首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Comparison of human protein-protein interaction maps   总被引:1,自引:0,他引:1  
MOTIVATION: Large-scale mappings of protein-protein interactions have started to give us new views of the complex molecular mechanisms inside a cell. After initial projects to systematically map protein interactions in model organisms such as yeast, worm and fly, researchers have begun to focus on the mapping of the human interactome. To tackle this enormous challenge, different approaches have been proposed and pursued. While several large-scale human protein interaction maps have recently been published, their quality remains to be critically assessed. RESULTS: We present here a first comparative analysis of eight currently available large-scale maps with a total of over 10,000 unique proteins and 57,000 interactions included. They are based either on literature search, orthology or by yeast-two-hybrid assays. Comparison reveals only a small, but statistically significant overlap. More importantly, our analysis gives clear indications that all interaction maps imply considerable selection and detection biases. These results have to be taken into account for future assembly of the human interactome. AVAILABILITY: An integrated human interaction network called Unified Human Interactome (UniHI) is made publicly accessible at http://www.mdc-berlin.de/unihi. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.  相似文献   

2.
Recent large-scale data sets of protein complex purifications have provided unprecedented insights into the organization of cellular protein complexes. Several computational methods have been developed to detect co-complexed proteins in these data sets. Their common aim is the identification of biologically relevant protein complexes. However, much less is known about the network of direct physical protein contacts within the detected protein complexes. Therefore, our work investigates whether direct physical contacts can be computationally derived by combining raw data of large-scale protein complex purifications. We assess four established scoring schemes and introduce a new scoring approach that is specifically devised to infer direct physical protein contacts from protein complex purifications. The physical contacts identified by the five methods are comprehensively benchmarked against different reference sets that provide evidence for true physical contacts. Our results show that raw purification data can indeed be exploited to determine high-confidence physical protein contacts within protein complexes. In particular, our new method outperforms competing approaches at discovering physical contacts involving proteins that have been screened multiple times in purification experiments. It also excels in the analysis of recent protein purification screens of molecular chaperones and protein kinases. In contrast to previous findings, we observe that physical contacts inferred from purification experiments of protein complexes can be qualitatively comparable to binary protein interactions measured by experimental high-throughput assays such as yeast two-hybrid. This suggests that computationally derived physical contacts might complement binary protein interaction assays and guide large-scale interactome mapping projects by prioritizing putative physical contacts for further experimental screens.  相似文献   

3.
Large-scale protein-protein interaction data sets have been generated for several species including yeast and human and have enabled the identification, quantification, and prediction of cellular molecular networks. Affinity purification-mass spectrometry (AP-MS) is the preeminent methodology for large-scale analysis of protein complexes, performed by immunopurifying a specific "bait" protein and its associated "prey" proteins. The analysis and interpretation of AP-MS data sets is, however, not straightforward. In addition, although yeast AP-MS data sets are relatively comprehensive, current human AP-MS data sets only sparsely cover the human interactome. Here we develop a framework for analysis of AP-MS data sets that addresses the issues of noise, missing data, and sparsity of coverage in the context of a current, real world human AP-MS data set. Our goal is to extend and increase the density of the known human interactome by integrating bait-prey and cocomplexed preys (prey-prey associations) into networks. Our framework incorporates a score for each identified protein, as well as elements of signal processing to improve the confidence of identified protein-protein interactions. We identify many protein networks enriched in known biological processes and functions. In addition, we show that integrated bait-prey and prey-prey interactions can be used to refine network topology and extend known protein networks.  相似文献   

4.
Src homology 3 (SH3) domains bind peptides to mediate protein–protein interactions that assemble and regulate dynamic biological processes. We surveyed the repertoire of SH3 binding specificity using peptide phage display in a metazoan, the worm Caenorhabditis elegans, and discovered that it structurally mirrors that of the budding yeast Saccharomyces cerevisiae. We then mapped the worm SH3 interactome using stringent yeast two‐hybrid and compared it with the equivalent map for yeast. We found that the worm SH3 interactome resembles the analogous yeast network because it is significantly enriched for proteins with roles in endocytosis. Nevertheless, orthologous SH3 domain‐mediated interactions are highly rewired. Our results suggest a model of network evolution where general function of the SH3 domain network is conserved over its specific form.  相似文献   

5.
6.
Yeast two-hybrid contributions to interactome mapping   总被引:1,自引:0,他引:1  
Interactome mapping, the systematic identification of protein interactions within an organism, promises to facilitate systems-level studies of biological processes. Using in vitro technologies that measure specific protein interactions, static maps are being generated that include many of the protein networks that occur in vivo. Most of the binary protein interaction data currently available was generated by large-scale yeast two-hybrid screens. Recent efforts to map interactions in model organisms and in humans illustrate the promise and some of the limitations of the two-hybrid approach. Although these maps are incomplete and include false positives, they are proving useful as a framework around which to elaborate and model the in vivo interactome.  相似文献   

7.
8.
A large amount of genomic information is currently being generated in the biological sciences; however, the postgenome era needs biological connectors to bridge between genome data and gene functions. Interactomes are proteinprotein interaction maps used to study gene function through the demonstration of predicted functions based on known roles of interaction partners to understand biological processes as a systemic approach. Diverse experimental approaches for interactomes have been developed, each of which has its own merits and pitfalls. In this review, the status and application of the yeast two-hybrid (Y2H)-based plant interactome is introduced to investigate gene functions as a biological network.  相似文献   

9.
How is the yeast proteome wired? This important question, central in yeast systems biology, remains unanswered in spite of the abundance of protein interaction data from high-throughput experiments. Unfortunately, these large-scale studies show striking discrepancies in their results and coverage such that biologists scrutinizing the "interactome" are often confounded by a mix of established physical interactions, functional associations, and experimental artifacts. This stimulated early attempts to integrate the available information and produce a list of protein interactions ranked according to an estimated functional reliability. The recent publication of the results of two large protein interaction experiments and the completion of a comprehensive literature curation effort has more than doubled the available information on the wiring of the yeast proteome. This motivates a fresh approach to the compilation of a yeast interactome based purely on evidence of physical interaction. We present a procedure exploiting both heuristic and probabilistic strategies to draft the yeast interactome taking advantage of various heterogeneous data sources: application of tandem affinity purification coupled to MS (TAP-MS), large-scale yeast two-hybrid studies, and results of small-scale experiments stored in dedicated databases. The end result is WI-PHI, a weighted network encompassing a large majority of yeast proteins.  相似文献   

10.
Comprehensive analysis of protein-protein interactions is a challenging endeavor of functional proteomics and has been best explored in the budding yeast. The yeast protein interactome analysis was achieved first by using the yeast two-hybrid system in a proteome-wide scale and next by large-scale mass spectrometric analysis of affinity-purified protein complexes. While these interaction data have led to a number of novel findings and the emergence of a single huge network containing thousands of proteins, they suffer many false signals and fall short of grasping the entire interactome. Thus, continuous efforts are necessary in both bioinformatics and experimentation to fully exploit these data and to proceed another step forward to the goal. Computational tools to integrate existing biological knowledge buried in literature and various functional genomic data with the interactome data are required for biological interpretation of the huge protein interaction network. Novel experimental methods have to be developed to detect weak, transient interactions involving low abundance proteins as well as to obtain clues to the biological role for each interaction. Since the yeast two-hybrid system can be used for the mapping of the interaction domains and the isolation of interaction-defective mutants, it would serve as a technical basis for the latter purpose, thereby playing another important role in the next phase of protein interactome research.  相似文献   

11.
Protein-protein interactions are essential for nearly all cellular processes. Therefore, an important goal of post-genomic research for defining gene function and understanding the function of macromolecular complexes involves creating 'interactome' maps from empirical or inferred datasets. Systematic efforts to conduct high-throughput surveys of protein-protein interactions in plants are needed to chart the complex and dynamic interaction networks that occur throughout plant development. However, no single approach can build a complete map of the interactome. Here, we review the utility and potential of various experimental approaches for creating large-scale protein-protein interaction maps in plants. Bioinformatics approaches for curating and assessing the confidence of these datasets through inter-species comparisons will be crucial in achieving a complete understanding of protein interaction networks in plants.  相似文献   

12.

Background  

As protein interactions mediate most cellular mechanisms, protein-protein interaction networks are essential in the study of cellular processes. Consequently, several large-scale interactome mapping projects have been undertaken, and protein-protein interactions are being distilled into databases through literature curation; yet protein-protein interaction data are still far from comprehensive, even in the model organism Saccharomyces cerevisiae. Estimating the interactome size is important for evaluating the completeness of current datasets, in order to measure the remaining efforts that are required.  相似文献   

13.
Membrane receptor‐activated signal transduction pathways are integral to cellular functions and disease mechanisms in humans. Identification of the full set of proteins interacting with membrane receptors by high‐throughput experimental means is difficult because methods to directly identify protein interactions are largely not applicable to membrane proteins. Unlike prior approaches that attempted to predict the global human interactome, we used a computational strategy that only focused on discovering the interacting partners of human membrane receptors leading to improved results for these proteins. We predict specific interactions based on statistical integration of biological data containing highly informative direct and indirect evidences together with feedback from experts. The predicted membrane receptor interactome provides a system‐wide view, and generates new biological hypotheses regarding interactions between membrane receptors and other proteins. We have experimentally validated a number of these interactions. The results suggest that a framework of systematically integrating computational predictions, global analyses, biological experimentation and expert feedback is a feasible strategy to study the human membrane receptor interactome.  相似文献   

14.
15.
Proteins play an essential role in the vital biological processes governing cellular functions. Most proteins function as members of macromolecular machines, with the network of interacting proteins revealing the molecular mechanisms driving the formation of these complexes. Profiling the physiology-driven remodeling of these interactions within different contexts constitutes a crucial component to achieving a comprehensive systems-level understanding of interactome dynamics. Here, we apply co-fractionation mass spectrometry and computational modeling to quantify and profile the interactions of ∼2000 proteins in the bacterium Escherichia coli cultured under 10 distinct culture conditions. The resulting quantitative co-elution patterns revealed large-scale condition-dependent interaction remodeling among protein complexes involved in diverse biochemical pathways in response to the unique environmental challenges. The network-level analysis highlighted interactome-wide biophysical properties and structural patterns governing interaction remodeling. Our results provide evidence of the local and global plasticity of the E. coli interactome along with a rigorous generalizable framework to define protein interaction specificity. We provide an accompanying interactive web application to facilitate the exploration of these rewired networks.  相似文献   

16.
17.
For the increasing number of species with complete genome sequences, the task of elucidating their complete proteomes and interactomes has attracted much recent interest. Although the proteome describes the complete repertoire of proteins expressed, the interactome comprises the pairwise protein-protein interactions that occur, or could occur, within an organism, and forms a large-scale sparse network. Here we discuss the challenges provided by present data, and outline a route from global analysis to more detailed and focused studies of protein-protein interactions. Carefully using protein-interaction data allows us to explore its potential fully alongside the evaluation of mechanistic hypotheses about biological systems.  相似文献   

18.
19.
Nesvizhskii AI 《Proteomics》2012,12(10):1639-1655
Analysis of protein interaction networks and protein complexes using affinity purification and mass spectrometry (AP/MS) is among most commonly used and successful applications of proteomics technologies. One of the foremost challenges of AP/MS data is a large number of false-positive protein interactions present in unfiltered data sets. Here we review computational and informatics strategies for detecting specific protein interaction partners in AP/MS experiments, with a focus on incomplete (as opposite to genome wide) interactome mapping studies. These strategies range from standard statistical approaches, to empirical scoring schemes optimized for a particular type of data, to advanced computational frameworks. The common denominator among these methods is the use of label-free quantitative information such as spectral counts or integrated peptide intensities that can be extracted from AP/MS data. We also discuss related issues such as combining multiple biological or technical replicates, and dealing with data generated using different tagging strategies. Computational approaches for benchmarking of scoring methods are discussed, and the need for generation of reference AP/MS data sets is highlighted. Finally, we discuss the possibility of more extended modeling of experimental AP/MS data, including integration with external information such as protein interaction predictions based on functional genomics data.  相似文献   

20.
Information Flow Analysis of Interactome Networks   总被引:1,自引:0,他引:1  
Recent studies of cellular networks have revealed modular organizations of genes and proteins. For example, in interactome networks, a module refers to a group of interacting proteins that form molecular complexes and/or biochemical pathways and together mediate a biological process. However, it is still poorly understood how biological information is transmitted between different modules. We have developed information flow analysis, a new computational approach that identifies proteins central to the transmission of biological information throughout the network. In the information flow analysis, we represent an interactome network as an electrical circuit, where interactions are modeled as resistors and proteins as interconnecting junctions. Construing the propagation of biological signals as flow of electrical current, our method calculates an information flow score for every protein. Unlike previous metrics of network centrality such as degree or betweenness that only consider topological features, our approach incorporates confidence scores of protein–protein interactions and automatically considers all possible paths in a network when evaluating the importance of each protein. We apply our method to the interactome networks of Saccharomyces cerevisiae and Caenorhabditis elegans. We find that the likelihood of observing lethality and pleiotropy when a protein is eliminated is positively correlated with the protein's information flow score. Even among proteins of low degree or low betweenness, high information scores serve as a strong predictor of loss-of-function lethality or pleiotropy. The correlation between information flow scores and phenotypes supports our hypothesis that the proteins of high information flow reside in central positions in interactome networks. We also show that the ranks of information flow scores are more consistent than that of betweenness when a large amount of noisy data is added to an interactome. Finally, we combine gene expression data with interaction data in C. elegans and construct an interactome network for muscle-specific genes. We find that genes that rank high in terms of information flow in the muscle interactome network but not in the entire network tend to play important roles in muscle function. This framework for studying tissue-specific networks by the information flow model can be applied to other tissues and other organisms as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号