首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Bondensgaard K  Mollova ET  Pardi A 《Biochemistry》2002,41(39):11532-11542
The global structure of the hammerhead ribozyme was determined in the absence of Mg(2+) by solution NMR experiments. The hammerhead ribozyme motif forms a branched structure consisting of three helical stems connected to a catalytic core. The (1)H-(15)N and (1)H-(13)C residual dipolar couplings were measured in a set of differentially (15)N/(13)C-labeled ribozymes complexed with an unlabeled noncleavable substrate. The residual dipolar couplings provide orientation information on both the local and the global structure of the molecule. Analysis of the residual dipolar couplings demonstrated that the local structure of the three helical stems in solution is well modeled by an A-form conformation. However, the global structure of the hammerhead in solution in the absence of Mg(2+) is not consistent with the Y-shaped conformation observed in crystal structures of the hammerhead. The residual dipolar couplings for the helical stems were combined with standard NOE and J coupling constant NMR data from the catalytic core. The NOE data show formation of sheared G-A base pairs in domain 2. These NMR data were used to determine the global orientation of the three helical stems in the hammerhead. The hammerhead forms a rather extended structure under these conditions with a large angle between stems I and II ( approximately 153 degrees ), a smaller angle between stems II and III ( approximately 100 degrees ), and the smallest angle between stems I and III ( approximately 77 degrees ). The residual dipolar coupling data also contain information on the dynamics of the molecule and were used here to provide qualitative information on the flexibility of the helical domains in the hammerhead ribozyme-substrate complex.  相似文献   

3.
Residual dipolar couplings can provide the long-range information that most NMR solution structures lack. The use of such data in protein structure determinations is now fairly routine, but even though these data should be much more useful for nucleic acids, their application to nucleic acid structure determination is still in its infancy. Here we present a method for producing accurate, dipolar-refined structures of nucleic acids that is more efficient than those used previously, and apply it to E73, a 29 nucleotide RNA that includes the sarcin-ricin loop from rat 28S rRNA. The results enable us to address the differences between the crystal structure of E73 and the solution structure proposed for it previously.  相似文献   

4.
During the past several years, there have been significant advances in NMR solution structure determination of macromolecules. The ability to easily measure residual dipolar couplings, to directly detect NHellipsisN hydrogen bonding interactions and to study much larger macromolecules by the application of heteronuclear experiments that select narrow lines in 2D and 3D spectra of isotopically labeled molecules promises to dramatically improve solution structure determination of nucleic acids.  相似文献   

5.
Fluorescence resonance energy transfer is a spectroscopic method that provides distance information on macromolecules in solution in the range 20-80 A. It is particularly suited to the analysis of the global structure of nucleic acids because the long-range distance information provides constraints when modelling these important structures. The application of fluorescence resonance energy transfer to nucleic acid structure has seen a resurgence of interest in the past decade, which continues to increase. An especially exciting development is the recent extension to single-molecule studies.  相似文献   

6.
The main limitation in NMR-determined structures of nucleic acids and their complexes with proteins derives from the elongated, non-globular nature of physiologically important DNA and RNA molecules. Since it is generally not possible to obtain long-range distance constraints between distinct regions of the structure, long-range properties such as bending or kinking at sites of protein recognition cannot be determined accurately nor precisely. Here we show that use of residual dipolar couplings in the refinement of the structure of a protein–RNA complex improves the definition of the long-range properties of the RNA. These features are often an important aspect of molecular recognition and biological function; therefore, their improved definition is of significant value in RNA structural biology.  相似文献   

7.
Solution NMR studies on the physiologically relevant ligand-free and maltotriose-bound states of maltodextrin-binding protein (MBP) are presented. Together with existing data on MBP in complex with beta-cyclodextrin (non-physiological, inactive ligand), these new results provide valuable information on changes in local structure, dynamics and global fold that occur upon ligand binding to this two-domain protein. By measuring a large number of different one-bond residual dipolar couplings, the domain conformations, critical for biological function, were investigated for all three states of MBP. Structural models of the solution conformation of MBP in a number of different forms were generated from the experimental dipolar coupling data and X-ray crystal structures using a quasi-rigid-body domain orientation algorithm implemented in the structure calculation program CNS. Excellent agreement between relative domain orientations in ligand-free and maltotriose-bound solution conformations and the corresponding crystal structures is observed. These results are in contrast to those obtained for the MBP/beta-cyclodextrin complex where the solution state is found to be approximately 10 degrees more closed than the crystalline state. The present study highlights the utility of residual dipolar couplings for orienting protein domains or macromolecules with respect to each other.  相似文献   

8.
NMR residual dipolar couplings for the S-peptide of ribonuclease A aligned in C8E5/n-octanol liquid crystals are consistent with the presence of a native-like alpha-helix structure undergoing dynamic fraying. Residues 3-13, which correspond to the first alpha-helix of ribonuclease A, show couplings that become more negative at low temperature and in the presence of salt, conditions which stabilize alpha-helical structure in the S-peptide. By contrast, dipolar couplings from the N and C termini of the peptide are close to zero and remain nearly invariant with changes in solution conditions. Torsion angle dynamics simulations using a gradient of dihedral restraint bounds that increase from the center to the ends of the peptide reproduce the experimentally observed sequence dependence of dipolar couplings. The magnitudes of residual dipolar couplings depend on the anisotropy of the solute. Native proteins often achieve nearly spherical shapes due to the hydrophobic effect. Embryonic partially folded structures such as the S-peptide alpha-helix have an intrinsically greater potential for anisotropy that can result in sizable residual dipolar couplings in the absence of long-range structure.  相似文献   

9.
Determination of the accurate three-dimensional structure of large proteins by NMR remains challenging due to a loss in the density of experimental restraints resulting from the often prerequisite perdeuteration. Solution small-angle scattering, which carries long-range translational information, presents an opportunity to enhance the structural accuracy of derived models when used in combination with global orientational NMR restraints such as residual dipolar couplings (RDCs) and residual chemical shift anisotropies (RCSAs). We have quantified the improvements in accuracy that can be obtained using this strategy for the 82 kDa enzyme Malate Synthase G (MSG), currently the largest single chain protein solved by solution NMR. Joint refinement against NMR and scattering data leads to an improvement in structural accuracy as evidenced by a decrease from approximately 4.5 to approximately 3.3 A of the backbone rmsd between the derived model and the high-resolution X-ray structure, PDB code 1D8C. This improvement results primarily from medium-angle scattering data, which encode the overall molecular shape, rather than the lowest angle data that principally determine the radius of gyration and the maximum particle dimension. The effect of the higher angle data, which are dominated by internal density fluctuations, while beneficial, is also found to be relatively small. Our results demonstrate that joint NMR/SAXS refinement can yield significantly improved accuracy in solution structure determination and will be especially well suited for the study of systems with limited NMR restraints such as large proteins, oligonucleotides, or their complexes.  相似文献   

10.
Residual dipolar couplings (RDC), measured by dissolving proteins in dilute liquid crystal media, or by studying naturally paramagnetic molecules, have rapidly become established as routine measurements in the investigation of the structure of macromolecules by NMR. One of the most obvious applications of the previously inaccessible long-range angular information afforded by RDC is the accurate definition of domain orientation in multi-module macromolecules or complexes. In this paper we describe a novel program developed to allow the determination of alignment tensor parameters for individual or multiple domains in macromolecules from residual dipolar couplings and to facilitate their manipulation to construct low-resolution models of macromolecular structure. For multi-domain systems the program determines the relative orientation of individual structured domains, and provides graphical user-driven rigid-body modeling of the different modules relative to the common tensorial frame. Translational freedom in the common frame, and equivalent rotations about the diagonalized (x,y,z) axes are used to position the different modules in the common frame to find a model in best agreement with experimentally measured couplings alone or in combination with additional experimental or covalent information.  相似文献   

11.
The global fold of maltose-binding protein in complex with the substrate beta-cyclodextrin was determined by solution NMR methods. The two-domain protein is comprised of a single polypeptide chain of 370 residues, with a molecular mass of 42 kDa. Distance information in the form of H(N)-H(N), H(N)-CH(3) and CH(3)-CH(3) NOEs was recorded on (15)N, (2)H and (15)N, (13)C, (2)H-labeled proteins with methyl protonation in Val, Leu, and Ile (C(delta1) only) residues. Distances to methyl protons, critical for the structure determination, comprised 77 % of the long-range restraints. Initial structures were calculated on the basis of 1943 NOEs, 48 hydrogen bond and 555 dihedral angle restraints. A global pair-wise backbone rmsd of 5.5 A was obtained for these initial structures with rmsd values for the N and C domains of 2.4 and 3.8 A, respectively. Direct refinement against one-bond (1)H(N)-(15)N, (13)C(alpha)-(13)CO, (15)N-(13)CO, two-bond (1)H(N)-(13)CO and three-bond (1)H(N)-(13)C(alpha) dipolar couplings resulted in structures with large numbers of dipolar restraint violations. As an alternative to direct refinement against measured dipolar couplings we have developed an approach where discrete orientations are calculated for each peptide plane on the basis of the dipolar couplings described above. The orientation which best matches that in initial NMR structures calculated from NOE and dihedral angle restraints exclusively is used to refine further the structures using a new module written for CNS. Modeling studies from four different proteins with diverse structural motifs establishes the utility of the methodology. When applied to experimental data recorded on MBP the precision of the family of structures generated improves from 5.5 to 2.2 A, while the rmsd with respect to the X-ray structure (1dmb) is reduced from 5.1 to 3.3 A.  相似文献   

12.
Residual dipolar couplings can provide powerful restraints for determination and refinement of the solution structure of macromolecules. The application of these couplings in nucleic acid structure elucidation can have an especially dramatic impact, since they provide long-range restraints, typically absent in NOE and J-coupling measurements. Here we describe sensitive X-filtered-E.COSY-type methods designed to measure both the sign and magnitude of long-range 1H-19F dipolar couplings in selectively fluorine labeled RNA oligonucleotides oriented in solution by a liquid crystalline medium. The techniques for measuring 1H-19F dipolar couplings are demonstrated on a 21-mer RNA hairpin, which has been specifically labeled with fluorine at the 2-hydroxyl position of three ribose sugars. Experimentally measured 1H-19F dipolar couplings for the 2-deoxy-2-fluoro-sugars located in the helical region of the RNA hairpin were found to be in excellent agreement with values predicted using canonical A-form helical geometry, demonstrating that these couplings can provide accurate restraints for the refinement of RNA structures determined by NMR.  相似文献   

13.
The relative orientations of adjacent structural elements without many well-defined NOE contacts between them are typically poorly defined in NMR structures. For apo-S100B(betabeta) and the structurally homologous protein calcyclin, the solution structures determined by conventional NMR exhibited considerable differences and made it impossible to draw unambiguous conclusions regarding the Ca2+-induced conformational change required for target protein binding. The structure of rat apo-S100B(betabeta) was recalculated using a large number of constraints derived from dipolar couplings that were measured in a dilute liquid crystalline phase. The dipolar couplings orient bond vectors relative to a single-axis system, and thereby remove much of the uncertainty in NOE-based structures. The structure of apo-S100B(betabeta) indicates a minimal change in the first, pseudo-EF-hand Ca2+ binding site, but a large reorientation of helix 3 in the second, classical EF-hand upon Ca2+ binding.  相似文献   

14.
Current strategies for determining the structures of membrane proteins in lipid environments by NMR spectroscopy rely on the anisotropy of nuclear spin interactions, which are experimentally accessible through experiments performed on weakly and completely aligned samples. Importantly, the anisotropy of nuclear spin interactions results in a mapping of structure to the resonance frequencies and splittings observed in NMR spectra. Distinctive wheel-like patterns are observed in two-dimensional 1H-15N heteronuclear dipolar/15N chemical shift PISEMA (polarization inversion spin-exchange at the magic angle) spectra of helical membrane proteins in highly aligned lipid bilayer samples. One-dimensional dipolar waves are an extension of two-dimensional PISA (polarity index slant angle) wheels that map protein structures in NMR spectra of both weakly and completely aligned samples. Dipolar waves describe the periodic wave-like variations of the magnitudes of the heteronuclear dipolar couplings as a function of residue number in the absence of chemical shift effects. Since weakly aligned samples of proteins display these same effects, primarily as residual dipolar couplings, in solution NMR spectra, this represents a convergence of solid-state and solution NMR approaches to structure determination.  相似文献   

15.
Structural genomics is on a quest for the structure and function of a significant fraction of gene products. Current efforts are focusing on structure determination of single-domain proteins, which can readily be targeted by X-ray crystallography, NMR spectroscopy and computational homology modeling. However, comprehensive association of gene products with functions also requires systematic determination of more complex protein structures and other biomolecules participating in cellular processes such as nucleic acids, and characterization of biomolecular interactions and dynamics relevant to function. Such NMR investigations are becoming more feasible, not only due to recent advances in NMR methodology, but also because structural genomics is providing valuable structural information and new experimental and computational tools. The measurement of residual dipolar couplings in partially oriented systems and other new NMR methods will play an important role in this synergistic relationship between NMR and structural genomics. Both an expansion in the domain of NMR application, and important contributions to future structural genomics efforts can be anticipated.  相似文献   

16.
Structure determination of homooligomeric proteins by NMR spectroscopy is difficult due to the lack of chemical shift perturbation data, which is very effective in restricting the binding interface in heterooligomeric systems, and the difficulty of obtaining a sufficient number of intermonomer distance restraints. Here we solved the high-resolution solution structure of the 15.4 kDa homodimer CylR2, the regulator of cytolysin production from Enterococcus faecalis, which deviates by 1.1 angstroms from the previously determined X-ray structure. We studied the influence of different experimental information such as long-range distances derived from paramagnetic relaxation enhancement, residual dipolar couplings, symmetry restraints and intermonomer Nuclear Overhauser Effect restraints on the accuracy of the derived structure. In addition, we show that it is useful to combine experimental information with methods of ab initio docking when the available experimental data are not sufficient to obtain convergence to the correct homodimeric structure. In particular, intermonomer distances may not be required when residual dipolar couplings are compared to values predicted on the basis of the charge distribution and the shape of ab initio docking solutions.  相似文献   

17.
During the past few years, NMR methodology for the study of nucleic acids has benefited from new developments that greatly improved state-of-the-art technology for the precise determination of three-dimensional structures. Substantial progress has been made in designing experimental protocols for the measurement of residual dipolar couplings, in sensitivity optimization of triple-resonance experiments and in detection of hydrogen bonds and in developing computational methods for structure refinement using NMR restraints.  相似文献   

18.
The solution structure and dynamics of sucrose are examined using a combination of NMR residual dipolar coupling and molecular mechanics force fields. It is found that the alignment tensors of the individual rings are different, and that fitting 35 measured residual dipolar couplings to structures with specific phi, psi values indicates the presence of three major conformations: phi, psi=(120 degrees ,270 degrees), (45 degrees, 300 degrees) and (90 degrees ,180 degrees). Furthermore, fitting two structures simultaneously to the 35 residual dipolar couplings results in a substantial improvement in the fits. The existence of multiple conformations having similar stabilities is a strong indication of motion, due to the interconversion among these states. Results from four molecular mechanics force fields are in general agreement with the experimental results. However, there are major disagreements between force fields. Because fits of residual dipolar couplings to structures are dependent on the force field used to calculate the structures, multiple force fields were used to interpret NMR data. It is demonstrated that the pucker of the fructofuranosyl ring affects the calculated potential energy surface, and the fit to the residual dipolar couplings data. Previously published 13C nuclear relaxation results suggesting that sucrose is rigid are not inconsistent with the present results when motional timescales are considered.  相似文献   

19.
Imposing a very slight deviation from the isotropic random distribution of macromolecules in solution in an NMR sample tube permits the measurement of residual internuclear dipolar couplings (RDCs). Such interactions are very sensitive functions of the time-averaged orientation of the corresponding internuclear vectors and thereby offer highly precise structural information. In recent years, advances have been made both in the technology to measure RDCs and in the computational procedures that integrate this information in the structure determination process. The exceptional precision with which RDCs can be measured under weakly aligned conditions is also starting to reveal the mostly, but not universally, subtle effects of internal protein dynamics. Importantly, RDCs potentially can reveal motions taking place on a timescale slower than rotational diffusion and analysis is uniquely sensitive to the direction of motion, not just its amplitude.  相似文献   

20.
Solving structures of native oligomeric protein complexes using traditional high-resolution NMR techniques remains challenging. However, increased utilization of computational platforms, and integration of information from less traditional NMR techniques with data from other complementary biophysical methods, promises to extend the boundary of NMR-applicable targets. This article reviews several of the techniques capable of providing less traditional and complementary structural information. In particular, the use of orientational constraints coming from residual dipolar couplings and residual chemical shift anisotropy offsets are shown to simplify the construction of models for oligomeric complexes, especially in cases of weak homo-dimers. Combining this orientational information with interaction site information supplied by computation, chemical shift perturbation, paramagnetic surface perturbation, cross-saturation and mass spectrometry allows high resolution models of the complexes to be constructed with relative ease. Non-NMR techniques, such as mass spectrometry, EPR and small angle X-ray scattering, are also expected to play increasingly important roles by offering alternative methods of probing the overall shape of the complex. Computational platforms capable of integrating information from multiple sources in the modeling process are also discussed in the article. And finally a new, detailed example on the determination of a chemokine tetramer structure will be used to illustrate how a non-traditional approach to oligomeric structure determination works in practice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号