共查询到20条相似文献,搜索用时 15 毫秒
1.
It has been found that the protonophoric specific uncoupling activity of palmitic acid in rat liver mitochondria does not change as its concentration increases from 5 to 40 μM. Under these conditions, the component of the specific uncoupling activity that describes the participation in uncoupling of the ADP/ATP antiporter (sensitive to carboxyatractylate) increases, and the component of specific uncoupling activity that characterizes the participation in the uncoupling of the aspartate/glutamate antiporter (sensitive to glutamate) decreases by the same value. A kinetic model of the fatty acid-induced uncoupling activity with the participation of ADP/ATP and aspartate/glutamate antiporters has been developed. According to the model, these carriers can exist in two forms: active, i.e., participating in the uncoupling, and inactive. The interaction of a fatty acid with the regulator site of the ADP/ATP antiporter translates it from the inactive to the active form, while the interaction of a fatty acid with the regulator site of the aspartate/glutamate antiporter, on the contrary, translates it from the active form to inactive. The velocity of transport of a fatty acid anion by the antiporter from the internal monolayer of the inner membrane to the external monolayer is proportional to the product of the concentration of the fatty acid and the active form of this carrier. A good conformity of the model to experimentally obtained data is shown provided that (a) ADP/ATP and aspartate/glutamate antiporters, being completely in active state, transfer fatty acid anions with the same velocity; (b) the equilibrium dissociation constants of a complex of the carrier with the fatty acid in these antiporters are equal. 相似文献
2.
3.
Study of the uncoupling effect of various saturated fatty acids (from caprylic to palmitic) revealed that the glutamate recoupling effect was more pronounced in the case of short chain fatty acids, whereas recoupling of mitochondria by carboxyatractylate was more effective in the case of long chain fatty acids. The overall recoupling effect, however, did not depend on the fatty acid chain length. Besides carboxyatractylate, glutamate and aspartate also exhibited a recoupling effect under uncoupling by lauryl sulfate. The uncoupling effect of lauryl sulfate was markedly weaker in the presence of DNP or laurate (but not FCCP) which were added in concentrations causing twofold increase in mitochondrial respiration. In the presence of lauryl sulfate the uncoupling action of laurate and DNP was insensitive to carboxyatractylate and glutamate. With laurate and DNP as uncouplers increasing the pH from 7.0 to 7.8 potentiated the recoupling effect of carboxyatractylate and attenuated the recoupling effect of glutamate. In the case of uncoupling by lauryl sulfate similar changes in the recoupling effect of carboxyatractylate and glutamate were observed only in the presence of 10 microM tetraphenylphosphonium. Thus, when uncoupling is induced by fatty acids, DNP, and lauryl sulfate, the ADP/ATP and aspartate/glutamate antiporters function as two parallel and independent pathways for mitochondrial membrane potential dissipation. We suggest that the role of the ADP/ATP antiporter in uncoupling includes proton capture from the intermembrane space with subsequent protonation of uncoupler anions, their transport as neutral molecules on the internal side, and deprotonation followed by proton release into the matrix and transfer of the uncoupler anion in the reverse direction. During uncoupling the aspartate/glutamate antiporter cyclically carries the uncoupler anion with simultaneous proton transfer from the intermembrane space into the matrix. 相似文献
4.
V. N. Samartsev O. V. Kozhina E. I. Marchik L. V. Shamagulova 《Biochemistry (Moscow) Supplemental Series A: Membrane and Cell Biology》2011,5(2):162-169
In liver mitochondria, the phosphate carrier is involved in protonophoric uncoupling effect of fatty acids together with ADP/ATP and aspartate/glutamate antiporters (Samartsev et al. 2003. Biochemistry (Moscow). 68, 618–629). Liver mitochondria depleted of endogenous oxidation substrates (exhausted mitochondria) have been used in the present work. In these mitochondria, like in the intact liver mitochondria, the specific inhibitor of ADP/ATP antiporter (carboxyatractylate) and the substrate of aspartate/glutamate antiporter (aspartate) suppress the uncoupling activity of palmitic acid. It is shown that in exhausted mitochondria the substrate of phosphate carrier (inorganic phosphate) and its nonspecific inhibitor mersalyl partially suppress palmitic acid-induced uncoupling due to decrease in the component of uncoupling activity sensitive to carboxyatractylate and aspartate. In the presence of inorganic phosphate or mersalyl, carboxyatractylate and aspartate added separately subsequent to palmitic acid do not suppress its uncoupling activity. They are effective only when added jointly. In the presence of thiourea or pyruvate, such effects of inorganic phosphate and mersalyl are not observed. It is supposed that in the presence of inorganic phosphate or mersalyl and under the condition of oxidation of critical SH-groups in mitochondria, the phosphate carrier, ADP/ATP antiporter, and aspartate/glutamate antiporter are involved in uncoupling function together with the general fatty acid pool as an uncoupling complex. The role of phosphate carrier in this complex may consist in facilitation of lateral transfer of the fatty acid molecules from one antiporter to another. 相似文献
5.
O. V. Kozhina V. N. Samartsev 《Biochemistry (Moscow) Supplemental Series A: Membrane and Cell Biology》2010,4(2):196-199
It is shown that upon oxidation of succinate in the presence of rotenone and antioxidant Trolox (or pyruvate) in liver mitochondria
of mature rats (9–12-month old) the respiration stimulated by palmitate is suppressed by ADP (the substrate of ADP/ATP-antiporter)
and aspartate (the substrate of aspartate/glutamate antiporter). However, it was found that in the presence of the oxidative
agent tert-butylhydroperoxide neither ADP nor aspartate is effective even at their joint action. In the presence of ADP and aspartate,
uncoupling activity of palmitate is minimal, since the lipid peroxidation is inhibited by Trolox or pyruvate, and rises as
the accumulation rate of conjugated dienes increases, reaching the maximal value at the oxidative stress caused by tert-butylhydroperoxide. In liver mitochondria of senile rats (22–26-month old) at high intensity of lipid peroxidation, ADP and
aspartate do not affect the uncoupling activity of palmitate (Samartsev and Kozhina, 2008, Biochemistry (Mosc.), vol. 73, no. 7, pp. 783–790). Comparative studies have shown that in liver mitochondria of mature and senile rats at the
similar accumulation rate of the conjugated dienes in the presence of ADP and aspartate, the uncoupling activity of palmitate
reaches the same level relative to the maximal activity. We conclude that an enhancement of free radical reactions and lipid
peroxidation in liver mitochondria can result in an increase of protonophore uncoupling activity of fatty acids with the involvement
of ADP/ATP- and aspartate/glutamate antiporters due to the suppression of the ability of physiological substrates of these
carriers of ADP and aspartate to inhibit the uncoupling process. 相似文献
6.
Palmitate-induced uncoupling, which involves ADP/ATP and aspartate/glutamate antiporters, has been studied in liver mitochondria of old rats (22-26 months) under conditions of lipid peroxidation and inhibition of oxidative stress by antioxidants--thiourea, Trolox, and ionol. It has been shown that in liver mitochondria of old rats in the absence of antioxidants and under conditions of overproduction of conjugated dienes, the protonophoric uncoupling activity of palmitate is not suppressed by either carboxyatractylate or aspartate used separately. However, the combination of carboxyatractylate and aspartate decreased uncoupling activity of palmitate by 81%. In this case, palmitate-induced uncoupling is limited by a stage insensitive to both carboxyatractylate and aspartate. In the presence of antioxidants, the palmitate-induced protonophoric uncoupling activity is suppressed by either carboxyatractylate or aspartate used separately. Under these conditions, palmitate-induced uncoupling is limited by a stage sensitive to carboxyatractylate (ADP/ATP antiporter) or aspartate (aspartate/glutamate antiporter). In the absence of antioxidants, the uncoupling activity of palmitate is not suppressed by ADP either in the absence or in the presence of aspartate. However, in the presence of thiourea, Trolox, or ionol ADP decreased the uncoupling activity of palmitate by 38%. It is concluded that in liver mitochondria of old rats the development of oxidative stress in the presence of physiological substrates of ADP/ATP and aspartate/glutamate antiporters (ADP and aspartate) results in an increase of the protonophoric uncoupling activity of palmitate. 相似文献
7.
In liver mitochondria fatty acids act as protonophoric uncouplers mainly with participation of internal membrane protein carriers — ADP/ATP and aspartate/glutamate antiporters. In this study the values of recoupling effects of carboxyatractylate and glutamate (or aspartate) were used to assess the degree of participation of ADP/ATP and aspartate/glutamate antiporters in uncoupling activity of fatty acids. These values were determined from the ability of these recoupling agents to suppress the respiration stimulated by fatty acids and to raise the membrane potential reduced by fatty acids. Increase in palmitic and lauric acid concentration was shown to increase the degree of participation of ADP/ATP antiporter and to decrease the degree of participation of aspartate/glutamate antiporter in uncoupling to the same extent. These data suggest that fatty acids are not only inducers of uncoupling of oxidative phosphorylation, but that they also act the regulators of this process. The linear dependence of carboxyatractylate and glutamate recoupling effects ratio on palmitic and lauric acids concentration was established. Comparison of the effects of fatty acids (palmitic, myristic, lauric, capric, and caprylic having 16, 14, 12, 10, and 8 carbon atoms, respectively) has shown that, as the hydrophobicity of fatty acids decreases, the effectiveness decreases to a greater degree than the respective values of their specific uncoupling activity. The action of fatty acids as regulators of uncoupling is supposed to consist of activation of transport of their anions from the internal to the external monolayer of the internal membrane with participation of ADP/ATP antiporter and, at the same time, in inhibition of this process with the participation of aspartate/glutamate antiporter. 相似文献
8.
The influence of the positively charged amphiphilic compound cetyltrimethyl ammonium bromide (CTAB) on palmitate- and laurate-induced uncoupling and on carboxyatractylate and glutamate recoupling effects in liver mitochondria have been studied. CTAB (40 M) in the presence of 3 mM MgCl2 had little (if any) effect on the palmitic acid-stimulated respiration of mitochondria; the glutamate recoupling effect increased, and the carboxyatractylate recoupling effect decreased to the same degree with the combined effect (about 80%) remaining unchanged. Thus, CTAB decreases the ADP/ATP antiporter involvement and increases to the same extent the aspartate/glutamate antiporter involvement in the fatty acid-induced uncoupling. The carboxyatractylate and glutamate recoupling effects were less pH dependent in the presence of CTAB than in its absence. These data could be interpreted with the assumption that fatty acid anions are more accessible to the ADP/ATP antiporter and their neutral forms are more accessible to the aspartate/glutamate antiporter, and that CTAB changes the relative anion carrier involvement in the fatty acid-induced uncoupling as it forms neutral complexes with fatty acid anions. 相似文献
9.
The effect of acetoacetate on palmitate-induced uncoupling with the involvement of ADP/ATP antiporter and aspartate/glutamate
antiporter has been studied in liver mitochondria. The incubation of mitochondria with acetoacetate during succinate oxidation
in the presence of rotenone, oligomycin, and EGTA suppresses the accumulation of conjugated dienes. This is considered as
a display of antioxidant effect of acetoacetate. Under these conditions, acetoacetate does not influence the respiration of
mitochondria in the absence or presence of palmitate but eliminates the ability of carboxyatractylate or aspartate separately
to suppress the uncoupling effect of this fatty acid. The action of acetoacetate is eliminated by β-hydroxybutyrate or thiourea,
but not by the antioxidant Trolox. In the absence of acetoacetate, the palmitate-induced uncoupling is limited by a stage
sensitive to carboxyatractylate (ADP/ATP antiporter) or aspartate (aspartate/glutamate antiporter); in its presence, it is
limited by a stage insensitive to the effect of these agents. In the presence of Trolox, ADP suppresses the uncoupling action
of palmitate to the same degree as carboxyatractylate. Under these conditions, acetoacetate eliminates the recoupling effects
of ADP and aspartate, including their joint action. This effect of acetoacetate is eliminated by β-hydroxybutyrate or thiourea.
It is supposed that the stimulating effect of acetoacetate is caused both by increase in the rate of transfer of fatty acid
anion from the inner monolayer of the membrane to the outer one, which involves the ADP/ATP antiporter and aspartate/glutamate
antiporter, and by elimination of the ability of ADP to inhibit this transport. Under conditions of excessive production of
reactive oxygen species in mitochondria at a high membrane potential and in the presence of small amounts of fatty acids,
such effect of acetoacetate can be considered as one of the mechanisms of antioxidant protection. 相似文献
10.
N N Brustovetski? Z G Amerkhanov M V Egorova E N Mokhova V P Skulachev 《Biokhimii?a (Moscow, Russia)》1991,56(5):947-953
The parameters of energy coupling of mitochondria isolated from the livers of hibernating and awakening gophers were studied. The ATP/ADP-antiporter inhibitor carboxyatractylate slowed down the respiration rate, increased delta psi and decreased the ionic conductivity of the inner mitochondrial membrane as measured by the rate of the delta psi decline after addition of cyanide (in the presence of oligomycin and EGTA). A similar effect was produced by BSA, carboxyatractylate being fairly ineffective in the presence of BSA. In hibernating gophers the maximal rate of the uncoupled respiration and the ionic conductivity of the inner mitochondrial membrane were markedly decreased as compared with awakening gophers. The data obtained suggest that in awakening animals fatty acids induce the uncoupling of oxidative phosphorylation by the ATP/ADP-antiporter, this process being simultaneous with the activation of the respiratory chain. 相似文献
11.
The ATP/ADP-antiporter is involved in the uncoupling effect of fatty acids on mitochondria 总被引:3,自引:0,他引:3
T O Andreyev AYuBondareva V I Dedukhova E N Mokhova V P Skulachev L M Tsofina N I Volkov T V Vygodina 《European journal of biochemistry》1989,182(3):585-592
The ATP/ADP-antiporter inhibitors and the substrate ADP suppress the uncoupling effect induced by low (10-20 microM) concentrations of palmitate in mitochondria from skeletal muscle and liver. The inhibitors and ADP are found to (a) inhibit the palmitate-stimulated respiration in the controlled state and (b) increase the membrane potential lowered by palmitate. The degree of efficiency decreases in the order: carboxyatractylate (CAtr) greater than ADP greater than bongkrekic acid, atractylate. GDP is ineffective, Mg.ADP is of much smaller effect, whereas ATP is effective at much higher concentration than is ADP. Inhibitor concentrations, which maximally suppress the palmitate-stimulated respiration, correspond to those needed for arresting the state 3 respiration. The extent of the CAtr-sensitive stimulation of respiration by palmitate has been found to decrease with an increase in palmitate concentration. Stimulation of the controlled respiration by p-trifluoromethoxycarbonylcyanide phenylhydrozone (FCCP) and gramicidin D at any concentrations of these uncouplers is CAtr-insensitive, whereas that caused by a low concentrations of 2,4-dinitrophenol and dodecyl sulfate is inhibited by CAtr. The above effect of palmitate develops immediately after addition of the fatty acid. It is resistant to EGTA as well as to inhibitors of phospholipase (nupercain) and of lipid peroxidation (ionol). Moreover, palmitate accelerates spontaneous release of the respiratory control, developing in rat liver mitochondria under certain conditions. This effect takes several minutes, being sensitive to EGTA, nupercain and ionol. Like the fast uncoupling, this slow effect is inhibited by ADP but CAtr and atractylate are stimulatory rather than inhibitory. In artificial planar phospholipid membrane, palmitate does not increase the membrane conductance, FCCP increases it strongly and dinitrophenol only slightly. In cytochrome oxidase proteoliposomes, FCCP, gramicidin and dinitrophenol (less effectively) lower, whereas palmitate enhances the cytochrome-oxidase-generated membrane potential. In this system, monensin substitutes for palmitate. It is concluded that the ATP/ADP antiporter is somehow involved in the uncoupling effect caused by low concentrations of palmitate and, partially, of dinitrophenol, whereas uncoupling produced by FCCP and gramicidin is due to their action on the phospholipid part of the mitochondrial membrane. A possible mechanism of this effect is discussed. 相似文献
12.
P Sch?nfeld 《FEBS letters》1992,303(2-3):190-192
The action of such membrane-permeant cations as tetraphenyl phosphonium and dibenzyldimethyl ammonium upon fatty acid-uncoupled respiration has been studied with oligomycin-inhibited rat liver mitochondria. Both cations enhance fatty acid-stimulated respiration. This synergistic effect is explained by a facilitated permeation of the fatty acid anion across the inner membrane due to an ion-pair complex. It is concluded that fatty acid uncoupling in rat liver mitochondria is limited by fatty acid anion permeation. 相似文献
13.
We show that Ca2+ loading of mitochondria substantially augments the myristate-induced decrease in the transmembrane electric potential difference (deltapsi). Such a Ca2+ action is without effect on the respiration rate and is not accompanied by the high-amplitude swelling when low concentrations of Ca2+ and myristate are used. The myristate-induced deltapsi decrease is prevented and reversed by cyclosporin A (CsA); the decrease is prevented and transiently reversed by nigericin. To explain these effects, we suggest that myristate induces opening of the mitochondrial permeability transition pore at a low-conductance state. Addition of carboxyatractylate (CAtr) after myristate induces the CsA-sensitive uncoupling, but when added after myristate and CsA, CAtr produces a decrease in deltapsi, if the interval between myristate and CsA addition is sufficiently long. The CAtr effect is completely reversed by EGTA and transiently reversed by nigericin. This suggests that the ADP/ATP-antiporter participates in the CsA-sensitive uncoupling when present as a pore complex constituent. ADP/ATP-antiporter that does not take part in the pore complex formation is involved in the CsA-insensitive uncoupling. 相似文献
14.
15.
Changes of the extra- and intramitochondrial ATP/ADP ratios as a function of the respiratory state were measured in incubations with rat liver mitochondria. ATPase or creatine/creatine kinase was used to change the extramitochondrial ATP/ADP ratio; the separation of the mitochondrial pellet was performed by a Millipore filtration technique. Under all conditions tested, the intramitochondrial ratio changed in the same direction as the extramitochondrial one, except in the presence of atractylate where this correlation was not observed. Furthermore, it could be shown that the oxygen uptake and pyruvate carboxylase activity correlated with the intramitochondrial ATP/ADP ratio and not with the extramitochondrial one. These results do not support the proposal that the adenine nucleotide translocase is rate limiting for respiration. 相似文献
16.
17.
Changes of the extra- and intramitochondrial ATP/ADP ratios as a function of the respiratory state were measured in incubations with rat liver mitochondria. ATPase or creatine/creatine kinase was used to change the extramitochondrial ATP/ADP ratio; the separation of the mitochondrial pellet was performed by a Millipore filtration technique. Under all conditions tested, the intramitochondrial ratio changed in the same direction as the extramitochondrial one, except in the presence of atractylate where this correlation was not observed. Furthermore, it could be shown that the oxygen uptake and pyruvate carboxylase activity correlated with the intramitochondrial ATP/ADP ratio and not with the extramitochondrial one. These results do not support the proposal that the adenine nucleotide translocase is rate limiting for respiration. 相似文献
18.
The ADP/ATP carrier was studied by a fluorescent substrate, formycin diphosphate which is the only fluorescent ADP analogue to bind. Its low quantum yield, short decay time and spectral overlap with tryptophan has as yet prevented its wider use.By incorporating fluorescent acceptors of formycin diphosphate fluorescence, anthracene-maleimide and vinylanthracene, into the membrane, these difficulties were circumvented. Only bound formycin diphosphate transfers energy to the probes so that the secondary emission of these probes is a measure for membrane-bound formycin diphosphate.The fluorescent transfer is inhibited by ADP, bongkrekate and carboxy-atractylate whether added before or after incubation of formycin diphosphate showing that only binding to the adenine nucleotide carrier is measured. It also shows directly that the earlier demonstrated ADP fixation by bongkrekate is indeed a displacement into the matrix.The fluorescence decay time of the bound formycin diphosphate is measured as 1.95 ns compared to 0.95 ns of the free formycin diphosphate, indicating that formycin diphosphate is bound at the carrier in a non-polar environment.The depolarization decay time was found to be larger than 15 ns, indicating that carrier-bound formycin diphosphate is immobile within this time period. 相似文献
19.
Temperature dependence of ADP/ATP translocation in mitochondria 总被引:1,自引:0,他引:1
The temperature dependence of the adenine nucleotide exchange in mitochondria has been determined by employing a rapid mixing, quenching and sampling apparatus and the inhibitor quench-back exchange method. Thus the exchange is resolved down to 0.1 s. Rates are evaluated from accumulating the time-dependent progress at about 10 points. The exchange rate in liver mitochondria was determined from -10 degrees C to + 10 degrees C in the presence of 20% glycol, from 0 degrees C to 25 degrees C, and from 20 degrees C to 40 degrees C under partial inhibition by carboxyatractylate. The total range between -10 degrees C to + 40 degrees C has only one temperature break at 13 degrees C. From the Arrhenius plot between -10 degrees C to + 13 degrees C, EA approximately equal to 140 kJ and above 13 degrees C, EA approximately equal to 56 kJ is evaluated, corresponding to a Q10 of 8 and 2 respectively. In beef heart mitochondria the exchange rate was measured between 0 degrees C and 20 degrees C, and between 15 degrees C and 30 degrees C under partial inhibition with carboxyatractylate. There is a temperature break around 14 degrees C with EA approximately equal to 143 kJ between 0 degrees C and 14 degrees C and EA approximately equal to 60 kJ from 15 degrees C to 30 degrees C. The extrapolated translocation rates at 37 degrees C are 500 and 1800 mumol min-1 (g protein)-1 for rat liver and for beef heart mitochondria respectively. The temperature break is suggested to reflect a conformation change since there is no reversed break at low temperature, the temperature break changes in sonic particles and no lipid phase transition at 14 degrees C in mitochondria has been reported. 相似文献
20.
Chromatographic analyses have indicated that aspartate and glutamate constitute from 50–70% of the total free amino acids in freshly isolated mitochondria. Radioactive tracer studies indicate that while the l-isomers of glutamate and aspartate are rapidly accumulated by mitochondria, the d-isomers of these amino acids do not penetrate the mitochondrial membrane. The action of two inhibitory compounds, 1-fluoro-2,4-dinitrobenzene (Sanger's reagent) and tannic acid, on the transport of l-glutamate and l-aspartate has been examined. A marked inhibition of l-glutamate transfer by 1-fluoro-2,4-dinitrobenzene is observed. A corresponding effect on the transport of either l-aspartate or the anionic substrate, succinate has not been found. Tannic acid, an agent previously known to inhibit certain carrier-mediated solute fluxes in mitochondria, is shown also to inhibit the uptake of both l-glutamate and l-aspartate. These findings are consistent with the view that the mitochondrial membranes of rat liver cells contain distinct, stereospecific transport mechanisms for aspartate and glutamate. 相似文献