首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
D. J. Thurling 《Oecologia》1980,46(3):391-396
Summary Respiration rates (oxygen uptake per individual) of the herbivorous mite Tetranychus cinnabarinus Boisd. and of the predatory mite Phytoseiulus persimilis A-H. were measured at 25°C for all life stages, including eggs, using a Cartesian Diver micro-respirometer.Metabolic rates (oxygen uptake per unit weight) ranged between 0.27 and 2.32 nl O2 g-1 live weight h-1 in T. cinnabarinus, and between 0.99 and 3.69 nl O2 g-1 live weight h-1 in P. persimilis. The difference in metabolic rate ranges is attributed to different modes of life. The metabolic rates of both species are higher than those of comparable mite species, which is attributed to their small size, rapid development and limited sclerotization.Respiration-body weight regression gave the single equation log10 R=-0.091+1.213 log10 W for all post-embryonic stages of T. cinnabarinus but two equations for P. persimilis of log10 R=0.394+1.116 log10 W for gravid females and log10 R=0.880+0.348 log10 W for all non-reproducing post-embryonic stages. The single respiration-body weight relationship for T. cinnabarinus reflects the continuous growth pattern of this species, and the two relationships for P. persimilis reflect the accelerated growth following fertilization. The significance of these results for invertebrate population metabolism studies is discussed.  相似文献   

2.
Ants are social, and their metabolism should be measured on at least two levels: (i) the individual workers and brood of which the colony is composed and (ii) the colony in its entirety. Whole colony respiration, tempo (size‐free running speed in body lengths per second) and whole colony activity were simultaneously measured for 15 species of ants in four subfamilies, and these data are related to average worker and whole‐colony weight, activity, percentage brood and percentage fat. Across all 15 species, whole colony respiration rate (μL CO2 h?1) is linearly related to whole colony live weight (log–log slope = 1.0). Colonies composed of large workers respire less than colonies composed of an equal live weight of small workers, and colonies with high tempos respire more than lower tempo colonies of equal weight. The tempos and respiration rates of smaller ants tend to be higher, and a higher tempo exacts a cost in higher respiration independent of the effect of small body size. Individual worker respiration (μL CO2 h?1) scales to worker live weight with an exponent of 0.76. Whole colony specific respiration rate (μL CO2 g?1 h?1) is unrelated to colony live weight. The regressions of respiration rates against colony and worker dry weight, lean weight and metabolic weight have similar slopes to those of live weight but different intercepts. Respiration is not related to worker percentage fat, percentage brood or activity. Ant ecology, tempo, body size, polymorphism and colony size are discussed in relation to respiration.  相似文献   

3.
T. G. Wood  J. H. Lawton 《Oecologia》1973,12(2):169-191
Summary Respiratory rates (oxygen consumption) of thirty-six species of mites from beech-woodland leaf-litter were measured at 10°C in a Cartesian Diver. The first published information on the respiratory rates of Prostigmata, and new information on the respiratory rates of adult and juvenile stages of Mesostigmata and Cryptostigmata are presented.The most important single variable influencing respiratory rate (for mites of a given size at a constant temperature) was activity; however, progressively increasing levels of activity increased not only the level of metabolism, but also the slopes of the regression lines of log10 respiratory rate against log10 weight, from a minimum of 0.54 in very inactive Cryptostigmata to a maximum of 1.03 in extremely active Prostigmata. The effect of activity on the metabolic cost of searching for prey in predatory mites is discussed.Respiratory rates per unit weight declined smoothly as a simple function of weight throughout the life-histories of two species of mite, but not in two others. Sexual differences and differences in the respiratory rates of gravid and nongravid females of several species were also demonstrated.Results are compared with previously published work on mite respiration. Some discrepancies are apparent between our data and that of other workers. Possible reasons for, and consequences of these discrepancies are discussed.  相似文献   

4.
Summary Respiration rates of the bacterivorous freshwater nematode Plectus palustris were measured during the whole life cycle of the species and for animals grown at two food densities. Covariance analysis showed that small, but significant differences exist in the elevation of the respiration rate—body weight regressions (R=aW b, in nl O2/ind·h and g wet weight) for different food densities. At a food density of 6–9·108 bacterial cells/ml the level of respiration is 14% lower compared to rates of animals cultured at a ten times higher food density. However, the allometric function, R-aW b, adequately describes the relationship of respiration and body weight only during the larval growth phase and for young females, while respiration rates of newly hatched larvae and mature females at maximal egg production have lower metabolic rates. Cumulated metabolic costs to attain a certain age, size and stage of development have been determined and are used in a subsequent paper (Schiemer et al., 1979) to calculate the energy budgets of the species.  相似文献   

5.
The oxygen consumption of temperature acclimated mummichogs, Fundulus heteroclitus (L.) weighing ≈0.1–10.0 g, was measured at 5, 13, 21, and 29 C. Between 13 and 21°C and 21 and 29°C, the values of Q10 were 1.55 and 1.04, respectively, indicating relative thermal independence of respiratory metabolic rate over this 16°C range (Q10 = 1.27). This range encompasses the normal late spring, summer, and early fall range of habitat temperature in Maine estuaries, so that mummichogs are able to grow and reproduce relatively independent of environmental temperature. Between 5 and 13°C, respiratory metabolism is very temperature sensitive (Q10 = 4.42) indicating a substantial reduction of metabolic processes at low temperatures. This enables mummichogs to conserve any metabolic reserves during the coldest months. The regression of log weight-specific oxygen consumption on log body weight was determined at each experimental temperature. All had significantly negative slopes indicating the importance of body size in mummichog respiration.  相似文献   

6.
Spisula subtruncata is an infaunal filter-feeding bivalve, which lives in shallow sandy bottoms (2-20 m depth) from Norway to the Atlantic coasts of Morocco, including the Mediterranean Sea. Considering that fisheries of this species have become an important economic resource in some European countries (e.g. The Netherlands), it is of great interest to know the seasonal variation in its physiological energetics. For this purpose, individuals of S. subtruncata were collected and maintained under ambient temperature and seawater conditions of Dutch coastal waters. Physiological processes related to the acquisition and utilisation of energy (e.g. clearance rate [CR], absorption and oxygen uptake) were measured under ambient conditions of the period March 1999 to February 2000. Mean annual clearance and respiration rates (RR) were 0.99 l h−1 and 0.23 ml O2 h−1 for a standard individual of 250 mg. Values for both clearance and respiration rate were high during spring and summer and low during autumn and winter. Stepwise multiple regression analyses indicated a significant relationship of the clearance rate with temperature and particulate organic matter (POM), whereas respiration rate was significantly related to temperature, absorption rate (AR) of the animals and their reproductive condition. Absorption efficiency (AE) of the food was significantly related to food quality. Scope for growth (SFG) of S. subtruncata, as well as flesh weight of the animals, was high in summer and low in winter.  相似文献   

7.
The photosynthetic and respiratory performance of developing internodes of Populus tremuloides was evaluated by infrared gas analysis. Anatomical and morphological transitions were related to metabolic activity. Photosynthetic rates ranged from 6.0 to 10.0 milligrams CO2 per decimeter squared per hour in the youngest internodes to 2.5 to 3.8 milligrams CO2 per decimeter squared per hour in internodes with fully developed bark tissues. Respiration exceeded the rate of photosynthesis on the average by a factor of two. Stem photosynthesis increased with temperature up to 40°C and declined steeply between 40 and 50°C. Stem respiration increased nearly linearly to temperatures as high as 50°C.  相似文献   

8.
16S rRNA gene-targeted group-specific primers were designed and validated for specific detection and quantification of the Clostridium leptum subgroup and the Atopobium cluster. To monitor the predominant bacteria in human feces by real-time PCR, we used these specific primers together with four sets of group-specific primers for the Clostridium coccoides group, the Bacteroides fragilis group, Bifidobacterium, and Prevotella developed in a previous study (T. Matsuki, K. Watanabe, J. Fujimoto, Y. Miyamoto, T. Takada, K. Matsumoto, H. Oyaizu, and R. Tanaka, Appl. Environ. Microbiol. 68:5445-5451, 2002). Examination of DNA extracted from the feces of 46 healthy adults showed that the C. coccoides group was present in the greatest numbers (log10 10.3 ± 0.3 cells per g [wet weight] [average ± standard deviation]), followed by the C. leptum subgroup (log10 9.9 ± 0.7 cells per g [wet weight]), the B. fragilis group (log10 9.9 ± 0.3 cells per g [wet weight]), Bifidobacterium (log10 9.4 ± 0.7 cells per g [wet weight]), and the Atopobium cluster (log10 9.3 ± 0.7 cells per g [wet weight]). These five bacterial groups were detected in all 46 volunteers. Prevotella was found in only 46% of the subjects at a level of log10 9.7 ± 0.8 cells per g (wet weight). Examination of changes in the population and the composition of the intestinal flora for six healthy adults over an 8-month period revealed that the composition of the flora of each volunteer remained stable throughout the test period.  相似文献   

9.
Ontogenetic changes and temperature dependency of respiration rate were studied in Dendrobaena mrazeki, an earthworm species inhabiting relatively warm and dry habitats in Central Europe. D. mrazeki showed respiration rate lower than in other earthworm species, < 70 μl O2 g−1 h−1, within the temperature range of 5–35°C. The difference of respiration rate between juveniles and adults was insignificant at 20°C. The response of oxygen consumption to sudden temperature changes was compared with the temperature dependence of respiratory activity in animals pre-acclimated to temperature of measurement. No significant impact of acclimation on the temperature response of oxygen consumption was found. The body mass-adjusted respiration rate increased slowly with increasing temperature from 5 to 25°C (Q10 from 1.2 to 1.7) independently on acclimation history of earthworms. Oxygen consumption decreased above 25°C up to upper lethal limit (about 35°C). Temperature dependence of metabolic rate is smaller than in other earthworm species. The relationships between low metabolic sensitivity to temperature, slow locomotion and reactivity to touching as observed in this species are discussed.  相似文献   

10.
(1) Two groups of individually cultured Isotoma viridis were studied. They were given a diet of Tetramin fishfood and Pleurococcus algae respectively, in order to monitor individual changes in oxygen uptake during culture. (2) Growth rate, moulting frequency and the maximal live weight reached were higher when fed on Tetramin. (3) Egg production in the culture fed Pleurococcus was twice that fed on Tetramin, due to the more fertile intermoult periods without oviposition in animals fed Tetramin. The egg quality seemed to be lowered in the algae-fed animals rather less than in those fed with fishfood. (4) In both cultures, an increase of 35–40% of the metabolic rate at the start of the experiment was observed. This increase was maintained with a Tetramin diet, whilst it disappeared in cultures fed Pleurococcus. The F1 generation of both groups showed an increased metabolic rate, that from Tetramin-fed being significantly higher than that from Pleurococcus-fed animals. (5) It is suggested that the initial increase in metabolism is a result of excess food, and the increased level of oxygen uptake in animals on a Tetramin diet the result of inadequacy of the composition of the fishfood for egg production, thus channelling the energy uptake mainly into growth and metabolism. (6) Neither Tetramin nor Pleurococcus are considered to provide an adequate diet for I. viridis, as reproductive success differed considerably from field conditions.  相似文献   

11.
Physiological mechanisms causing reduction of metabolic rate during torpor in heterothermic endotherms are controversial. The original view that metabolic rate is reduced below the basal metabolic rate because the lowered body temperature reduces tissue metabolism has been challenged by a recent hypothesis which claims that metabolic rate during torpor is actively downregulated and is a function of the differential between body temperature and ambient temperature, rather than body temperature per se. In the present study, both the steady-state metabolic rate and body temperature of torpid stripe-faced dunnarts, Sminthopsis macroura (Dasyuridae: Marsupialia), showed two clearly different phases in response to change of air temperature. At air temperatures between 14 and 30°C, metabolic rate and body temperature decreased with air temperature, and metabolic rate showed an exponential relationship with body temperature (r 2=0.74). The Q 10 for metabolic rate was between 2 and 3 over the body temperature range of 16 to 32°C. The difference between body temperature and air temperature over this temperature range did not change significantly, and the metabolic rate was not related to the difference between body temperature and air temperature (P=0.35). However, the apparent conductance decreased with air temperature. At air temperatures below 14°C, metabolic rate increased linearly with the decrease of air temperature (r 2=0.58) and body temperature was maintained above 16°C, largely independent of air temperature. Over this air temperature range, metabolic rate was positively correlated with the difference between body temperature and air temperature (r 2=0.61). Nevertheless, the Q 10 for metabolic rate between normothermic and torpid thermoregulating animals at the same air temperature was also in the range of 2–3. These results suggest that over the air temperature range in which body temperature of S. macroura was not metabolically defended, metabolic rate during daily torpor was largely a function of body temperature. At air temperatures below 14°C, at which the torpid animals showed an increase of metabolic rate to regulate body temperature, the negative relationship between metabolic rate and air temperature was a function of the differential between body temperature and air temperature as during normothermia. However, even in thermoregulating animals, the reduction of metabolic rate from normothermia to torpor at a given air temperature can also be explained by temperature effects.Abbreviations BM body mass - BMR basal metabolic rate - C apparent conductance - MR metabolic rate - RMR resting metabolic rate - RQ respiratory quotient - T a air temperature - T b body temperature - T lc lower critical temperature - T tc critical air temperature during torpor - TMR metabolic rate during torpor - TNZ thermoneutral zone - T difference between body temperature and air temperature - VO2 rate of oxygen consumption  相似文献   

12.
The respiratory metabolism in larvae of the Antarctic fly, Belgica antarctica Jacobs (Diptera: Chironomidae) was investigated at Palmer Station, Anvers Island (64°46′S, 64°03′W). Oxygen consumption was linearly related to temperature from 0 to 20°C, respectively, 49 and 338 nl/mg live wt/hr. Maintenance at 0 and 10°C for 8 days had no differential effect on the metabolic rate, suggesting that larvae lack the ability for compensatory acclimation. A comparison of standard metabolism for polar and temperate chironomids revealed no elevation of metabolic rate in polar forms. However, polar species exhibited lower activation energies than temperate forms indicating that the respiratory metabolism of polar chironomids is relatively temperature independent.  相似文献   

13.
The rate of dry matter accumulation by seeds of Vicia faba L. cv. Minica increases with temperature in the range of 16 to 26°C. The duration of dry matter accumulation decreases with temperature, resulting in a decrease of final seed dry weight. In this study we test the hypothesis that a diffusion barrier for O2, located in the seed coat, inhibits seed respiration and growth. The rate of O2 uptake of intact seeds and of excised embryos and seed coats (separated seeds) was measured in air and buffer at 16, 20, and/or 26°C at various O2 concentrations and developmental stages. Oxygen uptake rates of intact seeds in buffer were only 9 to 15% of those in air. In buffer, the respiration rate of intact seeds decreased at a pO2 below air saturation (21 kilopascals), whereas separated seeds showed a decline of O2 uptake only below 80% of air saturation. In air, embryo excision had no effect on the sensitivity of seed respiration to pO2, at both 20 and 26°C. In air at 20°C, separated and intact seeds showed similar rates of O2 uptake. Oxygen uptake by intact seeds, both halfway and beyond the linear growth phase, showed a temperature coefficient Q10 of 2.3 and was insensitive to pO2 in the range of 80 to 100% of ambient. These results indicate that V. faba seed respiration in air is not limited by the diffusion of O2 into the seed.  相似文献   

14.
A regression of different physiological responses against body size enables populations or stock cultures of various size ranges to be compared. Thus, the aim of the present work was to evaluate the physiological responses from juvenile green abalone (Haliotis fulgens), grouped according to size, in a standard controlled culture condition within their optimal range to create the balanced growth equation within an allometric relation, providing a basic framework for physiological research into H. fulgens. Feed intake, absorption efficiency, respiration and excretion were measured as functions of dry tissue weight (DTW) in juvenile abalone acclimated on a balanced diet. The daily feed intake (I) was related to body mass by the relationship I (mg day−1)=24.25W0.59. Absorption efficiency averaged 87% and was independent of body size. The equation relating daily respiration rate (R) to body mass was R (ml O2 day−1)=12.013W0.704, including night correction. The rate of ammonia excretion (U) was related to dry tissue weight by the equation U (μmol N-NH4 day−1)=43.57W0.85. The energetic value of food was 18.8 J mg−1. The low feeding activity (<1% of abalone live weight per day) was compensated for by a relatively high absorption efficiency and a depression of 23% in the metabolic rate during diurnal activity. Gross and net growth efficiencies were constant throughout the size range, with average values of 36.4% and 41.5%, respectively. Values of the O/N ratio, with an average of 31.5, showed a higher use of proteins from the diet as an energy source for the size range studied.  相似文献   

15.
Pima County, Ariz., is currently investigating the potential benefits of land application of sewage sludge. To assess risks associated with the presence of pathogenic enteric viruses present in the sludge, laboratory studies were conducted to measure the inactivation rate (k = log10 reduction per day) of poliovirus type 1 and bacteriophages MS2 and PRD-1 in two sludge-amended desert agricultural soils (Brazito Sandy Loam and Pima Clay Loam). Under constant moisture (approximately -0.05 × 105 Pa for both soils) and temperatures of 15, 27, and 40°C, the main factors controlling the inactivation of these viruses were soil temperature and texture. As the temperature increased from 15 to 40°C, the inactivation rate increased significantly for poliovirus and MS2, whereas, for PRD-1, a significant increase in the inactivation rate was observed only at 40°C. Clay loam soils afforded more protection to all three viruses than sandy soils. At 15°C, the inactivation rate for MS2 ranged from 0.366 to 0.394 log10 reduction per day in clay loam and sandy loam soils, respectively. At 27°C, this rate increased to 0.629 log10 reduction per day in clay loam soil and to 0.652 in sandy loam soil. A similar trend was observed for poliovirus at 15°C (k = 0.064 log10 reduction per day, clay loam; k = 0.095 log10 reduction per day, sandy loam) and 27°C (k = 0.133 log10 reduction per day, clay loam; k = 0.154 log10 reduction per day, sandy loam). Neither MS2 nor poliovirus was recovered after 24 h at 40°C. No reduction of PRD-1 was observed after 28 days at 15°C and after 16 days at 27°C. At 40°C, the inactivation rates were 0.208 log10 reduction per day in amended clay loam soil and 0.282 log10 reduction per day in sandy loam soil. Evaporation to less than 5% soil moisture completely inactivated all three viruses within 7 days at 15°C, within 3 days at 27°C, and within 2 days at 40°C regardless of soil type. This suggests that a combination of high soil temperature and rapid loss of soil moisture will significantly reduce risks caused by viruses in sludge.  相似文献   

16.
We conducted an open-top chamber experiment for 3?years to examine the effect of elevated CO2 and temperature on soil respiration in experimental stands of Quercus glauca, an evergreen tree species common in the warm temperate zone of Japan. Seedlings of Q. glauca were planted in open-top chambers and treated with factorial combinations of ambient and elevated (ambient?×?1.4, ambient?×?1.8) CO2 concentrations and ambient and elevated (+3°C) air temperatures. Elevated CO2 significantly increased the total soil respiration rate (P?<?0.001) and the soil respiration rate at 15°C (R 15) (P?<?0.05) but had no significant effect on the temperature coefficient Q 10. Although temperature significantly affected total soil respiration rate (P?<?0.05), neither the R 15 nor the Q 10 of total soil respiration was affected significantly by the air temperature increase. Annual soil respiration rate, estimated from R 15, Q 10, and soil temperature data, tended to increase with elevated CO2 concentration. These results suggest that soil respiration rate in Japanese warm temperate broad-leaved forests dominated by Q. glauca is sensitive to elevated CO2 and is likely to increase under future climatic conditions.  相似文献   

17.
During fasting, mice (Mus musculus) undergo daily bouts of torpor, considerably reducing body temperature (Tb) and metabolic rate (MR). We examined females of different laboratory strains (Balb/c, C57/6N, and CD1) to determine whether liver mitochondrial metabolism is actively reduced during torpor. In all strains, we found that state 3 (phosphorylating) respiration rate measured at 37 °C was reduced up to 35% during torpor for at least one of the substrates (glutamate and succinate) used to fuel respiration. The extent of this suppression varied and was correlated with Tb at sampling. This suggests that, at the biochemical level, the transition to and from a hypometabolic torpid state is gradual. In fasted non-torpid animals, Tb and MR still fluctuated greatly: Tb dropped by as much as 4 °C and MR was reduced up to 25% compared to fed controls. Changes in Tb and MR in fasted, non-torpid animals were correlated with changes in mitochondrial state 3 respiration rate measured at 37 °C. This suggests that fasting mice may conserve energy even when not torpid by occasionally reducing Tb and mitochondrial oxidative capacity to reduce MR. Furthermore, proton conductance was higher in torpid compared to non-torpid animals when measured at 15 °C (the lower limit of torpid Tb). This pattern is similar to that reported previously for daily torpor in Phodopus sungorus.  相似文献   

18.
The behavior of Bacillus anthracis Sterne spores in sterile raw ground beef was measured at storage temperatures of 2 to 70°C, encompassing both bacterial growth and death. B. anthracis Sterne was weakly inactivated (−0.003 to −0.014 log10 CFU/h) at storage temperatures of 2 to 16°C and at temperatures greater than and equal to 45°C. Growth was observed from 17 to 44°C. At these intermediate temperatures, B. anthracis Sterne displayed growth patterns with lag, growth, and stationary phases. The lag phase duration decreased with increasing temperature and ranged from approximately 3 to 53 h. The growth rate increased with increasing temperature from 0.011 to 0.496 log10 CFU/h. Maximum population densities (MPDs) ranged from 5.9 to 7.9 log10 CFU/g. In addition, the fate of B. anthracis Ames K0610 was measured at 10, 15, 25, 30, 35, 40, and 70°C to compare its behavior with that of Sterne. There were no significant differences between the Ames and Sterne strains for both growth rate and lag time. However, the Ames strain displayed an MPD that was 1.0 to 1.6 times higher than that of the Sterne strain at 30, 35, and 40°C. Ames K0610 spores were rapidly inactivated at temperatures greater than or equal to 45°C. The inability of B. anthracis to grow between 2 and 16°C, a relatively low growth rate, and inactivation at elevated temperatures would likely reduce the risk for recommended ground-beef handling and preparation procedures.  相似文献   

19.
Growth and respiration of Cyprideis torosa Jones 1850 (Crustacea Ostracoda)   总被引:1,自引:0,他引:1  
P. M. J. Herman  C. Heip 《Oecologia》1982,54(3):300-303
Summary The ostracod Cyprideis torosa Jones 1850 is a dominant species in brackish water habitats. To assess its importance, growth and respiration were measured. The shells form an increasing part of total weight as the animals grow but there is no correlation between shell weight and soft parts weight in the adults, indicating that tissue growth is a continuous process in these ostracods.Respiration was measured at 20° C. The slope of the log-log regression of respiration on dry weight was 0.746, showing that Cyprideis torosa follows the general rule for this relationship. The respiration rate per unit biomass was 0.246 nl O2 g-1 h-1, which is low but well within the range of observed meiobenthic respiration rates.The Q10, expressing the temperature dependence of respiration, was 2.15. The general validity of Price and Warwick's (1980) hypothesis relating Q10 to stability of food supply is questioned.  相似文献   

20.
Soybean (Glycine max (L.) Merr) seed coat respiration rates in response to changing O2 concentration and temperature were examined experimentally and with a mathematical analysis. The experimental observations showed seed coat respiration rates were sensitive to O2 concentration below 0.25 micromole O2 cm−3. There was a steady decline in respiration rates from the saturating O2 concentration down to about 0 to 0.03 micromole O2 per cubic centimeter. Seed coat respiration rates were found to change linearly with temperature between 8 and 28°C. The explanation for these results was sought by examining the diffusion of O2 into the vascular bundles of the soybean seed coat. Differential equations describing O2 uptake in two distinct zones of the vascular bundle were solved. The outer zone was assumed to be O2 saturated and respiration proceeded at a constant rate per unit volume. The inner zone was assumed to have respiration rates which were linearly dependent on O2 concentration. The solution of this mathematical model showed considerable similarity with the experimental results. Respiration rates were predicted to saturate at about 0.31 micromole O2 per cubic centimeter and to decrease curvilinearly below that concentration. While the mathematical model predicted an exponential response in respiration rate to temperature, it was found that the exponential response is difficult to distinguish from a linear response in the temperature range studied experimentally. Consequently, both the experimental and theoretical studies showed the importance of O2 diffusion into soybean seed coat vascular bundles as a potential restriction on respiration rates. In particular, it was suggested that increases in the total length of the vascular bundles in the soybean seed coat was the major option for increasing the total respiratory capability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号