首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protein tyrosine phosphatases (PTPs) are fundamental to the regulation of cellular signalling cascades triggered by protein tyrosine kinases. Most receptor-like PTPs (RPTPs) comprise two tandem PTP domains, with only the membrane proximal domains (D1) having significant phosphatase activity; the membrane distal domains (D2) display little to no catalytic activity. Intriguingly, however, many RPTP D2s share the catalytically essential Cys and Arg residues of D1s. D2 of RPTPalpha may function as a redox sensor that mediates regulation of D1 via reactive oxygen species. Oxidation of Cys723 of RPTPalpha D2 (equivalent to PTP catalytic Cys residues) stabilizes RPTPalpha dimers, induces rotational coupling, and is required for inactivation of D1 phosphatase activity. Here, we investigated the structural consequences of RPTPalpha D2 oxidation. Exposure of RPTPalpha D2 to oxidants promotes formation of a cyclic sulfenamide species, a reversibly oxidized state of Cys723, accompanied by conformational changes of the D2 catalytic site. The cyclic sulfenamide is highly resistant to terminal oxidation to sulfinic and sulfonic acids. Conformational changes associated with RPTPalpha D2 oxidation have implications for RPTPalpha quaternary structure and allosteric regulation of D1 phosphatase activity.  相似文献   

2.
Signaling mechanisms involving protein tyrosine phosphatases govern several cellular and developmental processes. These enzymes are regulated by several mechanisms which include variation in the catalytic turnover rate based on redox stimuli, subcellular localization or protein-protein interactions. In the case of Receptor Protein Tyrosine Phosphatases (RPTPs) containing two PTP domains, phosphatase activity is localized in their membrane-proximal (D1) domains, while the membrane-distal (D2) domain is believed to play a modulatory role. Here we report our analysis of the influence of the D2 domain on the catalytic activity and substrate specificity of the D1 domain using two Drosophila melanogaster RPTPs as a model system. Biochemical studies reveal contrasting roles for the D2 domain of Drosophila Leukocyte antigen Related (DLAR) and Protein Tyrosine Phosphatase on Drosophila chromosome band 99A (PTP99A). While D2 lowers the catalytic activity of the D1 domain in DLAR, the D2 domain of PTP99A leads to an increase in the catalytic activity of its D1 domain. Substrate specificity, on the other hand, is cumulative, whereby the individual specificities of the D1 and D2 domains contribute to the substrate specificity of these two-domain enzymes. Molecular dynamics simulations on structural models of DLAR and PTP99A reveal a conformational rationale for the experimental observations. These studies reveal that concerted structural changes mediate inter-domain communication resulting in either inhibitory or activating effects of the membrane distal PTP domain on the catalytic activity of the membrane proximal PTP domain.  相似文献   

3.
Most receptor-type protein-tyrosine phosphatases (RPTPs) contain two tandem PTP domains. For some RPTPs the enzymatically inactive membrane-distal phosphatase domains (D2) were found to bind enzymatically active membrane proximal PTP (D1) domains, and oligomerization has been proposed as a general regulatory mechanism. The RPTP-like proteins IA-2 and IA-2beta, major autoantigens in insulin-dependent diabetes mellitus, contain just a single enzymatically inactive PTP-like domain. Their physiological role is as yet enigmatic. To investigate whether the catalytically inactive cytoplasmic domains of IA-2 and IA-2beta are involved in oligomerization, we exploited interaction trap assay in yeast and glutathione S-transferase pull-down and co-immunoprecipitation strategies on lysates of transfected COS-1 cells. The results show that IA-2 and IA-2beta are capable of homo- and heterodimerization to which both the juxtamembrane region and the phosphatase-like segment can contribute. Furthermore, they can form heterodimers with some other RPTP members, most notably RPTPalpha and RPTPepsilon, and down-regulate RPTPalpha enzymatic activity. Thus, in addition to homo-dimerization, the enzymatic activity of receptor-type PTPs can be regulated through heterodimerization with other RPTPs, including the catalytically inactive IA-2 and IA-2beta.  相似文献   

4.
Evolution of the multifunctional protein tyrosine phosphatase family   总被引:4,自引:0,他引:4  
The protein tyrosine phosphatase (PTP) family plays a central role in signal transduction pathways by controlling the phosphorylation state of serine, threonine, and tyrosine residues. PTPs can be divided into dual specificity phosphatases and the classical PTPs, which can comprise of one or two phosphatase domains. We studied amino acid substitutions at functional sites in the phosphatase domain and identified putative noncatalytic phosphatase domains in all subclasses of the PTP family. The presence of inactive phosphatase domains in all subclasses indicates that they were invented multiple times in evolution. Depending on the domain composition, loss of catalytic activity can result in different consequences for the function of the protein. Inactive single-domain phosphatases can still specifically bind substrate and protect it from dephosphorylation by other phosphatases. The inactive domains of tandem phosphatases can be further subdivided. The first class is more conserved, still able to bind phosphorylated tyrosine residues and might recruit multiphosphorylated substrates for the adjacent active domain. The second has accumulated several variable amino acid substitutions in the catalytic center, indicating a complete loss of tyrosine-binding capabilities. To study the impact of substitutions in the catalytic center to the evolution of the whole domain, we examined the evolutionary rates for each individual site and compared them between the classes. This analysis revealed a release of evolutionary constraint for multiple sites surrounding the catalytic center only in the second class, emphasizing its difference in function compared with the first class. Furthermore, we found a region of higher conservation common to both domain classes, suggesting a new regulatory center. We discuss the influence of evolutionary forces on the development of the phosphatase domain, which has led to additional functions, such as the specific protection of phosphorylated tyrosine residues, substrate recruitment, and regulation of the catalytic activity of adjacent domains.  相似文献   

5.
Receptor protein-tyrosine phosphatase alpha, RPTPalpha, is a typical transmembrane protein-tyrosine phosphatase (PTP) with two cytoplasmic catalytic domains. RPTPalpha became strongly phosphorylated on tyrosine upon treatment of cells with the PTP inhibitor pervanadate. Surprisingly, mutation of the catalytic site Cys in the membrane distal PTP domain (D2), but not of the membrane proximal PTP domain (D1) that harbors the majority of the PTP activity, almost completely abolished pervanadate-induced tyrosine phosphorylation. Pervanadate-induced RPTPalpha tyrosine phosphorylation was not restricted to Tyr789, a known phosphorylation site. Cotransfection of wild-type RPTPalpha did not potentiate tyrosine phosphorylation of inactive RPTPalpha-C433SC723S, suggesting that RPTPalpha-mediated activation of kinase(s) does not underlie the observed effects. Mapping experiments indicated that pervanadate-induced tyrosine phosphorylation sites localized predominantly, but not exclusively, to the C-terminus. Our results demonstrate that RPTPalpha-D2 played a role in pervanadate-induced tyrosine phosphorylation of RPTPalpha, which may suggest that RPTPalpha-D2 is involved in protein-protein interactions.  相似文献   

6.
Oxidation is emerging as an important regulatory mechanism of protein-tyrosine phosphatases (PTPs). Here we report that PTPs are differentially oxidized, and we provide evidence for the underlying mechanism. The membrane-proximal RPTPalpha-D1 was catalytically active but not readily oxidized as assessed by immunoprobing with an antibody that recognized oxidized catalytic site cysteines in PTPs (oxPTPs). In contrast, the membrane-distal RPTPalpha-D2, a poor PTP, was readily oxidized. Oxidized catalytic site cysteines in PTP immunoprobing and mass spectrometry demonstrated that mutation of two residues in the Tyr(P) loop and the WPD loop that reverse catalytic activity of RPTPalpha-D1 and RPTPalpha-D2 also reversed oxidizability, suggesting that oxidizability and catalytic activity are coupled. However, catalytically active PTP1B and LAR-D1 were readily oxidized. Oxidizability was strongly dependent on pH, indicating that the microenvironment of the catalytic cysteine has an important role. Crystal structures of PTP domains demonstrated that the orientation of the absolutely conserved PTP loop arginine correlates with oxidizability of PTPs, and consistently, RPTPmu-D1, with a similar conformation as RPTPalpha-D1, was not readily oxidized. In conclusion, PTPs are differentially oxidized at physiological pH and H(2)O(2) concentrations, and the PTP loop arginine is an important determinant for susceptibility to oxidation.  相似文献   

7.
Protein tyrosine phosphatase sigma (PTPσ) plays a vital role in neural development. The extracellular domain of PTPσ binds to various proteoglycans, which control the activity of 2 intracellular PTP domains (D1 and D2). To understand the regulatory mechanism of PTPσ, we carried out structural and biochemical analyses of PTPσ D1D2. In the crystal structure analysis of a mutant form of D1D2 of PTPσ, we unexpectedly found that the catalytic cysteine of D1 is oxidized to cysteine sulfenic acid, while that of D2 remained in its reduced form, suggesting that D1 is more sensitive to oxidation than D2. This finding contrasts previous observations on PTPα. The cysteine sulfenic acid of D1 was further confirmed by immunoblot and mass spectrometric analyses. The stabilization of the cysteine sulfenic acid in the active site of PTP suggests that the formation of cysteine sulfenic acid may function as a stable intermediate during the redox-regulation of PTPs.  相似文献   

8.
We determined the substrate specificities of the protein tyrosine phosphatases (PTPs) PTP1B, RPTPα, SHP-1, and SHP-2 by on-bead screening of combinatorial peptide libraries and solution-phase kinetic analysis of individually synthesized phosphotyrosyl (pY) peptides. These PTPs exhibit different levels of sequence specificity and catalytic efficiency. The catalytic domain of RPTPα has very weak sequence specificity and is approximately 2 orders of magnitude less active than the other three PTPs. The PTP1B catalytic domain has modest preference for acidic residues on both sides of pY, is highly active toward multiply phosphorylated peptides, but disfavors basic residues at any position, a Gly at the pY-1 position, or a Pro at the pY+1 position. By contrast, SHP-1 and SHP-2 share similar but much narrower substrate specificities, with a strong preference for acidic and aromatic hydrophobic amino acids on both sides of the pY residue. An efficient SHP-1/2 substrate generally contains two or more acidic residues on the N-terminal side and one or more acidic residues on the C-terminal side of pY but no basic residues. Subtle differences exist between SHP-1 and SHP-2 in that SHP-1 has a stronger preference for acidic residues at the pY-1 and pY+1 positions and the two SHPs prefer acidic residues at different positions N-terminal to pY. A survey of the known protein substrates of PTP1B, SHP-1, and SHP-2 shows an excellent agreement between the in vivo dephosphorylation pattern and the in vitro specificity profiles derived from library screening. These results suggest that different PTPs have distinct sequence specificity profiles and the intrinsic activity/specificity of the PTP domain is an important determinant of the enzyme's in vivo substrate specificity.  相似文献   

9.
Protein tyrosine phosphorylation is thought to be a unique feature of multicellular animals. Interestingly, the genome of the unicellular protist Monosiga brevicollis reveals a surprisingly high number and diversity of protein tyrosine kinases, protein tyrosine phosphatases (PTPs), and phosphotyrosine-binding domains. Our study focuses on a hypothetical SH2 domain-containing PTP (SHP), which interestingly has a predicted structure that is distinct from SHPs found in animals. In this study, we isolated cDNA of the enzyme and discovered that its actual sequence was different from the predicted sequence as a result of non-consensus RNA splicing. Contrary to the predicted structure with one SH2 domain and a disrupted phosphatase domain, Monosiga brevicollis SHP (MbSHP) contains two SH2 domains and an intact PTP domain, closely resembling SHP enzymes found in animals. We further expressed the full-length and SH2 domain-truncated forms of the enzyme in Escherichiacoli cells and characterized their enzymatic activities. The double-SH2 domain-truncated form of the enzyme effectively dephosphorylated a common PTP substrate with a specific activity among the highest in characterized PTPs, while the full-length and the N-terminal SH2 domain-truncated forms of the enzyme showed much lower activity with altered pH dependency and responses to ionic strength and common PTP inhibitors. This indicates that SH2 domains suppress the catalytic activity. SHP represents a highly conserved ancient PTP, and studying MbSHP should provide a better understanding about the evolution of tyrosine phosphorylation.  相似文献   

10.
Madan LL  Gopal B 《Biochemistry》2011,50(46):10114-10125
The coordinated activity of protein tyrosine phosphatases (PTPs) is crucial for the initiation, modulation, and termination of diverse cellular processes. The catalytic activity of this protein depends on a nucleophilic cysteine at the active site that mediates the hydrolysis of the incoming phosphotyrosine substrate. While the role of conserved residues in the catalytic mechanism of PTPs has been extensively examined, the diversity in the mechanisms of substrate recognition and modulation of catalytic activity suggests that other, less conserved sequence and structural features could contribute to this process. Here we describe the crystal structures of Drosophila melanogaster PTP10D in the apo form as well as in a complex with a substrate peptide and an inhibitor. These studies reveal the role of aromatic ring stacking interactions at the boundary of the active site of PTPs in mediating substrate recruitment. We note that phenylalanine 76, of the so-called KNRY loop, is crucial for orienting the phosphotyrosine residue toward the nucleophilic cysteine. Mutation of phenylalanine 76 to leucine results in a 60-fold decrease in the catalytic efficiency of the enzyme. Fluorescence measurements with a competitive inhibitor, p-nitrocatechol sulfate, suggest that Phe76 also influences the formation of the enzyme-substrate intermediate. The structural and biochemical data for PTP10D thus highlight the role of relatively less conserved residues in PTP domains in both substrate recruitment and modulation of reaction kinetics.  相似文献   

11.
PTP2C (also known as Syp/SH-PTP2/PTP1D) is a soluble protein tyrosine phosphatase present in most cell types. It interacts directly with activated PDGF receptor via its SH2 domains, which results in its phosphorylation on tyrosine residue(s). The phosphorylated PTP2C in turn binds to the SH2 domain of GRB2, serving as an adaptor in the transduction of mitogenic signals from the growth factor receptor to the Ras and MAP kinase signaling pathways. We investigated the interaction of PTP2C with the PDGF receptor by examining the localization of both proteins after PDGF stimulation of 293 cells which stably express the human PDGF receptor. In resting cells, transiently expressed PTP2C was distributed throughout the cytoplasm. Upon stimulation with PDGF, PTP2C was translocated from the cytoplasm to membrane ruffles. Immunofluorescence examination revealed that PTP2C colocalized with actin, the PDGF receptors, and hyper-tyrosine-phosphorylated protein(s). Neither deletion of the SH2 domains nor point mutations at either the catalytic site or the major phosphorylation site affected membrane ruffling or the localization of PTP2C to the ruffles of PDGF-stimulated cells. However, the expression of a catalytically inactive mutant PTP2C substantially prolonged ruffling activity following PDGF stimulation. These results suggest that PTP2C is involved in the down-regulation of the membrane ruffling pathway, and in contrast to its positive function in the MAP kinase pathway, the phosphatase activity negatively regulates ruffling activity.  相似文献   

12.
Reversible oxidation of the catalytic cysteine of protein-tyrosine phosphatases (PTPs) has emerged as a putative mechanism of activity regulation by physiological cell stimulation with growth factors, and by cell treatments with adverse agents such as UV irradiation. We compared SHP-1 and SHP-2, two structurally related cytoplasmic protein-tyrosine phosphatases with different cellular functions and cell-specific expression patterns, for their intrinsic susceptibility to oxidation by H(2)O(2). The extent of oxidation was monitored by detecting the modification of the PTP catalytic cysteine by three different methods, including a modified in-gel PTP assay, alkylation with a biotinylated iodoacetic acid derivative, and an antibody against oxidized PTPs. Dose-response curves for oxidation of the catalytic domains of SHP-1 and SHP-2 were similar. SHP-1 and -2 require relatively high H(2)O(2) concentrations for oxidation (half-maximal oxidation at 0.1-0.5 mM). For SHP-1, the SH2 domains had a significant protective function with respect to oxidation. In EOL-1 cells, SHP oxidation by exogenous H(2)O(2) in general and SHP-2 oxidation in particular was strongly diminished compared to HEK293 cells, at least partially related to a generally lower oxidant sensitivity of the EOL-1 cells. The data suggest that the differential cell functions of SHP-1 and SHP-2 are not related to differences in oxidation sensitivity. The modulating effects of SH2 domains for oxidation of these PTPs are in support of an enhanced oxidation susceptibility of activated SHPs.  相似文献   

13.
Dimerisation of receptor-type protein tyrosine phosphatases (RPTPs) represents an appealing mechanism to regulate their enzymatic activity. Studies thus far mostly concern the dimerisation behaviour of RPTPs possessing two tandemly oriented catalytic PTP domains. Mouse gene Ptprr encodes four different protein isoforms (i.e. PTPBR7, PTP-SL and PTPPBSgamma-42/37) that contain a single PTP domain. Using selective membrane permeabilisation we here demonstrate that PTP-SL, like PTPBR7, is a single membrane-spanning RPTP. Furthermore, these two receptor-type PTPs constitutively formed homo- and hetero-meric complexes as witnessed in chemical cross-linking and co-immunoprecipitation experiments, in sharp contrast to the cytosolic PTPPBSgamma-42 and PTPPBSgamma-37 PTPRR isoforms. This multimerisation occurs independently of the PTP domain and requires the transmembrane domain and/or the proximal hydrophobic region. Using overexpression of a PTPBR7 mutant that essentially lacks the intracellular PTP domain-containing segment, a monomer-mimicking state was forced upon full-length PTPBR7 immunoprecipitates. This resulted in a significant increase in the enzymatic activity of the PTPRR PTP domain, which strengthens the notion that multimerisation represents a general mechanism to tone down RPTP catalytic activity.  相似文献   

14.
15.
Protein tyrosine phosphatases (PTPs), which catalyze the dephosphorylation of phosphotyrosine in protein substrates, are important cell-signaling regulators, as well as potential drug targets for a range of human diseases. Chemical tools for selectively targeting the activities of individual PTPs would help to elucidate PTP signaling roles and potentially expedite the validation of PTPs as therapeutic targets. We have recently reported a novel strategy for the design of non-natural allosteric-inhibition sites in PTPs, in which a tricysteine moiety is engineered within the PTP catalytic domain at a conserved location outside of the active site. Introduction of the tricysteine motif, which does not exist in any wild-type PTP, serves to sensitize target PTPs to inhibition by a biarsenical compound, providing a generalizable strategy for the generation of allosterically sensitized (as) PTPs. Here we show that the potency, selectivity, and kinetics of asPTP inhibition can be significantly improved by exploring the inhibitory action of a range of biarsenical compounds that differ in interarsenical distance, steric bulk, and electronic structure. By investigating the inhibitor sensitivities of five asPTPs from four different subfamilies, we have found that asPTP catalytic domains can be broadly divided into two groups: one that is most potently inhibited by biarsenical compounds with large interarsenical distances, such as AsCy3-EDT2, and one that is most potently inhibited by compounds with relatively small interarsenical distances, such as FlAsH-EDT2. Moreover, we show that a tetrachlorinated derivative of FlAsH-EDT2, Cl4FlAsH-EDT2, targets asPTPs significantly more potently than the parent compound, both in vitro and in asPTP-expressing cells. Our results show that biarsenicals with altered interarsenical distances and electronic properties are important tools for optimizing the control of asPTP activity and, more broadly, suggest that diversification of biarsenical libraries can serve to increase the efficacy of these compounds in targeted control of protein function.  相似文献   

16.
Src homology 2 (SH2) domains mediate protein-protein interactions by recognizing short phosphotyrosyl (pY) peptide motifs in their partner proteins. Protein tyrosine phosphatases (PTPs) catalyze the dephosphorylation of pY proteins, counteracting the protein tyrosine kinases. Both types of proteins exhibit primary sequence specificity, which plays at least a partial role in dictating their physiological interacting partners or substrates. A combinatorial peptide library method has been developed to systematically assess the sequence specificity of SH2 domains and PTPs. A "one-bead-one-compound" pY peptide library is synthesized on 90-microm TentaGel beads and screened against an SH2 domain or PTP of interest for binding or catalysis. The beads that carry the tightest binding sequences against the SH2 domain or the most efficient substrates of the PTP are selected by an enzyme-linked assay and individually sequenced by a partial Edman degradation/mass spectrometry technique. The combinatorial method has been applied to determine the sequence specificity of 8 SH2 domains from Src and Csk kinases, adaptor protein Grb2, and phosphatases SHP-1, SHP-2, and SHIP1 and a prototypical PTP, PTP1B.  相似文献   

17.
The LAR family protein tyrosine phosphatases (PTPs), including LAR, PTPδ, and PTPς, are transmembrane proteins composed of a cell adhesion molecule-like ectodomain and two cytoplasmic catalytic domains: active D1 and inactive D2. We performed a yeast two-hybrid screen with the first catalytic domain of PTPς (PTPς-D1) as bait to identify interacting regulatory proteins. Using this screen, we identified the second catalytic domain of PTPδ (PTPδ-D2) as an interactor of PTPς-D1. Both yeast two-hybrid binding assays and coprecipitation from mammalian cells revealed strong binding between PTPς-D1 and PTPδ-D2, an association which required the presence of the wedge sequence in PTPς-D1, a sequence recently shown to mediate D1-D1 homodimerization in the phosphatase RPTPα. This interaction was not reciprocal, as PTPδ-D1 did not bind PTPς-D2. Addition of a glutathione S-transferase (GST)–PTPδ-D2 fusion protein (but not GST alone) to GST–PTPς-D1 led to ~50% inhibition of the catalytic activity of PTPς-D1, as determined by an in vitro phosphatase assay against p-nitrophenylphosphate. A similar inhibition of PTPς-D1 activity was obtained with coimmunoprecipitated PTPδ-D2. Interestingly, the second catalytic domains of LAR (LAR-D2) and PTPς (PTPς-D2), very similar in sequence to PTPδ-D2, bound poorly to PTPς-D1. PTPδ-D1 and LAR-D1 were also able to bind PTPδ-D2, but more weakly than PTPς-D1, with a binding hierarchy of PTPς-D1>>PTPδ-D1>LAR-D1. These results suggest that association between PTPς-D1 and PTPδ-D2, possibly via receptor heterodimerization, provides a negative regulatory function and that the second catalytic domains of this and likely other receptor PTPs, which are often inactive, may function instead to regulate the activity of the first catalytic domains.  相似文献   

18.
The presence of two protein-tyrosine phosphatase (PTP) domains is a striking feature in most transmembrane receptor PTPs (RPTPs). The function of the generally inactive membrane-distal PTP domain (RPTP-D2) is unknown. Here we report that an intramolecular interaction between the spacer region (Sp) and the C-terminus in RPTPalpha prohibited intermolecular interactions. Interestingly, stress factors such as H(2)O(2), UV and heat shock induced reversible, free radical-dependent, intermolecular interactions between RPTPalpha and RPTPalpha-SpD2, suggesting an inducible switch in conformation and binding. The catalytic site cysteine of RPTPalpha-SpD2, Cys723, was required for the H(2)O(2) effect on RPTPalpha. H(2)O(2) induced a rapid, reversible, Cys723-dependent conformational change in vivo, as detected by fluorescence resonance energy transfer, with cyan fluorescent protein (CFP) and yellow fluorescent protein (YFP) flanking RPTPalpha-SpD2 in a single chimeric protein. Importantly, H(2)O(2) treatment stabilized RPTPalpha dimers, resulting in inactivation. We propose a model in which oxidative stress induces a conformational change in RPTPalpha-D2, leading to stabilization of RPTPalpha dimers, and thus to inhibition of RPTPalpha activity.  相似文献   

19.
Protein-tyrosine phosphatases (PTPs) are important signaling enzymes that have emerged within the last decade as a new class of drug targets. It has previously been shown that suramin is a potent, reversible, and competitive inhibitor of PTP1B and Yersinia PTP (YopH). We therefore screened 45 suramin analogs against a panel of seven PTPs, including PTP1B, YopH, CD45, Cdc25A, VHR, PTPalpha, and LAR, to identify compounds with improved potency and specificity. Of the 45 compounds, we found 11 to have inhibitory potency comparable or significantly improved relative to suramin. We also found suramin to be a potent inhibitor (IC(50) = 1.5 microm) of Cdc25A, a phosphatase that mediates cell cycle progression and a potential target for cancer therapy. In addition we also found three other compounds, NF201, NF336, and NF339, to be potent (IC(50) < 5 microm) and specific (at least 20-30-fold specificity with respect to the other human PTPs tested) inhibitors of Cdc25A. Significantly, we found two potent and specific inhibitors, NF250 and NF290, for YopH, the phosphatase that is an essential virulence factor for bubonic plague. Two of the compounds tested, NF504 and NF506, had significantly improved potency as PTP inhibitors for all phosphatases tested except for LAR and PTPalpha. Surprisingly, we found that a significant number of these compounds activated the receptor-like phosphatases, PTPalpha and LAR. In further characterizing this activation phenomenon, we reveal a novel role for the membrane-distal cytoplasmic PTP domain (D2) of PTPalpha: the direct intramolecular regulation of the activity of the membrane-proximal cytoplasmic PTP domain (D1). Binding of certain of these compounds to PTPalpha disrupts D1-D2 basal state contacts and allows new contacts to occur between D1 and D2, which activates D1 by as much as 12-14-fold when these contacts are optimized.  相似文献   

20.
The receptor-type protein tyrosine phosphatases (RPTPs) are integral membrane proteins composed of extracellular adhesion molecule-like domains, a single transmembrane domain, and a cytoplasmic domain. The cytoplasmic domain consists of tandem PTP domains, of which the D1 domain is enzymatically active. RPTPkappa is a member of the R2A/IIb subfamily of RPTPs along with RPTPmu, RPTPrho, and RPTPlambda. Here, we have determined the crystal structure of catalytically active, monomeric D1 domain of RPTPkappa at 1.9 A. Structural comparison with other PTP family members indicates an overall classical PTP architecture of twisted mixed beta-sheets flanked by alpha-helices, in which the catalytically important WPD loop is in an unhindered open conformation. Though the residues forming the dimeric interface in the RPTPmu structure are all conserved, they are not involved in the protein-protein interaction in RPTPkappa. The N-terminal beta-strand, formed by betax association with betay, is conserved only in RPTPs but not in cytosolic PTPs, and this feature is conserved in the RPTPkappa structure forming a beta-strand. Analytical ultracentrifugation studies show that the presence of reducing agents and higher ionic strength are necessary to maintain RPTPkappa as a monomer. In this family the crystal structure of catalytically active RPTPmu D1 was solved as a dimer, but the dimerization was proposed to be a consequence of crystallization since the protein was monomeric in solution. In agreement, we show that RPTPkappa is monomeric in solution and crystal structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号