basolateral membranes of kidney tubule cells.  相似文献   

12.
This paper describes experiments designed to evaluate Na+ and Cl- transport in isolated proximal straight tubules from rabbit kidneys. When the perfusing solution was Krebs-Ringer buffer with 25 mM HCO3- (KRB) and the bath contained KRB plus 6% albumin, net volume reabsorption (Jv, nl min-1 mm-1 was -0.46 ± 0.03 (SEM); Ve, the spontaneous transepithelial potential difference, was -1.13 ± 0.05 mV, lumen negative. Both Jv, and Ve, were reduced to zero at 21°C or with 10-4 M ouabain, but Jv, was not HCO3- dependent. Net Na+ reabsorption, measured as the difference between 22Na+ fluxes, lumen to bath and bath to lumen, accounted quantitatively for volume reabsorption, assuming the latter to be an isotonic process, and was in agreement with the difference between lumen to bath 22Na+ fluxes during volume reabsorption and at zero volume flow. The observed flux ratio for Na+ was 1.46, and that predicted for a passive process was 0.99; thus, Na+ reabsorption was rationalized in terms of an active transport process. The Cl- concentration of tubular fluid rose from 113.6 to 132.3 mM during volume reabsorption. Since Ve, rose to +0.82 mV when tubules were perfused with 138.6 mM Cl- solutions, Ve may become positive when tubular fluid Cl- concentrations rise during volume reabsorption. The permeability coefficients PNa and PCl computed from tracer fluxes were, respectively, 0.23 x 10-4 and 0.73 x 10-4 cm s-1. A PNa/PCl ratio of 0.3 described NaCl dilution potentials at zero volume flow. The magnitudes of the potentials were the same for a given NaCl gradient in either direction and PNa/PCl was constant in the range 32–139 mM NaCl. We infer that the route of passive ion permeation was through symmetrical extracellular interfaces, presumably tight junctions, characterized by neutral polar sites in which electroneutrality is maintained by mobile counterions.  相似文献   

13.
A brush border preparation from rabbit renal tubules containing a high yield of vesicles has been used to study the transfer of d-glucose through the brush border membrane. In the presence of an Na+ gradient across the vesicular membrane, the vesicles could concentrate d-glucose to a factor of 1.5, whereas in the absence of an Na+ gradient, only equilibrium with the medium was achieved. Two types of transfer could be distinguished by their requirement of Na+, their sensitivity to phlorizin and their pH optimum. The Na+-independent transfer was about 100 times less sensitive to phlorizin than the Na+-dependent path and exhibited a pH optimum between 7 and 8, whereas the Na+-dependent transfer was highest at a pH between 8 and 9.The brush border preparation could be freed of most of the contaminating material derived from the basal and lateral tubular cell membrane by a discontinuous density gradient centrifugation. It still showed both forms of transfer to a similar extent, indicating that both are located in the brush border membrane.A study of the sensitivity of d-glucose transfer to phlorizin, in the presence and absence of Na+ at different temperature, suggests a single carrier species functioning in two interchangeable conformational states with different affinities for phlorizin rather than two transfer systems working independently.  相似文献   

14.
The fate of [3H]glucose released from a wide range of [3H]phlorizin concentrations by phlorizin hydrolase has been studied under conditions where the Na+-dependent glucose transport system in hamster intestine is profoundly inhibited by the glucoside. At 0.2–2.0 mM phlorizin, the [3H]glucose uptake was a constant 11–12% of that generated by the enzyme and at the highest level, it was reduced to that of passive diffusion. Glucose liberated from 0.2 mM [3H]phlorizin is accumulated at a rate nearly equal to that found for 0.2 mM [14C]glucose when this free sugar uptake is measured in a medium containing 0.2 mM unlabeled phlorizin. Furthermore, without sodium, the accumulation rates of hydrolase-derived or exogenous glucose are both reduced to the rate of [14C]mannitol. Our results indicate that the glucose released from phlorizin enters the tissue via the small fraction of the Na+-dependent glucose carriers which escape phlorizin blockade together with a mannitol-like passive diffusion. It enjoys a kinetic advantage for tissue entry over free glucose in the medium by virtue of the position of the site where it is formed, i.e. inside the unstirred water layer and near normal entry portals. No special hydrolase-related transport system, like the one proposed for disaccharides, needs to be considered to account for our findings.  相似文献   

15.
Summary Endogenous glucose uptake by the oocytes ofXenopus laevis consists of two distinct components: one that is independent of extracellular Na+, and the other one that represents Na+-glucose cotransport. The latter shows similar characteristics as 2 Na+-1 glucose cotransport of epithelial cells: The similarities include the dependencies on external concentrations of Na+, glucose, and phlorizin, and on pH. As in epithelial cells, the glucose uptake in oocytes can also be stimulated by lanthanides. Both the electrogenic cotransport and the inhibition by phlorizin are voltage-dependent; the data are compatible with the assumption that the membrane potential acts as a driving force for the reaction cycle of the transport process. In particular, hyperpolarization seems to stimulat transport by recruitment of substrate binding sites to the outer membrane surface. The results described pertain to oocytes arrested in the prophase of the first meiotic division; maturation of the oocytes leads to a downregulation of both the Na+-independent and the Na+-dependent transport systems. The effect on the Na+-dependent cotransport is the consequence of a change of driving force due to membrane depolarization associated with the maturation process.  相似文献   

16.
The presence of a Na+K+-activated, Mg2+-dependent ATPase (E.C. 3.6.1.3) has been demonstrated in microsomal preparations from the Malpighian tubules of Locusta. The effects of sodium and potassium ions, and different concentrations of ouabain, have been studied in relation to the activity of this enzyme and the ability of in vitro Malpighian tubule preparations to secrete fluid. From these studies it seems highly likely that a Na+K+ activated ATPase ‘pump’ is involved in fluid transport across the walls of the tubules.  相似文献   

17.
In vitro preparations of Locusta Malpighian tubules are able to transport K+ against its concentration gradient. The ‘urine’ is slightly hyper-osmotic with respect to the bathing solution and the rate of secretion is inversely dependent on the osmotic pressure of the latter. The rate of fluid secretion increases with increasing temperature; being maximal at approx 40°C. The ionic composition of the secreted fluid, as indicated by Na+/K+ ratios, is altered by the presence of 1 mM ouabain in the bathing solution. Fluid secretion is inhibited by 1 mM ouabain. In addition, oxygen consumption by the Malpighian tubules is inhibited by either the presence of 1 mM ouabain or the absence of K+ in the bathing solution. The relationship between respiration, active transport and the Na+K+-activated ATPase is discussed.  相似文献   

18.
The renopericardial complex of Littorina is capable of glucose reabsorption in vivo, as the glucose concentration of the urine may be markedly lower than that of the haemolymph. Glucose influx in vitro was estimated for the kidney (dorsal wall and nephridial gland) and heart, using [3H]glucose as tracer. Glucose influx to both dorsal wall and nephridial gland of the kidney was sensitive to phloridzin, and appeared to reflect net inward transport by a saturable, Na+-dependent carrier mechanism believed to be responsible for reabsorption in vivo. There was some intrarenal metabolism of transported glucose. The mechanism and rôle of glucose reabsorption in Littorina are discussed, and the limitations of the investigative techniques are considered.  相似文献   

19.
The relationships between phlorizin binding and Na+-glucose cotransport were addressed in rabbit renal brush-border membrane vesicles. At pH 6.0 and 8.6, high affinity phlorizin binding followed single exponential kinetics. With regard to phlorizin concentrations, the binding data conformed to simple Scatchard kinetics with lower apparent affinities of onset binding (K di = 12–30 μm) compared to steady-state binding (K de = 2–5 μm), and the first-order rate constants demonstrated a Michaelis-Menten type of dependence with K m values identical to K di . Phlorizin dissociation from its receptor sites also followed single exponential kinetics with time constants insensitive to saturating concentrations of unlabeled phlorizin or d-glucose, but directly proportional to Na+ concentrations. These results prove compatible with homogeneous binding to SGLT1 whereby fast Na+ and phlorizin addition on the protein is followed by a slow conformation change preceding further Na+ attachment, thus occluding part of the phlorizin-bound receptor complexes. This two-step mechanism of inhibitor binding invalidates the recruitment concept as a possible explanation of the fast-acting slow-binding paradigm of phlorizin, which can otherwise be resolved as follows: the rapid formation of an initial collision complex explains the fast-acting behavior of phlorizin with regard to its inhibition of glucose transport; however, because this complex also rapidly dissociates in a rapid filtration assay, the slow kinetics of phlorizin binding are only apparent and reflect its slow isomerization into more stable forms. Received: 22 June 2000/Revised: 1 November 2000  相似文献   

20.
Among the compensatory mechanisms restoring circulating blood volume after severe haemorrhage, increased vasopressin secretion enhances water permeability of distal nephron segments and stimulates Na+ reabsorption in cortical collecting tubules via epithelial sodium channels (ENaC). The ability of vasopressin to upregulate ENaC via a cAMP-dependent mechanism in the medium to long term is well established. This study addressed the acute regulatory effect of cAMP on human ENaC (hENaC) and thus the potential role of vasopressin in the initial compensatory responses to haemorrhagic shock. The effects of raising intracellular cAMP (using 5 mmol/L isobutylmethylxanthine (IBMX) and 50 μmol/L forskolin) on wild-type and Liddle-mutated hENaC activity expressed in Xenopus oocytes and hENaC localisation in oocyte membranes were evaluated by dual-electrode voltage clamping and immunohistochemistry, respectively. After 30 min, IBMX + forskolin had stimulated amiloride-sensitive Na+ current by 52 % and increased the membrane density of Na+ channels in oocytes expressing wild-type hENaC. These responses were prevented by 5 μmol/L brefeldin A, which blocks antegrade vesicular transport. By contrast, IBMX + forskolin had no effects in oocytes expressing Liddle-mutated hENaC. cAMP stimulated rapid, exocytotic recruitment of wild-type hENaC into Xenopus oocyte membranes, but had no effect on constitutively over-expressed Liddle-mutated hENaC. Extrapolating these findings to the early cAMP-mediated effect of vasopressin on cortical collecting tubule cells, they suggest that vasopressin rapidly mobilises ENaC to the apical membrane of cortical collecting tubule cells, but does not enhance ENaC activity once inserted into the membrane. We speculate that this stimulatory effect on Na+ reabsorption (and hence water absorption) may contribute to the early restoration of extracellular fluid volume following severe haemorrhage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号