首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In prion diseases, the mammalian prion protein PrP is converted from a monomeric, mainly alpha-helical state into beta-rich amyloid fibrils. To examine the structure of the misfolded state, amyloid fibrils were grown from a beta form of recombinant mouse PrP (residues 91-231). The beta-PrP precursors assembled slowly into amyloid fibrils with an overall helical twist. The fibrils exhibit immunological reactivity similar to that of ex vivo PrP Sc. Using electron microscopy and image processing, we obtained three-dimensional density maps of two forms of PrP fibrils with slightly different twists. They reveal two intertwined protofilaments with a subunit repeat of approximately 60 A. The repeating unit along each protofilament can be accounted for by elongated oligomers of PrP, suggesting a hierarchical assembly mechanism for the fibrils. The structure reveals flexible crossbridges between the two protofilaments, and subunit contacts along the protofilaments that are likely to reflect specific features of the PrP sequence, in addition to the generic, cross-beta amyloid fold.  相似文献   

2.
Misfolded aggregates present in amyloid fibrils are associated with various diseases known as "protein misfolding" disorders. Among them, prion diseases are unique in that the pathology can be transmitted by an infectious process involving an unprecedented agent known as a "prion". Prions are infectious proteins that can transmit biological information by propagating protein misfolding and aggregation. The molecular mechanism of prion conversion has a striking resemblance to the process of amyloid formation, suggesting that misfolded aggregates have an inherent ability to be transmissible. Intriguing recent data suggest that other protein misfolding disorders might also be transmitted by a prion-like infectious process.  相似文献   

3.
The conformational transition of the human prion protein from an alpha-helical to a beta-sheet-rich structure is believed to be the critical event in prion pathogenesis. The molecular mechanism of misfolding and the role of intermediate states during this transition remain poorly understood. To overcome the obstacle of insolubility of amyloid fibrils, we have studied a beta-sheet-rich misfolded isoform of the prion protein, the beta-oligomer, which shares some structural properties with amyloid, including partial proteinase resistance. We demonstrate here that the beta-oligomer can be studied by solution-state NMR spectroscopy and obtain insights into the misfolding mechanism via its transient monomeric precursor. It is often assumed that misfolding into beta-sheet-rich isoforms proceeds via a compatible precursor with a beta-sheet subunit structure. We show here, on the contrary, evidence for an almost natively alpha-helix-rich monomeric precursor state with molten globule characteristics, converting in vitro into the beta-oligomer. We propose a possible mechanism for the formation of the beta-oligomer, triggered by intermolecular contacts between constantly rearranging structures. It is concluded that the beta-oligomer is not preceded by precursors with beta-sheet structure but by a partially unfolded clearly distinguishable alpha-helical state.  相似文献   

4.
H A Lashuel  C Wurth  L Woo  J W Kelly 《Biochemistry》1999,38(41):13560-13573
The L55P transthyretin (TTR) familial amyloid polyneuropathy-associated variant is distinct from the other TTR variants studied to date and the wild-type protein in that the L55P tetramer can dissociate to the monomeric amyloidogenic intermediate and form fibril precursors under physiological conditions (pH 7.0, 37 degrees C). The activation barrier associated with L55P-TTR tetramer dissociation is lower than the barrier for wild-type transthyretin dissociation, which does not form fibrils under physiological conditions. The L55P-TTR tetramer is also very sensitive to acidic conditions, readily dissociating to form the monomeric amyloidogenic intermediate between pH 5.5-5.0 where the wild-type TTR adopts a nonamyloidogenic tetrameric structure. The formation of the L55P monomeric amyloidogenic intermediate involves subtle tertiary structural changes within the beta-sheet rich subunit as discerned from Trp fluorescence, circular dichroism analysis, and ANS binding studies. The assembly of the L55P-TTR amyloidogenic intermediate at physiological pH (pH 7.5) affords protofilaments that elongate with time. TEM studies suggest that the entropic barrier associated with filament assembly (amyloid fibril formation) is high in vitro, amyloid being defined by the laterally assembled four filament structure observed by Blake upon isolation of "fibrils" from the eye of a FAP patient. The L55P-TTR protofilaments formed in vitro bind Congo red and thioflavin T (albeit more weakly than the fibrils produced at acidic pH), suggesting that the structure observed probably represents an amyloid precursor. The structural continuum from misfolded monomer through protofilaments, filaments, and ultimately fibrils must be considered as a possible source of pathology associated with these diseases.  相似文献   

5.
We have examined the chemical dissection and subsequent reassembly of fibrils formed by a ten-residue peptide to probe the forces that drive the formation of amyloid. The peptide, TTR(10-19), encompasses the A strand of the inner beta-sheet structure that lines the thyroid hormone binding site of the human plasma protein transthyretin. When dissolved in water under low pH conditions the peptide readily forms amyloid fibrils. Electron microscopy of these fibrils indicates the presence of long (>1000 nm) rigid structures of uniform diameter (approximately 14 nm). Addition of urea (3 M) to preformed fibrils disrupts these rigid structures. The partially disrupted fibrils form flexible ribbon-like arrays, which are composed of a number of clearly visible protofilaments (3-4 nm diameter). These protofilaments are highly stable, and resist denaturation in 6 M urea at 75 degrees C over a period of hours. High concentrations (>50%, v/v) of 2,2,2-trifluoroethanol also dissociate TTR(10-19) fibrils to the constituent protofilaments, but these slowly dissociate to monomeric, soluble peptides with extensive alpha-helical structure. Dilution of the denaturant or co-solvent at the stage when dissociation to protofilaments has occurred results in the efficient reassembly of fibrils. These results indicate that assembly of fibrils from protofilaments involves relatively weak and predominantly hydrophobic interactions, whereas assembly of peptides into protofilaments involves both electrostatic and hydrophobic forces, resulting in a highly stable and compact structures.  相似文献   

6.
The structure of the infectious prion protein (PrPSc), which is responsible for Creutzfeldt-Jakob disease in humans and bovine spongiform encephalopathy, has escaped all attempts at elucidation due to its insolubility and propensity to aggregate. PrPSc replicates by converting the non-infectious, cellular prion protein (PrPC) into the misfolded, infectious conformer through an unknown mechanism. PrPSc and its N-terminally truncated variant, PrP 27–30, aggregate into amorphous aggregates, 2D crystals, and amyloid fibrils. The structure of these infectious conformers is essential to understanding prion replication and the development of structure-based therapeutic interventions. Here we used the repetitive organization inherent to GPI-anchorless PrP 27–30 amyloid fibrils to analyze their structure via electron cryomicroscopy. Fourier-transform analyses of averaged fibril segments indicate a repeating unit of 19.1 Å. 3D reconstructions of these fibrils revealed two distinct protofilaments, and, together with a molecular volume of 18,990 Å3, predicted the height of each PrP 27–30 molecule as ~17.7 Å. Together, the data indicate a four-rung β-solenoid structure as a key feature for the architecture of infectious mammalian prions. Furthermore, they allow to formulate a molecular mechanism for the replication of prions. Knowledge of the prion structure will provide important insights into the self-propagation mechanisms of protein misfolding.  相似文献   

7.
In recent studies, the amyloid fibrils produced in vitro from recombinant prion protein encompassing residues 89-230 (rPrP 89-230) were shown to produce transmissible form of prion disease in transgenic mice (Legname et al., (2004) Science 305, 673-676). Long incubation time observed upon inoculation of the amyloid fibrils, however, suggests that the fibrils generated in vitro have low infectivity titers. These results emphasize the need to define optimal conditions for prion conversion in vitro, under which high levels of infectivity can be generated in a cell-free system. Because copper(II) has been implicated in normal and pathological functions of the prion protein, here we investigated the effect of Cu(2+) on cell-free conversion of recombinant PrP. Our results show that at pH 7.2 and at micromolar concentrations, Cu(2+) inhibited conversion of full-length recombinant PrP (rPrP 23-230) into amyloid fibrils. This effect was most pronounced for Cu(2+), and less so for Zn(2+), while Mn(2+) had no effect on the conversion. Cu(2+)-dependent inhibition of the amyloid formation was less effective at pH 6.0, at which rPrP 23-230 displays lower Cu(2+)-binding capacity. Using rPrP 89-230, we found that Cu(2+)-dependent inhibition occurred even in the absence of octarepeat region; however, it was less effective. Our further studies indicated that Cu(2+) inhibited conversion by stabilizing a nonamyloidogenic PK-resistant form of alpha-rPrP. Remarkably, Cu(2+) also had a profound effect on preformed amyloid fibrils. When added to the fibrils, Cu(2+) induced long-range coiling of individual fibrils and enhanced their PK-resistance. It, however, produced only minor changes in their secondary structures. In addition, Cu(2+) induced further aggregation of the amyloid fibrils into large clumps, presumably, through interfibrillar coordination of copper ions by octarepeats. Taken together, our studies suggest that the role of Cu(2+) in the pathogenesis of prion diseases is complex. Because Cu(2+) may inhibit prion replication, while at the same time stabilize disease-specific isoform against proteolytic clearance, the final outcome of copper-induced effect on progression of prion disease may not be straightforward.  相似文献   

8.
Aggregation of the disordered protein α‐synuclein into amyloid fibrils is a central feature of synucleinopathies, neurodegenerative disorders that include Parkinson's disease. Small, pre‐fibrillar oligomers of misfolded α‐synuclein are thought to be the key toxic entities, and α‐synuclein misfolding can propagate in a prion‐like way. We explored whether a compound with anti‐prion activity that can bind to unfolded parts of the protein PrP, the cyclic tetrapyrrole Fe‐TMPyP, was also active against α‐synuclein aggregation. Observing the initial stages of aggregation via fluorescence cross‐correlation spectroscopy, we found that Fe‐TMPyP inhibited small oligomer formation in a dose‐dependent manner. Fe‐TMPyP also inhibited the formation of mature amyloid fibrils in vitro, as detected by thioflavin T fluorescence. Isothermal titration calorimetry indicated Fe‐TMPyP bound to monomeric α‐synuclein with a stoichiometry of 2, and two‐dimensional heteronuclear single quantum coherence NMR spectra revealed significant interactions between Fe‐TMPyP and the C‐terminus of the protein. These results suggest commonalities among aggregation mechanisms for α‐synuclein and the prion protein may exist that can be exploited as therapeutic targets.  相似文献   

9.
The calcium-binding equine lysozyme has been found to undergo conversion into amyloid fibrils during incubation in solution at acidic pH. At pH 4.5 and 57 degrees C, where equine lysozyme forms a partially unfolded molten globule state, the protein forms protofilaments with a width of ca. 2 nm. In the absence of Ca(2+) the protofilaments are present as annular structures with a diameter of 40-50 nm. In the presence of 10 mM CaCl(2) the protofilaments of equine lysozyme are straight or curved; they can assemble into thicker threads, but they do not appear to undergo circularisation. At pH 2.0, where the protein is more destabilised compared to pH 4.5, fibril formation occurs at 37 degrees C and 57 degrees C. At pH 2.0, both ring-shaped and linear protofilaments are formed, in which periodic repeats of ca 35 nm can be distinguished clearly. The rings constitute about 10% of all fibrillar species under these conditions and they are characterised by a larger diameter of 70-80 nm. All the structures bind Congo red and thioflavine T in a manner similar to fibrils associated with a variety of amyloid diseases. At pH 2.0, fibril formation is accompanied by some acidic hydrolysis, producing specific fragmentation of the protein, leading to the accumulation of two peptides in particular, consisting of residues 1-80 and 54-125. At the initial stages of incubation, however, full-length equine lysozyme represents the dominant species within the fibrils. We propose that the ring-shaped structures observed here, and in the case of disease-associated proteins such as alpha-synuclein, could be a second generic type of amyloid structure in addition to the more common linear fibrils.  相似文献   

10.
The HypF N-terminal domain has been found to convert readily from its native globular conformation into protein aggregates with the characteristics of amyloid fibrils associated with a variety of human diseases. This conversion was achieved by incubation at acidic pH or in the presence of moderate concentrations of trifluoroethanol. Electron microscopy showed that the fibrils grown in the presence of trifluoroethanol were predominantly 3-5 nm and 7-9 nm in width, whereas fibrils of 7-9 nm and 12-20 nm in width prevailed in samples incubated at acidic pH. These results indicate that the assembly of protofilaments or narrow fibrils into mature amyloid fibrils is guided by interactions between hydrophobic residues that may remain exposed on the surface of individual protofilaments. Therefore, formation and isolation of individual protofilaments appears facilitated under conditions that favor the destabilization of hydrophobic interactions, such as in the presence of trifluoroethanol.  相似文献   

11.
Transmissible spongiform encephalopathies (TSEs) are caused by an infectious agent that is thought to consist of only misfolded and aggregated prion protein (PrP). Unlike conventional micro-organisms, the agent spreads and propagates by binding to and converting normal host PrP into the abnormal conformer, increasing the infectious titre. Synthetic prions, composed of refolded fibrillar forms of recombinant PrP (rec-PrP) have been generated to address whether PrP aggregates alone are indeed infectious prions. In several reports, the development of TSE disease has been described following inoculation and passage of rec-PrP fibrils in transgenic mice and hamsters. However in studies described here we show that inoculation of rec-PrP fibrils does not always cause clinical TSE disease or increased infectious titre, but can seed the formation of PrP amyloid plaques in PrP-P101L knock-in transgenic mice (101LL). These data are reminiscent of the “prion-like” spread of misfolded protein in other models of neurodegenerative disease following inoculation of transgenic mice with pre-formed amyloid seeds. Protein misfolding, even when the protein is PrP, does not inevitably lead to the development of an infectious TSE disease. It is possible that most in vivo and in vitro produced misfolded PrP is not infectious and that only a specific subpopulation is associated with infectivity and neurotoxicity.  相似文献   

12.
Propagation and infectivity of prions in human prionopathies are likely associated with conversion of the mainly a-helical human prion protein, HuPrP, into an aggregated form with amyloid-like properties. Previous reports on efficient conversion of recombinant HuPrP have used mild to harsh denaturing conditions to generate amyloid fibrils in vitro. Herein we report on the in vitro conversion of four forms of truncated HuPrP (sequences 90–231 and 121–231 with and without an N-terminal hexa histidine tag) into amyloid-like fibrils within a few hours by using a protocol (phosphate buffered saline solutions at neutral pH with intense agitation) close to physiological conditions. The conversion process monitored by thioflavin T, ThT, revealed a three stage process with lag, growth and equilibrium phases. Seeding with preformed fibrils shortened the lag phase demonstrating the classic nucleated polymerization mechanism for the reaction. Interestingly, comparing thioflavin T kinetics with solubility and turbidity kinetics it was found that the protein initially formed non- thioflavionophilic, morphologically disordered aggregates that over time matured into amyloid fibrils. By transmission electron microscopy and by fluorescence microscopy of aggregates stained with luminescent conjugated polythiophenes (LCPs); we demonstrated that HuPrP undergoes a conformational conversion where spun and woven fibrils protruded from morphologically disordered aggregates. The initial aggregation functioned as a kinetic trap that decelerated nucleation into a fibrillation competent nucleus, but at the same time without aggregation there was no onset of amyloid fibril formation. The agitation, which was necessary for fibril formation to be induced, transiently exposes the protein to the air-water interface suggests a hitherto largely unexplored denaturing environment for prion conversion.Key words: misfolding, aggregation, amyloid, prion, conformational conversion, fluorescence  相似文献   

13.
Our understanding of conformational conversion of proteins in diseases is essential for any diagnostic and therapeutic approach. Although not fully understood, misfolding of the prion protein (PrP) is implicated in the pathogenesis of prion diseases. Despite several efforts to produce the pathologically misfolded conformation in vitro from a recombinant PrP, no positive result has yet been obtained. Within the "protein-only hypothesis", the reason for this hindrance may be that the experimental conditions used did not allow selection of the pathway adopted in vivo resulting in conversion into the infectious form. Here, using a pressure perturbation approach, we show that recombinant PrP is converted to a novel misfolded conformer, which is prone to aggregate and ultimately form amyloid fibrils. A short incubation at high pressure (600 MPa) of the truncated form of hamster prion protein (SHaPrP(90-231)) resulted in the formation of pre-amyloid structures. The mostly globular aggregates were characterized by ThT and ANS binding, and by a beta-sheet-rich secondary structure. After overnight incubation at 600 MPa, amyloid fibrils were formed. In contrast to pre-amyloid structures, they showed birefringency of polarized light after Congo red staining and a strongly decreased ANS binding capacity, but enhanced ThT binding. Both aggregate types were resistant to digestion by PK, and can be considered as potential scrapie-like forms or precursors. These results may be useful for the search for compounds preventing pathogenic PrP misfolding and aggregation.  相似文献   

14.
It is known that hen egg white lysozyme (HEWL) forms amyloid fibrils. Since HEWL is one of the proteins that have been studied most extensively and is closely related to human lysozyme, the variants of which form the amyloid fibrils that are related to hereditary systemic amyloidosis, this protein is an ideal model to study the mechanism of amyloid fibril formation. In order to gain an insight into the mechanism of amyloid fibril formation, systematic and detailed studies to detect and characterize various structural states of HEWL were conducted. Since HEWL forms amyloid fibrils in highly concentrated ethanol solutions, solutions of various concentrations of HEWL in various concentrations of ethanol were prepared, and the structures of HEWL in these solutions were investigated by small-angle X-ray and neutron scattering. It was shown that the structural states of HEWL were distinguished as the monomer state, the state of the dimer formation, the state of the protofilament formation, the protofilament state, and the state towards the formation of amyloid fibrils. A phase diagram of these structural states was obtained as a function of protein, water and ethanol concentrations. It was found that under the monomer state the structural changes of HEWL were not gross changes in shape but local conformational changes, and the dimers, formed by the association at the end of the long axis of HEWL, had an elongated shape. Circular dichroism measurements showed that the large changes in the secondary structures of HEWL occurred during dimer formation. The protofilaments were formed by stacking of the dimers with their long axis (nearly) perpendicular to and rotated around the protofilament axis to form a helical structure. These protofilaments were characterized by their radius of gyration of the cross-section of 2.4nm and the mass per unit length of 16,000(+/-2300)Da/nm. It was shown that the changes of the structural states towards the amyloid fibril formation occurred via lateral association of the protofilaments. A pathway of the amyloid fibril formation of HEWL was proposed from these results.  相似文献   

15.
Amyloids are highly ordered, rigid beta-sheet-rich structures that appear to have minimal dynamic flexibility in individual polypeptide chains. Here, we demonstrate that substantial conformational rearrangements occur within mature amyloid fibrils produced from full-length mammalian prion protein. The rearrangement results in a substantial extension of a proteinase K-resistant core and is accompanied by an increase in the beta-sheet-rich conformation. The conformational rearrangement was induced in the presence of low concentrations of Triton X-100 either by brief exposure to 80 degrees C or, with less efficacy, by prolonged incubation at 37 degrees C at pH 7.5 and is referred to here as "annealing." Upon annealing, amyloid fibrils acquired a proteinase K-resistant core identical to that found in bovine spongiform encephalopathy-specific scrapie-associated prion protein. Annealing was also observed when amyloid fibrils were exposed to high temperatures in the absence of detergent but in the presence of brain homogenate. These findings suggest that the amyloid fibrils exist in two conformationally distinct states that are separated by a high energy barrier and that yet unknown cellular cofactors may facilitate transition of the fibrils into thermodynamically more stable state. Our studies provide new insight into the complex behavior of prion polymerization and highlight the annealing process, a previously unknown step in the evolution of amyloid structures.  相似文献   

16.
Amyloid fibrils are assemblies of misfolded proteins and are associated with pathological conditions such as Alzheimer's disease and the spongiform encephalopathies. In the amyloid diseases, a diverse group of normally soluble proteins self-assemble to form insoluble fibrils. X-ray fibre diffraction studies have shown that the protofilament cores of fibrils formed from the various proteins all contain a cross-beta-scaffold, with beta-strands perpendicular and beta-sheets parallel to the fibre axis. We have determined the threedimensional structure of an amyloid fibril, formed by the SH3 domain of phosphatidylinositol-3'-kinase, using cryo-electron microscopy and image processing at 25 A resolution. The structure is a double helix of two protofilament pairs wound around a hollow core, with a helical crossover repeat of approximately 600 A and an axial subunit repeat of approximately 27 A. The native SH3 domain is too compact to fit into the fibril density, and must unfold to adopt a longer, thinner shape in the amyloid form. The 20x40-A protofilaments can only accommodate one pair of flat beta-sheets stacked against each other, with very little inter-strand twist. We propose a model for the polypeptide packing as a basis for understanding the structure of amyloid fibrils in general.  相似文献   

17.
Mammalian prion strains are believed to arise from the propagation of distinct conformations of the misfolded prion protein PrPSc. One key operational parameter used to define differences between strains has been conformational stability of PrPSc as defined by resistance to thermal and/or chemical denaturation. However, the structural basis of these stability differences is unknown. To bridge this gap, we have generated two strains of recombinant human prion protein amyloid fibrils that show dramatic differences in conformational stability and have characterized them by a number of biophysical methods. Backbone amide hydrogen/deuterium exchange experiments revealed that, in sharp contrast to previously studied strains of infectious amyloid formed from the yeast prion protein Sup35, differences in β-sheet core size do not underlie differences in conformational stability between strains of mammalian prion protein amyloid. Instead, these stability differences appear to be dictated by distinct packing arrangements (i.e. steric zipper interfaces) within the amyloid core, as indicated by distinct x-ray fiber diffraction patterns and large strain-dependent differences in hydrogen/deuterium exchange kinetics for histidine side chains within the core region. Although this study was limited to synthetic prion protein amyloid fibrils, a similar structural basis for strain-dependent conformational stability may apply to brain-derived PrPSc, especially because large strain-specific differences in PrPSc stability are often observed despite a similar size of the PrPSc core region.  相似文献   

18.
Bovine spongiform encephalopathy (BSE) is a prion disease of cattle that is caused by the misfolding of the cellular prion protein (PrPC) into an infectious conformation (PrPSc). PrPC is a predominantly α-helical membrane protein that misfolds into a β-sheet rich, infectious state, which has a high propensity to self-assemble into amyloid fibrils. Three strains of BSE prions can cause prion disease in cattle, including classical BSE (C-type) and two atypical strains, named L-type and H-type BSE. To date, there is no detailed information available about the structure of any of the infectious BSE prion strains. In this study, we purified L-type BSE prions from transgenic mouse brains and investigated their biochemical and ultrastructural characteristics using electron microscopy, image processing, and immunogold labeling techniques. By using phosphotungstate anions (PTA) to precipitate PrPSc combined with sucrose gradient centrifugation, a high yield of proteinase K-resistant BSE amyloid fibrils was obtained. A morphological examination using electron microscopy, two-dimensional class averages, and three-dimensional reconstructions revealed two structural classes of L-type BSE amyloid fibrils; fibrils that consisted of two protofilaments with a central gap and an average width of 22.5 nm and one-protofilament fibrils that were 10.6 nm wide. The one-protofilament fibrils were found to be more abundant compared to the thicker two-protofilament fibrils. Both fibrillar assemblies were successfully decorated with monoclonal antibodies against N- and C-terminal epitopes of PrP using immunogold-labeling techniques, confirming the presence of polypeptides that span residues 100–110 to 227–237. The fact that the one-protofilament fibrils contain both N- and C-terminal PrP epitopes constrains molecular models for the structure of the infectious conformer in favour of a compact four-rung β-solenoid fold.  相似文献   

19.
The pathology of transmissible spongiform encephalopathies (TSEs) is strongly associated with the structural conversion of the cellular prion protein (PrPC) into a misfolded isoform (PrPSc) that assembles into amyloid fibrils. Since increased levels of oxidative stress have been linked to prion diseases, we investigated the metal-induced oxidation of human PrP (90-231). A novel in vitro conversion assay based on aerobic incubation of PrP in the presence of elemental copper pellets at pH 5 was established, resulting in aggregation of highly beta-sheeted prion proteins. We show for the first time that two discrete oligomeric species of elongated shape, approx. 25 mers and 100 mers, are formed on the pathway of oxidative PrP aggregation in vitro, which are well characterized regarding shape and size using small-angle X-ray scattering (SAXS), dynamic light scattering (DLS), and electron microscopy (EM). Considering that small oligomers of highly similar size have recently been reported to show the highest specific infectivity within TSE-infected brain tissues of hamsters, the novel oligomers observed in this study are interesting candidates as agent causing neurodegenerative and/or self-propagating effects. Moreover, our results significantly strengthen the theory that oxidative stress might be an influence that leads to substantial structural conversions of PrP in vivo.  相似文献   

20.
Based on atomic force microscopy analysis of the morphology of fibrillar species formed during fibrillation of alpha-synuclein, insulin, and the B1 domain of protein G, a previously described model for the assembly of amyloid fibrils of immunoglobulin light-chain variable domains is proposed as a general model for the assembly of protein fibrils. For all of the proteins studied, we observed two or three fibrillar species that vary in diameter. The smallest, protofilaments, have a uniform height, whereas the larger species, protofibrils and fibrils, have morphologies that are indicative of multiple protofilaments intertwining. In all cases, protofilaments intertwine to form protofibrils, and protofibrils intertwine to form fibrils. We propose that the hierarchical assembly model describes a general mechanism of assembly for all amyloid fibrils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号