首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The development of a reproducible model system for the study of hepatitis C virus (HCV) infection has the potential to significantly enhance the study of virus-host interactions and provide future direction for modeling the pathogenesis of HCV. While there are studies describing global gene expression changes associated with HCV infection, changes in the proteome have not been characterized. We report the first large-scale proteome analysis of the highly permissive Huh-7.5 cell line containing a full-length HCV replicon. We detected >4,200 proteins in this cell line, including HCV replicon proteins, using multidimensional liquid chromatographic (LC) separations coupled to mass spectrometry. Consistent with the literature, a comparison of HCV replicon-positive and -negative Huh-7.5 cells identified expression changes of proteins involved in lipid metabolism. We extended these analyses to liver biopsy material from HCV-infected patients where a total of >1,500 proteins were detected from only 2 mug of liver biopsy protein digest using the Huh-7.5 protein database and the accurate mass and time tag strategy. These findings demonstrate the utility of multidimensional proteome analysis of the HCV replicon model system for assisting in the determination of proteins/pathways affected by HCV infection. Our ability to extend these analyses to the highly complex proteome of small liver biopsies with limiting protein yields offers the unique opportunity to begin evaluating the clinical significance of protein expression changes associated with HCV infection.  相似文献   

2.
During infection by herpes simplex virus type‐1 (HSV‐1) the host cell undergoes widespread changes in gene expression and morphology in response to viral replication and release. However, relatively little is known about the specific proteome changes that occur during the early stages of HSV‐1 replication prior to the global damaging effects of virion maturation and egress. To investigate pathways that may be activated or utilised during the early stages of HSV‐1 replication, 2‐DE and LC‐MS/MS were used to identify cellular proteome changes at 6 h post infection. Comparative analysis of multiple gels representing whole cell extracts from mock‐ and HSV‐1‐infected HEp‐2 cells revealed a total of 103 protein spot changes. Of these, 63 were up‐regulated and 40 down‐regulated in response to infection. Changes in selected candidate proteins were verified by Western blot analysis and their respective cellular localisations analysed by confocal microscopy. We have identified differential regulation and modification of proteins with key roles in diverse cellular pathways, including DNA replication, chromatin remodelling, mRNA stability and the ER stress response. This work represents the first global comparative analysis of HSV‐1 infected cells and provides an important insight into host cell proteome changes during the early stages of HSV‐1 infection.  相似文献   

3.
4.
The characterisation of fish blood proteomes is important for comparative studies of seminal and blood proteins as well as for the analysis of fish immune mechanisms and pathways. In this study, LC‐MS/MS and 2D‐DIGE were applied to compare rainbow trout seminal (SP) and blood plasma (BP) proteomes. The 54 differentially abundant proteins identified in SP are involved in a variety of signalling pathways, including protein ubiquitination, liver X receptor/retinoid X receptor (LXR/RXR) and farnesoid X receptor activation, cell cycle and acute phase signalling. These findings may indicate the prevalence of acute phase signalling pathways in trout SP, and its essential role in protecting spermatozoa and reproductive tissues. Our study provides the first in‐depth analysis of the trout BP proteome, with a total of 119 proteins identified. The major proteins of rainbow trout BP were recognised as acute phase proteins. Analysis of BP proteins indicated that acute phase response signalling, the complement system, liver X receptor/retinoid X receptor and farnesoid X receptor activation and the coagulation system are the top canonical pathways. This study enhances knowledge of the blood origin of trout SP proteins and understanding of fish reproductive biology. Our results provide new insight into blood proteins specifically important for fish physiology and innate immunity. The mass spectrometry data are available via ProteomeXchange with the identifier PXD005988 and https://doi.org/10.6019/PXD005988 .  相似文献   

5.
Dilated cardiomyopathy (DCM) is characterized by contractile dysfunction leading to heart failure. The molecular changes in the human heart associated with this disease have so far mostly been addressed at the gene expression level and only a few studies have analyzed global changes in the myocardial proteome. Therefore, our objective was to investigate the changes in the proteome in patients suffering from inflammatory DCM (iDCM) and chronic viral infection by a comprehensive quantitative approach. Comparative proteomic profiling of endomyocardial biopsies (EMB) from 10 patients with iDCM (left ventricular ejection fraction <40%, symptoms of heart failure) as well as 7 controls with normal left ventricular function and histology was performed by label-free proteome analysis (LC-MS/MS). Mass spectrometric data were analyzed with the Rosetta Elucidator software package. The analysis covered a total of 485 proteins. Among the 174 proteins displaying at least a 1.3-fold change in intensity (p < 0.05), major changes were observed for mitochondrial and cytoskeletal proteins, but also metabolic pathways were affected in iDCM compared to controls. In iDCM patients, we observed decreased levels of mitochondrial proteins involved in oxidative phosphorylation and tricarboxylic acid cycle. Furthermore, deregulation of proteins of carbohydrate metabolism, the actin cytoskeleton, and extracellular matrix remodeling was observed. Proteomic observations were confirmed by gene expression data and immunohistochemistry (e.g. collagen I and VI). This study demonstrates that label-free, mass spectrometry-centered approaches can identify disease dependent alterations in the proteome from small tissue samples such as endomyocardial biopsies. Thus, this technique might allow better disease characterization and may be a valuable tool in potential clinical proteomic studies.  相似文献   

6.
Small molecule inhibitors targeting CDK1/CDK2 have been clinically proven effective against a variety of tumors, albeit at the cost of profound off target toxicities. To separate potential therapeutic from toxic effects, we selectively knocked down CDK1 or CDK2 in p53 mutated HACAT cells by siRNA silencing. Using dynamic, cell cycle wide proteome arrays, we observed minor changes in overall abundance of proteins critically involved in cell cycle transition despite profound G2/M or G1/S arrest, respectively. Employing phospho site specific analyses, we identified uncoupled mitogenic, yet pro-apoptotic signaling from counter balancing anti-apoptotic activity in CDK2 disrupted cells. Moreover, a crucial role of CDK2 activity in early serum response was observed, extending well-established roles of CDKs outside their cell cycle regulating functions. In contrast, disruption of CDK1 only marginally affected phosphorylation events of crucial signaling nodes prior to G2/S transition. The data presented here suggest that the temporal separation of pro- and anti-apoptotic pathways by selective inhibition of CDK2 disrupts coherent signaling modules and may synergize with anti-proliferative drugs, averting toxic side effects from CDK1 inhibition.  相似文献   

7.
Mineral deficiency limits crop production in most soils and in Asia alone, about 50% of rice lands are phosphorous deficient. In an attempt to determine the mechanism of rice adaptation to phosphorous deficiency, changes in proteome patterns associated with phosphorous deficiency have been investigated. We analyzed the parental line Nipponbare in comparison to its near isogenic line (NIL6‐4) carrying a major phosphorous uptake QTL (Pup1) on chromosome 12. Using 2‐DE, the proteome pattern of roots grown under 1 and 100 μM phosphorous were compared. Out of 669 proteins reproducibly detected on root 2‐DE gels, 32 proteins showed significant changes in the two genotypes. Of them, 17 proteins showed different responses in two genotypes under stress condition. MS resulted in identification of 26 proteins involved in major phosphorous deficiency adaptation pathways including reactive oxygen scavenging, citric acid cycle, signal transduction, and plant defense responses as well as proteins with unknown function. Our results highlighted a coordinated response in NIL in response to phosphorous deficiency which may confer higher adaptation to nutrient deficiency.  相似文献   

8.
Over activity of cannabinoid receptor type 1 (CB1R) plays a key role in increasing the incidence of obesity‐induced non‐alcoholic fatty liver disease. Tissue proteome analysis has been applied to investigate the bioinformatics regarding the mode of action and therapeutic mechanism. The aim of this study was to explore the potential pathways altered with CB1R in obesity‐induced fatty liver. Male C57BL/6 mice were fed either a standard chow diet (STD) or a high‐fat diet (HFD) with or without 1‐week treatment of CB1R inverse agonist AM251 at 5 mg/kg. Then, liver tissues were harvested for 2DE analysis and protein profiles were identified by using MALDI‐MS. Results showed that eight of significantly altered protein spots at the level of changes > twofold were overlapped among the three groups, naming major urinary protein 1, ATP synthase subunit β, glucosamine‐fructose‐6‐phosphate aminotransferase 1, zine finger protein 2, s‐adenosylmethionine synthase isoform type‐1, isocitrate dehydrogenase subunit α, epoxide hydrolase 2 and 60S acidic ribosomal protein P0. These identified proteins were involved in glucose/lipid metabolic process, xenobiotic metabolic system, and ATP synthesized process in mitochondria. Based on the findings, we speculated that CB1R blockade might exert its anti‐metabolic disorder effect via improvement of mitochondrial function in hepatic steatosis in HFD condition.  相似文献   

9.
This study compares the total liver proteome of inbred alcohol‐preferring line (iP) rats exposed to alcohol with iP rats without alcohol experience. Rat liver proteins were extracted using a three‐step procedure. Each of the three solutions solubilizes a different set of proteins. The extracted proteins were separated by 2‐DE. Scanned gels of two sample groups, alcohol‐exposed iP and alcohol‐naïve iP, were compared, revealing many protein spots with significantly higher or lower densities. These spots were cut from the gel, destained, and subjected to trypsin digestion and subsequent identification by LC‐MS/MS. Twenty‐four individual rats, 12 alcohol‐naïve, and 12 alcohol‐exposed, were used in this study. Two groups, each containing six naïve and six exposed animals, were created for statistical comparison. For the first group, 64 spots were observed to have statistically significant intensity differences upon alcohol exposure across all three extracts while 118 such spots were found in the second group. There were 113 unique proteins in both groups together. The majority of these proteins were enzymes. Significant changes are observed for three major metabolic pathways: glycolysis, gluconeogenesis, and fatty acid β‐oxidation. In addition, enzymes involved in protein synthesis and antioxidant activity show significant changes in abundance in response to alcohol exposure.  相似文献   

10.
11.
We investigated the changes in the hepatic proteome in murine models for toxic-induced fibrogenesis and sclerosing cholangitis. A comprehensive comparison of protein changes observed is made and the mechanistical basis of the expression changes is discussed. Hepatic fibrosis was induced by repetitive intraperitoneal CCl4 treatment of BALB/c mice or developed spontaneously in BALB/c-ATP-binding cassette, subfamily B, member 4 (Abcb4) knock out mice. Fibrosis was verified by a morphometric score and assessment of hydroxyproline content of liver tissue, respectively. The innovative difference in-gel electrophoresis (DIGE) technique was used to analyse protein expression levels of the mouse proteome. Results were confirmed by Western blotting and real-time RT-PCR. In CCl4-induced fibrosis 20 out of 40 and in BALB/c-Abcb4(-/-) mice 8 out of 28 differentially expressed proteins were identified utilizing DIGE. Only two proteins, selenium-binding protein (Sbp2) and carbonic anhydrase 3, have been unidirectionally expressed (i.e. down-regulated) in both models. Relevant differences in the pathogenesis of toxically induced liver fibrosis and sclerosing cholangitis exist. The only novel protein with regard to liver fibrosis depicting a unidirectional expression pattern in both animal models was Sbp2. An explicit protein function could not be clarified yet.  相似文献   

12.
In an effort to contribute to a better understanding of the hepatic toxicity of the ubiquitous environmental pollutant and hepatocarcinogen 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a comprehensive quantitative proteome analysis was performed on 5L rat hepatoma cells exposed to 1 nM TCDD for 8 h. Changes in the abundances of individual protein species in TCDD-treated cells as compared to untreated cells were analysed using the nongel-based isotope-coded protein label (ICPL) method [Schmidt, A., Kellermann, J., Lottspeich, F., Proteomics 2005, 5, 4-15]. 89 proteins were identified as up- or down-regulated by TCDD. For the majority of the altered proteins, an impact of TCDD on their abundance had not been known before. Due to the physicochemical properties or the translational regulation of a large number of the affected proteins, their alteration would have escaped detection by gel-based methods for proteome analysis and by standard mRNA expression profiling, respectively. The identified proteins with TCDD-altered abundance include several proteins implicated in cell cycle regulation, growth factor signalling and the control of apoptosis. The results thus provide new starting-points for the investigation of specific aspects of the toxicity and carcinogenicity of dioxin in liver.  相似文献   

13.
Mouse liver tumors frequently harbor mutations in Ha-ras, B-raf, or Ctnnb1 (encoding beta-catenin). We conducted a proteome analysis with protein extracts from normal mouse liver and from liver tumors which were induced by a single injection of N-nitrosodiethylamine (DEN) as initiator followed by multiple injections of two different polychlorinated biphenyls (PCBs) as tumor promoters, or corn oil as a control. Liver tumors were stratified into two classes: they were either mutated in Ctnnb1 and positive for the marker glutamine synthetase (GS(+)), or they lacked Ctnnb1 mutations and were therefore GS-negative (GS(-)). Proteome analysis by 2-DE and MS revealed 98 significantly deregulated proteins, 44 in GS(+) and 54 in GS(-) tumors. Twelve of these proteins showed expression changes in both tumor types, but only seven of them were deregulated in the same direction. Several of the identified enzymes could be assigned to fundamental metabolic or other cellular pathways with characteristically different alterations in GS(+) and GS(-) tumors such as ammonia and amino acid turnover, cellular energy supply, and calcium homeostasis. Our data suggest that GS(+) and GS(-) tumor cells show a completely different biology and use divergent evolutionary strategies to gain a selective advantage over normal hepatocytes.  相似文献   

14.
Ciona intestinalis (the common sea squirt) is the closest living chordate relative to vertebrates with cosmopolitan presence worldwide. It has a relatively simple nervous system and development, making it a widely studied alternative model system in neuroscience and developmental biology. The use of Ciona as a model organism has increased significantly after the draft genome was published. In this study, we describe the first proteome map of the neural complex of C. intestinalis. A total of 544 proteins were identified based on 1DE and 2DE FTMS/ITMSMS analyses. Proteins were annotated against the Ciona database and analyzed to predict their molecular functions, roles in biological processes, and position in constructed network pathways. The identified Ciona neural complex proteome was found to map onto vertebrate nervous system pathways, including cytoskeleton remodeling neurofilaments, cell adhesion through the histamine receptor signaling pathway, γ‐aminobutyric acid‐A receptor life cycle neurophysiological process, glycolysis, and amino acid metabolism. The proteome map of the Ciona neural complex is the first step toward a better understanding of several important processes, including the evolution and regeneration capacity of the Ciona nervous system.  相似文献   

15.
These studies were structured with the aim of utilizing emerging technologies in two-dimensional (2D) gel electrophoresis and mass spectrometry to evaluate protein expression changes associated with type 1 diabetes. We reasoned that a broad examination of diabetic tissues at the protein level might open up novel avenues of investigation of the metabolic and signaling pathways that are adversely affected in type 1 diabetes. This study compared the protein expression of the liver, heart, and skeletal muscle of diabetes-prone rats and matched control rats by semiquantitative liquid chromatography-mass spectrometry and differential in-gel 2D gel electrophoresis. Differential expression of 341 proteins in liver, 43 in heart, and 9 (2D gel only) in skeletal muscle was detected. These data were assembled into the relevant metabolic pathways affected primarily in liver. Multiple covalent modifications were also apparent in 2D gel analysis. Several new hypotheses were generated by these data, including mechanisms of net cytosolic protein oxidation, formaldehyde generation by the methionine cycle, and inhibition of carbon substrate oxidation via reduction in citrate synthase and short-chain acyl-CoA dehydrogenase.  相似文献   

16.
Profiling of dynamic changes in hypermetabolic livers   总被引:5,自引:0,他引:5  
The liver plays an important role in the overall negative nitrogen balance leading to muscle wasting commonly observed in patients following many conditions, including severe injury, cancer, and diabetes. In order to study changes in liver metabolism during the establishment of such catabolic states, we used a rat skin burn injury model that induces hypermetabolism and muscle wasting. At various times during the first week following the injury, livers were isolated and perfused in a recirculating system under well-defined conditions. We applied a steady-state metabolic flux analysis model of liver metabolism and then used k-means clustering to objectively group together reaction flux time profiles. We identified six distinct groups of reactions that were differentially responsive: (1) pentose phosphate pathway (PPP); (2) amino acid oxidation reactions leading to the formation of tricarboxylic acid (TCA) cycle intermediates; (3) gluconeogenesis; (4) TCA-cycle and mitochondrial oxidation; (5) lipolysis, beta-oxidation, and ketone body formation; and (6) urea-cycle. Burn injury sequentially upregulated the urea-cycle, the PPP, and the TCA-cycle, in order, while beta-oxidation and gluconeogenesis remained unchanged. The upregulation of the PPP was transient, whereas the rise in urea- and TCA-cycle fluxes was sustained. An ATP balance predicted an increased production of ATP and energy expenditure starting on day 3 post-burn, which correlated with the induction of the oxidative phosphorylation uncoupler uncoupling protein-2. We conclude that metabolic profiling using flux analysis and clustering analysis is a useful methodology to characterize the differential activation of metabolic pathways in perfused organs and to identify specific key pathways that are sensitive to a stimulus or insult without making a priori assumptions.  相似文献   

17.
Reactive oxygen species (ROS), generated by ionizing radiation, has been implicated in its effect on living tissues. We confirmed the changes in the oxidative stress markers upon irradiation. We characterized the changes in the proteome profile in rat liver after administering irradiation, and the affected proteins were identified by MALDI-TOF-MS and ESI-MS/MS. The identified proteins represent diverse sets of proteins participating in the cellular metabolism. Our results demonstrated that proteomics analysis is a useful method for characterization of a global proteome change caused by ionizing radiation to unravel the molecular mechanisms involved in the cellular responses to ionizing radiation.  相似文献   

18.
19.
Human HepG2 cells were exposed to six TiO2 nanomaterials (with dry primary particle sizes ranging from 22 to 214 nm, either 0.3, 3, or 30 μg/mL) for 3 days. Some of these canonical pathways changed by nano‐TiO2 in vitro treatments have been already reported in the literature, such as NRF2‐mediated stress response, fatty acid metabolism, cell cycle and apoptosis, immune response, cholesterol biosynthesis, and glycolysis. But this genomic study also revealed some novel effects such as protein synthesis, protein ubiquitination, hepatic fibrosis, and cancer‐related signaling pathways. More importantly, this genomic analysis of nano‐TiO2 treated HepG2 cells linked some of the in vitro canonical pathways to in vivo adverse outcomes: NRF2‐mediated response pathways to oxidative stress, acute phase response to inflammation, cholesterol biosynthesis to steroid hormones alteration, fatty acid metabolism changes to lipid homeostasis alteration, G2/M cell checkpoint regulation to apoptosis, and hepatic fibrosis/stellate cell activation to liver fibrosis.  相似文献   

20.
In this study, a quantitative comparative proteomics approach has been used to analyze the Dictyostelium discoideum mitochondrial proteome variations during vegetative growth, starvation and the early stages of development. Application of 2‐D DIGE technology allowed the detection of around 2000 protein spots on each 2‐D gel with 180 proteins exhibiting significant changes in their expression level. In total, 96 proteins (51 unique and 45 redundant) were unambiguously identified. We show that the D. discoideum mitochondrial proteome adaptations mainly affect energy metabolism enzymes (the Krebs cycle, anaplerotic pathways, the oxidative phosphorylation system and energy dissipation), proteins involved in developmental and signaling processes as well as in protein biosynthesis and fate. The most striking observations were the opposite regulation of expression of citrate synthase and aconitase and the very large variation in the expression of the alternative oxidase that highlighted the importance of citrate and alternative oxidase in the physiology of the development of D. discoideum. Mitochondrial energy states measured in vivo with MitoTracker Orange CM?Ros showed an increase in mitochondrial membrane polarization during D. discoideum starvation and starvation‐induced development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号