首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The potential for sulfate reduction at low temperatures was examined in two different cold marine sediments, Mariager Fjord (Denmark), which is permanently cold (3 to 6(deg)C) but surrounded by seasonally warmer environments, and the Weddell Sea (Antarctica), which is permanently below 0(deg)C. The rates of sulfate reduction were measured by the (sup35)SO(inf4)(sup2-) tracer technique at different experimental temperatures in sediment slurries. In sediment slurries from Mariager Fjord, sulfate reduction showed a mesophilic temperature response which was comparable to that of other temperate environments. In sediment slurries from Antarctica, the metabolic activity of psychrotrophic bacteria was observed with a respiration optimum at 18 to 19(deg)C during short-term incubations. However, over a 1-week incubation, the highest respiration rate was observed at 12.5(deg)C. Growth of the bacterial population at the optimal growth temperature could be an explanation for the low temperature optimum of the measured sulfate reduction. The potential for sulfate reduction was highest at temperatures well above the in situ temperature in all experiments. The results from sediment incubations were compared with those obtained from pure cultures of sulfate-reducing bacteria by using the psychrotrophic strain ltk10 and the mesophilic strain ak30. The psychrotrophic strain reduced sulfate optimally at 28(deg)C in short-term incubations, even though it could not grow at temperatures above 24(deg)C. Furthermore, this strain showed its highest growth yield between 0 and 12(deg)C. In contrast, the mesophilic strain ak30 respired and grew optimally and showed its highest growth yield at 30 to 35(deg)C.  相似文献   

2.
Stichococcus, a genus of green algae, distributes in ice-free areas throughout Antarctica. To understand adaptive strategies of Stichococcus to permanently cold environments, the physiological responses to temperature of two psychrotolerants, S. bacillaris NJ-10 and S. minutus NJ-17, isolated from rock surfaces in Antarctica were compared with that of one temperate S. bacillaris FACHB753. Two Antarctic Stichococcus strains grew at temperature from 4 to 25°C, while the temperate strain could grow above 30°C but could not survive at 4°C. The photosynthetic activity of FACHB753 at lower than 10°C was less than that of Antarctic algae. Nitrate reductase in NJ-10 and NJ-17 had its optimal temperature at 20°C, in comparison, the maximal activity of nitrate reductase in FACHB753 was found at 25°C. When cultured at 4–15°C a large portion of unsaturated fatty acids in the two Antarctic species was detected and the regulation of the degree of unsaturation of fatty acids by temperature was observed only above 15°C, though the content of the major unsaturated fatty acid αC18:3 in FACHB753 decreased with the temperatures elevated from 10 to 25°C. Elevated nitrate reductase activity and photosynthetic rates at low temperatures together with the high proportion of unsaturated fatty acids contribute to the ability of the Antarctic Stichococcus to thrive.  相似文献   

3.
In this review we discuss the activity of an ecologically significant group of psychrophilic bacteria, which are involved in the hydrolysis of plant cell wall polymers. Until now these organisms have been largely overlooked, despite the key role they play in releasing organic carbon fixed by primary producers in permanently cold environments such as Antarctica. This review details a specific group of plant cell wall polymer-degrading enzymes known as β-glycanases. Studies on "cold" enzymes in general are in their infancy, but it has been shown that many exhibit structural and functional modifications that enable them to function at low temperature. β-Glycanases in particular are intriguing because their substrates (cellulose and xylan) are very refractile, which may indicate that their "cold" modifications are pronounced. In addition, mesophilic β-glycanases have been extensively studied and the current state of our knowledge is reviewed. This body of information can be exploited to enable meaningful comparative studies between mesophilic and psychrophilic β-glycanases. The aim of such investigations is to obtain a deeper insight into those structural and functional modifications that enable these enzymes to function at low temperature and to examine the evolutionary relationship between mesophilic and psychrophilic β-glycanases. Received: December 21, 1998 / Accepted: February 3, 1999  相似文献   

4.
Drosophila subobscura is a European (EU) species that was introducedinto South America (SA) approximately 25 years ago. Previousstudies have found rapid clinal evolution in wing size and inchromosome inversion frequency in the SA colonists, and theseclines parallel those found among the ancestral EU populations.Here we examine thermoplastic changes in wing length in fliesreared at 15, 20, and 25°C from 10 populations on each continent.Wings are plastically largest in flies reared at 15°C (thecoldest temperature) and genetically largest from populationsthat experience cooler temperatures on both continents. We hypothesizethat flies living in cold temperatures benefit from reducedwing loading: ectotherms with cold muscles generate less powerper wing beat, and hence larger wings and/or a smaller masswould facilitate fight. We develop a simple null model, basedon isometric growth, to test our hypothesis. We find that bothEU and SA flies exhibit adaptive plasticity in wing loading:flies reared at 15°C generally have lower wing loadingsthan do flies reared at 20°C or 25°C. Clinal patterns,however, are strikingly different. The ancestral EU populationsshow adaptive clinal variation at rearing a temperature of 15°C:flies from cool climates have lower wing loadings. In the colonizingpopulations from SA, however, we cannot reject the null model:wing loading increases with decreasing clinal temperatures.Our data suggest that selective factors other than flight havefavored the rapid evolution of large overall size at low environmentaltemperatures. However, selection for increased flight abilityin such environments may secondarily favor reduced body mass.  相似文献   

5.
Adaptation to environmental stresses, such as temperature fluctuation, is essential for the survival of all living organisms. Cellular responses in both prokaryotes and eukaryotes to high temperature include the synthesis of a set of highly conserved proteins known as the heat shock proteins. In contrast to the heat shock response, adaptation to low temperatures has not been as extensively studied. However, a family of cold-inducible proteins is evident in prokaryotes. In addition, most organisms have developed adaptive mechanisms that alter both membrane fluidity and the protein translation machinery at low temperature. This review addresses the different adaptive mechanisms used by a variety of organisms with a focus on the molecular mechanisms of cold adaptation that have recently been identified during the cold shock response in Escherichia coli. BioEssays 20:49–57, 1998. © 1998 John Wiley & Sons, Inc.  相似文献   

6.
Enzymes from psychrophilic organisms   总被引:17,自引:0,他引:17  
Abstract: Psychrophilic organisms such as micro-organisms and other ectothermic species living in polar, deep- sea or any constantly low temperature environments, produce enzymes adapted to function at low temperature. These enzymes are characterized by a high catalytic efficiency at low and moderate temperatures but are rather thermolabile. Due to their high specific activity and their rapid inactivation at temperatures as low as 30°C, they offer, along with the producing micro-organisms, a great potential in biotechnology. The molecular basis of the adaptation of cold α-amylase, subtilisin, triose phosphate isomerase from Antarctic bacteria and of trypsin from fish living in North Atlantic and in Antarctic sea waters have been studied. The comparison of the 3D structures obtained either by protein modelling or by X-ray crystallography (North Atlantic trypsin) with those of their mesophilic counterparts indicates that the molecular changes tend to increase the flexibility of the structure by a weakening of the intramolecular interactions and by an increase of the interactions with the solvent. For each enzyme, the most appropriate strategy enabling it to accommodate the substrate at a low energy cost is selected. There is a price to pay in terms of thermosensibility because the selective pressure is essentially oriented towards the harmonization of the specific activity with ambient thermal conditions. However, as demonstrated by site-directed mutagenesis experiments carried out on the Antarctic subtilisin, the possibility remains to stabilize the structure of these enzymes without affecting their high catalytic efficiency.  相似文献   

7.
A rapid cold hardening response was studied in females and males of the olive fruit fly Bactrocera (Dacus) oleae. When laboratory-reared females and males were transferred and maintained from the rearing temperature of 24 °C for 2 h to –6.5 °C approximately 5% survived. However, conditioning of both females and males for 2 h at various temperatures from 0 to 10 °C before their exposure for 2 h to –6.5 °C increased survival to 80 to 92%. A similar rapid cold hardening response in both females and males was also induced through gradual cooling of the flies at a rate of approximately 0.4 °C per min. The rapid increase in cold tolerance after prior conditioning of the flies to low temperatures, was rapidly lost when they returned to a higher temperature of 24 °C. In the field, in late February and early March, females and males were capable of a rapid cold hardening response. After exposure to the critical temperature they suffered a high mortality when tested in the afternoon and low mortality early in the morning on consecutive days, probably because of differences in the prevailing field temperatures a few hours before testing. This plasticity of cold tolerance gained through rapid cold hardening may allow the flies to survive during periods of the year with great fluctuation in circadian temperatures.  相似文献   

8.
Obligate psychrophilic, facultative psychrophilic, and mesophilic yeasts were cultured in a carbon-rich medium at different temperatures to investigate whether growth parameters, lipid accumulation, and fatty acid (FA) composition were adaptive and/or acclimatory responses. Acclimation of facultative psychrophiles and mesophiles to a lower temperature decreased their specific growth rate, but did not affect their biomass yield (YX/S). Obligate and facultative psychrophiles exhibited the highest YX/S. Acclimation to lower temperature decreased the lipid yield (YL/X) in mesophilic yeasts, but did not affect YL/X in facultative psychrophilic ones. Similar YL/X were found in both groups of psychrophiles, suggesting that lipid accumulation is not a distinctive characteristic of adaptation to permanently cold environments. The unsaturation of FAs was one major adaptive feature of the yeasts colonizing permanently cold ecosystems. Remarkable amounts of α-linolenic acid were found in obligate psychrophiles at the expense of linoleic acid, whereas it was scarce or absent in all the other strains. Increased unsaturation of FAs was also a general acclimatory response of facultative psychrophiles to a lower temperature. These results improve the knowledge of the responses enabling psychrophilic yeasts to cope with the cold and may be of support for potential biotechnological exploitation of these strains.  相似文献   

9.
Five strains of methanogenic archaea (MT, MS, MM, MSP, ZB) were isolated from permanently and periodically cold terrestrial habitats. Physiological and morphological studies, as well as phylogenetic analyses of the new isolates were performed. Based on sequences of the 16S rRNA and methyl-coenzyme M reductase a-subunit (mcrA) genes all new isolates are closely related to known mesophilic and psychrotolerant methanogens. Both, phylogenetic analyses and phenotypic properties allow to classify strains MT, MS, and MM as members of the genus Methanosarcina. Strain MT is a new ecotype of Methanosarcina mazei, whereas strains MM and MS are very similar to each other and can be assigned to the recently described psychrotolerant species Methanosarcina lacustris. The hydrogenotrophic strain MSP is a new ecotype of the genus Methanocorpusculum. The obligately methylotrophic strain ZB is closely related to Methanomethylovorans hollandica and can be classified as new ecotype of this species. All new isolates, including the strains from permanently cold environments, are not true psychrophiles according to their growth temperature characteristics. In spite of the ability of all isolates to grow at temperatures as low as 1-5 degrees C, all of them have their growth optima in the range of moderate temperatures (25-35 degrees C). Thus, they can be regarded as psychrotolerant organisms. Psychrotolerant methanogens are thought to play an important role in methane production in both, habitats under seasonal temperature variations or from permanently cold areas.  相似文献   

10.
Responses to a standard cold stress of 10°C for 2 h applied before (Melbourne) and four times during a year in Antarctica were observed in 10 adult male Caucasians, 7 of whom were re-tested after returning from Antarctica. An early form of cold acclimatization developed within a month of arriving in Antarctica in which the cold stress response was characterised by cooler peripheral temperatures than in the pre-Antarctic series. This was replaced by a late form in which the rectal temperature was cooler and peripheral temperatures warmer than in Melbourne. Maintenance of rectal temperature was equal in both forms and superior to that obtained before going to Antarctica. An improved peripheral rewarming rate was associated with the late form. The reduction in plasma cortisol concentration at the end of the cold stresses in Antarctica compared with those in Melbourne was a further indication of the establishment of cold acclimatization. An increased delay in the onset of shivering, a lowered skin temperature at the onset of shivering, and a reduced noradrenaline response was observed in the late Antarctic series. Adrenaline excretion during the cold stress increased in the later series but the rise from the pre-stress level remained fairly constant. This increase did not appear to be related to climate. Similarities with cold adapted rodents and newborn infants suggest that the infantile mechanism of non-shivering thermogenesis mediated by noradrenaline was partially re-established.  相似文献   

11.
Colobanthus quitensis (Kunth) Bartl. (Cariophyllaceae) is distributed from Mexico to the Maritime Antarctic. It grows forming inconspicuous populations in humid and cold sites along high elevations in the Andes Mountains. Mediterranean Andes is characterized by a wider oscillation of diurnal and seasonal temperature, while the Maritime Antarctic is characterized by permanent low temperatures. Both places may experience high irradiance during sunny days (reaching up to 2,000 μmol photons m−2 s−1); however, the frequency of sunny days in the Maritime Antarctica is significantly lower (less than 20% of the whole growing season). We study whether acclimation to each environment relies on different photoprotective mechanisms. The Andean ecotype that has a longer growing season and a higher light integral reduces light absorption by the development of smaller chloroplasts with lower stacking granum area and down-regulation of Lhcb2. It also enhances the dissipation of the excess of absorbed energy by higher level of de-epoxidation of xanthophylls pool. On the other hand, the Antarctic ecotype which has developed under a shorter growing season, with lower total irradiance and continuous low temperatures, maximizes photochemical process even at low temperatures and it has a lower light-harvesting/core complex ratio and higher level of photoprotection supplied by an unusually high β-carotene and xanthophylls cycle pool. It resembles a well full light acclimated plant, probably due to higher excitation pressure imposed by lower temperature even at moderate irradiance. It is suggested that the biochemical plasticity of this species, highlighted by the development of these different strategies, is essential to cope successfully with these particular environments.  相似文献   

12.
Arabidopsis plants show an increase in freezing tolerance in response to exposure to low nonfreezing temperatures, a phenomenon known as cold acclimation. In the present study, we evaluated the physiological and morphological responses of various Arabidopsis ecotypes to continuous growth under chilling (14°C) and cold (6°C) temperatures and evaluated their basal freezing tolerance levels. Seedlings of Arabidopsis plants were extremely sensitive to low growth temperatures: the hypocotyls and petioles were much longer and the angles of the second pair of true leaves were much greater in plants grown at 14°C than in those grown at 22°C, whereas just intermediate responses were observed under the cold temperature of 6°C. Flowering time was also markedly delayed at low growth temperatures and, interestingly, lower growth temperatures were accompanied by longer inflorescences. Other marked responses to low temperatures were changes in pigmentation, which appeared to be both ecotype specific and temperature dependent and resulted in various visual phenotypes such as chlorosis, necrosis or enhanced accumulation of anthocyanins. The observed decreases in chlorophyll contents and accumulation of anthocyanins were much more prominent in plants grown at 6°C than in those grown at 14°C. Among the various ecotypes tested, Mt‐0 plants markedly accumulated the highest levels of anthocyanins upon growth at 6°C. Freezing tolerance examination revealed that among 10 ecotypes tested, only C24 plants were significantly more sensitive to subzero temperatures. In conclusion, Arabidopsis ecotypes responded differentially to cold (6°C), chilling (14°C) and freezing temperatures, with specific ecotypes being more sensitive in particular traits to each low temperature.  相似文献   

13.
Protozoan growth rates in Antarctic lakes   总被引:1,自引:0,他引:1  
The growth rates of heterotrophic nanoflagellates (HNAN), mixotrophic cryptophytes, dinoflagellates and ciliates in field assemblages from Ace Lake in the Vestfold Hills (eastern Antarctica) and Lakes Fryxell and Hoare (McMurdo Dry Valleys, western Antarctica), were determined during the austral summers of 1996/1997 and 1997/1998. The response of the nanoflagellates to temperature differed between lakes in eastern and western Antarctica. In Ace Lake the available bacterial food resources had little impact on growth rate, while temperature imposed an impact, whereas in Lake Hoare increased bacterial food resources elicited an increase in growth rate. However, the incorporation of published data from across Antarctica showed that temperature had the greater effect, but that growth is probably controlled by a suite of factors not solely related to bacterial food resources and temperature. Dinoflagellates had relatively high specific growth rates (0.0057–0.384 h−1), which were comparable to Antarctic lake ciliates and to dinoflagellates from warmer, lower latitude locations. Temperature did not appear to impose any significant impact on growth rates. Mixotrophic cryptophytes in Lake Hoare had lower specific growth rates than HNAN (0.0029–0.0059 h−1 and 0.0056–0.0127 h−1, respectively). They showed a marked seasonal variation in growth rate, which was probably related to photosynthetically active radiation under the ice at different depths in the water column. Ciliates' growth rates showed no relationship between food supply and mean cell volume, but did show a response to temperature. Specific growth rates ranged between 0.0033 and 0.150 h−1 for heterotrophic ciliates, 0.0143 h−1 for a mixotrophic Plagiocampa species and 0.0075 h−1 for the entirely autotrophic ciliate, Mesodinium rubrum. The data indicated that the scope for growth among planktonic Protozoa living in oligotrophic, cold extreme lake ecosystems is limited. These organisms are likely to suffer prolonged physiological stress, which may account for the highly variable growth rates seen within and between Antarctic lakes. Accepted: 7 December 1999  相似文献   

14.
Marine benthic communities living in shallow-water habitats(<100 m depth) in Antarctica possess characteristics reminiscentof Paleozoic marine communities and modern deep-sea communities.The absence of crabs and sharks, the limited diversity of teleostsand skates, the dominance of slow-moving invertebrates at highertrophic levels, and the occurrence of dense ophiuroid and crinoidpopulations indicate that skeleton-breaking predation is limitedin Antarctica today, as it was worldwide during the Paleozoicand as it is in the deep sea today. The community structureof the antarctic benthos has its evolutionary roots in the Eocene.Data from fossil assemblages at Seymour Island, Antarctic Peninsulasuggest that shallow-water communities were similar to communitiesat lower latitudes until they were affected by global cooling,which accelerated in the late Eocene to early Oligocene. Thatlong-term cooling trend ultimately resulted in the polar climateand peculiar community structure found in Antarctica today.Declining temperatures beginning late in the Eocene are associatedwith the disappearance of crabs, sharks, and most teleosts.The sudden drop in predation pressure allowed dense ophiuroidand crinoid populations to appear and flourish. These late Eoceneechinoderm populations exhibit low frequencies of sublethaldamage (regenerating arms), demonstrating that there was littleor no predation from skeleton-breaking fish and decapods. Currentscenarios of global climate change include predictions of increasedupwelling and consequent cooling in temperate and subtropicalupwelling zones. Limited ecological evidence suggests that suchcooling could disrupt trophic relationships and favor retrogradecommunity structures in those local areas.  相似文献   

15.
红松与西伯利亚红松均为寒温带著名的成林树种,具有较强的耐寒性,与红松相比,西伯利亚红松具有更强的耐寒性。为探究低温胁迫下两树种的生理响应机制及抗寒生理机理,本研究以5年生的红松与西伯利亚红松幼苗为材料,对其进行低温处理,3个胁迫温度(0℃、-20℃和-40℃)和3个胁迫时间(6、24和48 h),20℃为对照,研究低温胁迫下红松与西伯利亚红松的光合特性和气孔特性。T检验和方差分析结果表明,各光合指标和气孔密度在红松与西伯利亚红松中的差异显著(P<0.05),低温及低温胁迫时间对红松与西伯利亚红松各光合指标具有极显著影响(P<0.01),低温对红松与西伯利亚红松的气孔开度与气孔面积具有极显著影响(P<0.01)。胁迫前(20℃)和0℃低温胁迫下,红松中的净光合速率、气孔导度和蒸腾速率均显著高于西伯利亚红松,但在-20℃条件下胁迫6 h,西伯利亚红松各光合测定指标显著高于红松。随着温度的降低与胁迫时间的延长,两树种的各光合指标均呈下降趋势。红松中的气孔密度显著高于西伯利亚红松,胁迫前(20℃),红松与西伯利亚红松的气孔均为椭圆形,随着温度的降低,两树种的气孔开度和气孔面积显著减小。  相似文献   

16.
冷激蛋白的研究进展   总被引:3,自引:0,他引:3  
冷激蛋白(CSPs)广泛存在于革兰氏阳性菌和阴性菌中,它是细胞在应对冷刺激时所产生的一系列7 ku左右的蛋白质,结构上富含芳香族氨基酸,起着重要的分子伴侣作用,能够增强细胞抵御冷激环境胁迫的能力.以大肠杆菌、枯草杆菌、嗜热链球菌、沙门氏杆菌等为例,介绍各种冷激蛋白在产生、结构、调控等方面的异同,以及它在生产、生活中的应用价值.  相似文献   

17.
Did psychrophilic enzymes really win the challenge?   总被引:7,自引:0,他引:7  
Organisms living in permanently cold environments, which actually represent the greatest proportion of our planet, display at low temperatures metabolic fluxes comparable to those exhibited by mesophilic organisms at moderate temperatures. They produce cold-evolved enzymes partially able to cope with the reduction in chemical reaction rates and the increased viscosity of the medium induced by low temperatures. In most cases, the adaptation is achieved through a reduction in the activation energy, leading to a high catalytic efficiency, which possibly originates from an increased flexibility of either a selected area of or the overall protein structure. This enhanced plasticity seems in return to be responsible for the weak thermal stability of cold enzymes. These particular properties render cold enzymes particularly useful in investigating the possible relationships existing between stability, flexibility, and specific activity and make them potentially unrivaled for numerous biotechnological tasks. In most cases, however, the adaptation appears to be far from being fully achieved.  相似文献   

18.
Eight subjects, who were indoor workers and not habitually exposed to cold, spent 53 days in Antarctica. They did mainly geological field work often requiring the use of bare hands. The effects of the expedition on responses to a whole body cold exposure test, a finger blood flow test and a cold pressor test were studied. After the expedition, during whole-body cooling the time for the onset of shivering was delayed by 36 min (P<0.001) and forearm and thigh temperatures were 1.5°C higher (P<0.05) at the end of exposure. During local cooling of the finger with 10°C perfusion, finger vascular resistance was 14.9 (SEM 6.6) mmHg · ml–1 · min · 100 ml (P<0.05) lower and finger temperature 3.9 (SEM 0.8) °C higher (P< 0.01). However, the decrease in rectal temperature during wholebody cooling was unaltered and the response to a cold pressor test was unchanged. The data would indicate that partial acclimatization to cold had been developed. Changes in forearm temperature were correlated with the duration of cold exposure of the hands (P < 0.05) and finger vascular resistance and finger temperature were correlated with responses to cooling before the expedition (P<0.001 and P<0.01, respectively). Because the ambient temperature was not clearly lower in Antarctica in comparison to Finland, the reason for the changes developed seems to be the increased exposure to the outdoor climate in Antarctica.  相似文献   

19.
Abstract Chill‐susceptible insects are able to improve their survival of acute cold exposure over both the short term (i.e. hardening at a relatively severe temperature) and longer term (i.e. acclimation responses at milder temperatures over a longer time frame). However, the mechanistic overlap of these responses is not clear. Four larval stages of four different strains of Drosophila melanogaster are used to test whether low temperature acclimation (10 °C for 48 h) improves the acute cold tolerance (LT90, ~2 h) of larvae, and whether acclimated larvae still show hardening responses after brief exposures to nonlethal cold or heat, or a combination of the two. Acclimation results in increased cold tolerance in three of four strains, with variation among instars. However, if acclimation is followed by hardening pre‐treatments, there is no improvement in acute cold survival. It is concluded that short‐term thermal responses (e.g. hardening) may be of more ecological relevance to short‐lived life stages such as larvae, and that the mechanisms of low temperature hardening and acclimation in D. melanogaster may be antagonistic, rather than complementary.  相似文献   

20.
Lake Vida is a large, permanently ice-covered lake in the Victoria Valley of the McMurdo Dry Valleys, Antarctica and is unique among Dry Valley lakes because it is ice-sealed, with an ice-cover of nearly 19 m. Enrichment cultures of melt-water from Lake Vida 15.9 m ice yielded five pure cultures of aerobic, heterotrophic bacteria. Of these, one strain grew at −8°C and the four others at −4°C. All isolates were either halotolerant or halophilic, with two strains capable of growth at 15% NaCl. Phylogenetic analysis revealed the Lake Vida isolates to be Gammaproteobacteria, related to species of Psychrobacter and Marinobacter. This is the first report of pure cultures of bacteria from Lake Vida, and the isolates displayed a phenotype consistent with life in a cold hypersaline environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号