首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
To understand the roles of individual amino acids in the folding and stability of globular proteins, a systematic structural analysis of mutants of the lysozyme of bacteriophage T4 has been undertaken. The isolation, characterization, crystallographic refinement and structural analysis of a temperature-sensitive lysozyme in which threonine 157 is replaced by isoleucine is reported here. This mutation reduces the temperature of the midpoint of the reversible thermal denaturation transition by 11 deg.C at pH 2.0. Electron density maps showing differences between the wild-type and mutant X-ray crystal structures have obvious features corresponding to the substitution of threonine 157 by isoleucine. There is little difference electron density in the remainder of the molecule, indicating that the structural changes are localized to the site of the mutation. High-resolution crystallographic refinement of the mutant lysozyme structure confirms that it is very similar to wild-type lysozyme. The largest conformational differences are in the gamma-carbon of residue 157 and in the side-chain of Asp159, which shift 1.0 A and 1.1 A, respectively. In the wild-type enzyme, the gamma-hydroxyl group of Thr157 participates in a network of hydrogen bonds. Substitution of Thr157 with an isoleucine disrupts this set of hydrogen bonds. A water molecule bound in the vicinity of Thr155 partially restores the hydrogen bond network in the mutant structure, but the buried main-chain amide of Asp159 is not near a hydrogen bond acceptor. This unsatisfied hydrogen-bonding potential is the most obvious reason for the reduction in stability of the temperature-sensitive mutant protein.  相似文献   

3.
There is a mounting body of evidence to suggest that enzyme motions are linked to function, although the design of informative experiments aiming to evaluate how this motion facilitates reaction chemistry is challenging. For the family of diflavin reductase enzymes, typified by cytochrome P450 reductase, accumulating evidence suggests that electron transfer is somehow coupled to large-scale conformational change and that protein motions gate the electron transfer chemistry. These ideas have emerged from a variety of experimental approaches, including structural biology methods (i.e. X-ray crystallography, electron paramagnetic/NMR spectroscopies and solution X-ray scattering) and advanced spectroscopic techniques that have employed the use of variable pressure kinetic methodologies, together with solvent perturbation studies (i.e. ionic strength, deuteration and viscosity). Here, we offer a personal perspective on the importance of motions to electron transfer in the cytochrome P450 reductase family of enzymes, drawing on the detailed insight that can be obtained by combining these multiple structural and biophysical approaches.  相似文献   

4.
The human fatty acid synthase (FAS) is a key enzyme in the metabolism of fatty acids and a target for antineoplastic and antiobesity drug development. Due to its size and flexibility, structural studies of mammalian FAS have been limited to individual domains or intermediate-resolution studies of the complete porcine FAS. We describe the high-resolution crystal structure of a large part of human FAS that encompasses the tandem domain of β-ketoacyl synthase (KS) connected by a linker domain to the malonyltransferase (MAT) domain. Hinge regions that allow for substantial flexibility of the subdomains are defined. The KS domain forms the canonical dimer, and its substrate-binding site geometry differs markedly from that of bacterial homologues but is similar to that of the porcine orthologue. The didomain structure reveals a possible way to generate a small and compact KS domain by omitting a large part of the linker and MAT domains, which could greatly aid in rapid screening of KS inhibitors. In the crystal, the MAT domain exhibits two closed conformations that differ significantly by rigid-body plasticity. This flexibility may be important for catalysis and extends the conformational space previously known for type I FAS and 6-deoxyerythronolide B synthase.  相似文献   

5.
De novo synthesis of fatty acids in the cytosol of animal cells is carried out by the multifunctional, homodimeric fatty acid synthase (FAS). Cryo-EM analysis of single FAS particles imaged under conditions that limit conformational variability, combined with gold labeling of the N termini and structural analysis of the FAS monomers, reveals two coiled monomers in an overlapping arrangement. Comparison of dimeric FAS structures related to different steps in the fatty acid synthesis process indicates that only limited local rearrangements are required for catalytic interaction among different functional domains. Monomer coiling probably contributes to FAS efficiency and provides a structural explanation for the reported activity of a FAS monomer dimerized to a catalytically inactive partner. The new FAS structure provides a new paradigm for understanding the architecture of FAS and the related modular polyketide synthases.  相似文献   

6.
Enzyme function requires conformational changes to achieve substrate binding, domain rearrangements, and interactions with partner proteins, but these movements are difficult to observe. Small-angle X-ray scattering (SAXS) is a versatile structural technique that can probe such conformational changes under solution conditions that are physiologically relevant. Although it is generally considered a low-resolution structural technique, when used to study conformational changes as a function of time, ligand binding, or protein interactions, SAXS can provide rich insight into enzyme behavior, including subtle domain movements. In this perspective, we highlight recent uses of SAXS to probe structural enzyme changes upon ligand and partner-protein binding and discuss tools for signal deconvolution of complex protein solutions.  相似文献   

7.
The enzyme phosphomannomutase/phosphoglucomutase (PMM/PGM) from Pseudomonas aeruginosa catalyzes an intramolecular phosphoryl transfer across its phosphosugar substrates, which are precursors in the synthesis of exoproducts involved in bacterial virulence. Previous structural studies of PMM/PGM have established a key role for conformational change in its multistep reaction, which requires a dramatic 180° reorientation of the intermediate within the active site. Here hydrogen-deuterium exchange by mass spectrometry and small angle x-ray scattering were used to probe the conformational flexibility of different forms of PMM/PGM in solution, including its active, phosphorylated state and the unphosphorylated state that occurs transiently during the catalytic cycle. In addition, the effects of ligand binding were assessed through use of a substrate analog. We found that both phosphorylation and binding of ligand produce significant effects on deuterium incorporation. Phosphorylation of the conserved catalytic serine has broad effects on residues in multiple domains and is supported by small angle x-ray scattering data showing that the unphosphorylated enzyme is less compact in solution. The effects of ligand binding are generally manifested near the active site cleft and at a domain interface that is a site of conformational change. These results suggest that dephosphorylation of the enzyme may play two critical functional roles: a direct role in the chemical step of phosphoryl transfer and secondly through propagation of structural flexibility. We propose a model whereby increased enzyme flexibility facilitates the reorientation of the reaction intermediate, coupling changes in structural dynamics with the unique catalytic mechanism of this enzyme.  相似文献   

8.
Three isomorphous heavy-atom derivatives have been used to calculate a 2.5 Å resolution electron density map of tosyl-elastase at pH 5.0, from which an accurate atomic model has been constructed. Atomic co-ordinates measured from this model have been refined using model building, real-space refinement and energy minimization programs. The three-dimensional conformation of the polypeptide chain is described in terms of conformational angles, hydrogen-bonding networks and the environment of different types of amino acid side-chain.Difference Fourier calculation of the high resolution structure of native elastase at pH 5.0 shows it to be virtually identical to that of the tosyl derivative, except near the tosyl group. The conformation of the catalytically important residues in native elastase is very similar to that of native α-chymotrypsin, except for the orientation of the active centre serine oxygen. The significance of important structural similarities and differences between these two enzymes is discussed.Elastase contains 25 internal water molecules which play an important role in stabilizing the active conformation of the enzyme. Many of these water molecules are in identical positions to those found in the interior of α-chymotrypsin  相似文献   

9.
De novo fatty acid biosynthesis in humans is accomplished by a multidomain protein, the Type I fatty acid synthase (FAS). Although ubiquitously expressed in all tissues, fatty acid synthesis is not essential in normal healthy cells due to sufficient supply with fatty acids by the diet. However, FAS is overexpressed in cancer cells and correlates with tumor malignancy, which makes FAS an attractive selective therapeutic target in tumorigenesis. Herein, we present a crystal structure of the condensing part of murine FAS, highly homologous to human FAS, with octanoyl moieties covalently bound to the transferase (MAT—malonyl‐/acetyltransferase) and the condensation (KS—β‐ketoacyl synthase) domain. The MAT domain binds the octanoyl moiety in a novel (unique) conformation, which reflects the pronounced conformational dynamics of the substrate‐binding site responsible for the MAT substrate promiscuity. In contrast, the KS binding pocket just subtly adapts to the octanoyl moiety upon substrate binding. Besides the rigid domain structure, we found a positive cooperative effect in the substrate binding of the KS domain by a comprehensive enzyme kinetic study. These structural and mechanistic findings contribute significantly to our understanding of the mode of action of FAS and may guide future rational inhibitor designs.  相似文献   

10.
We have provided a quantum mechanical model for proteinase-catalyzed peptide, amide and ester hydrolysis. The model rests on electron and atom transfer theory, but incorporates the dynamics of conformational nuclear modes as a new element. The model is applied to acylation, but can straightaway be extended to deacylation, and is substantiated by recent structural and kinetic data for proteinase enzyme catalysis. The role of the conformational modes is found to be two-fold. First, the crystallographic distances for the proton transfers involved are far too large for direct transfer. His-57 mobility, handled stochastically, to bring the donor and acceptor groups within suitable reach, is therefore a crucial element of the theory. Secondly, the charge alignment in the Asp-102/His-57/tetrahedral intermediate system implies that the curvature of the potential surface along the conformational coordinates in this state is much lower than in the initial enzyme-substrate and final acyl states. A consequence of this is that the activation energy liberated after the first proton transfer is not dissipated, but stored in the conformational system and used in the second proton transfer step.  相似文献   

11.
Structural refinement of predicted models of biological macromolecules using atomistic or coarse‐grained molecular force fields having various degree of error is investigated. The goal of this analysis is to estimate what is the probability for designing an effective structural refinement based on computations of conformational energies using force field, and starting from a structure predicted from the sequence (using template‐based or template‐free modeling), and refining it to bring the structure into closer proximity to the native state. It is widely believed that it should be possible to develop such a successful structure refinement algorithm by applying an iterative procedure with stochastic sampling and appropriate energy function, which assesses the quality (correctness) of protein decoys. Here, an analysis of noise in an artificially introduced scoring function is investigated for a model of an ideal sampling scheme, where the underlying distribution of RMSDs is assumed to be Gaussian. Sampling of the conformational space is performed by random generation of RMSD values. We demonstrate that whenever the random noise in a force field exceeds some level, it is impossible to obtain reliable structural refinement. The magnitude of the noise, above which a structural refinement, on average is impossible, depends strongly on the quality of sampling scheme and a size of the protein. Finally, possible strategies to overcome the intrinsic limitations in the force fields for impacting the development of successful refinement algorithms are discussed. Proteins 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

12.
The structure of the UDP-glucose pyrophosphorylase encoded by Arabidopsis thaliana gene At3g03250 has been solved to a nominal resolution of 1.86 Angstroms. In addition, the structure has been solved in the presence of the substrates/products UTP and UDP-glucose to nominal resolutions of 1.64 Angstroms and 1.85 Angstroms. The three structures revealed a catalytic domain similar to that of other nucleotidyl-glucose pyrophosphorylases with a carboxy-terminal beta-helix domain in a unique orientation. Conformational changes are observed between the native and substrate-bound complexes. The nucleotide-binding loop and the carboxy-terminal domain, including the suspected catalytically important Lys360, move in and out of the active site in a concerted fashion. TLS refinement was employed initially to model conformational heterogeneity in the UDP-glucose complex followed by the use of multiconformer refinement for the entire molecule. Normal mode analysis generated atomic displacement predictions in good agreement in magnitude and direction with the observed conformational changes and anisotropic displacement parameters generated by TLS refinement. The structures and the observed dynamic changes provide insight into the ordered mechanism of this enzyme and previously described oligomerization effects on catalytic activity.  相似文献   

13.
R A Copeland  P A Smith  S I Chan 《Biochemistry》1988,27(10):3552-3555
When the low-potential metal centers of cytochrome c oxidase are reduced, the enzyme undergoes a conformational transition that shifts the fluorescence maximum of the emitting tryptophan residues from 329 to 345 nm. At pH 7.4, the change in this tryptophan fluorescence intensity is a nonlinear function of the electron equivalents added to the cyanide-inhibited enzyme. This nonlinear behavior is a result of the difference in redox potential between cytochrome a and CuA, which, at equilibrium, favors electron occupancy at cytochrome a. Studies on the cyanide-inhibited enzyme suggest that the conformational change is associated with reduction of CuA [Copeland, R. A., Smith, P. A., & Chan, S. I. (1987) Biochemistry 26, 7311-7316]. In this work we present tryptophan fluorescence data for the cyanide-inhibited enzyme at pH 8.9. Because of the pH dependence of the midpoint potential of cytochrome a in this form of the enzyme, the two low-potential centers become virtually isopotential at pH 8.9. The results obtained confirm our earlier conclusion that the observed conformational change is linked to the reduction of CuA only, rather than to the redox activity of both low-potential metal centers. We find that, in partially reduced cyanide-inhibited oxidase, raising the pH from 7.4 to 8.9 results in an intensification and red shift of the enzyme's tryptophan emission as the electron occupancy redistributes from cytochrome a to CuA. Moreover, when the fluorescence change is plotted as a function of the number of electrons added to the enzyme at pH 8.9, the data fit the nearly linear function expected for a conformational change triggered by reduction of CuA exclusively.  相似文献   

14.
E F Pai  P A Karplus  G E Schulz 《Biochemistry》1988,27(12):4465-4474
The binding of the substrate NADPH as well as a number of fragments and derivatives of NADPH to glutathione reductase from human erythrocytes has been investigated by using X-ray crystallography. Crystals of the enzyme were soaked with the compounds of interest, and then the diffraction intensities were collected out to a resolution of 3 A. By use of phase information from the refined structure of the native enzyme in its oxidized state, electron density maps could be calculated. Difference Fourier electron density maps with coefficients Fsoak - Fnative showed that the ligands tested bound either at the functional NADPH binding site or not at all. Electron density maps with coefficients 2Fsoak - Fnative were used to estimate occupancies for various parts of the bound ligands. This revealed that all ligands except NADPH and NADH, which were fully bound, showed differential binding between the adenine end and the nicotinamide end of the molecule: The adenine end always bound with a higher occupancy than the nicotinamide end. Models were built for the protein-ligand complexes and subjected to restrained refinement at 3-A resolution. The mode of binding of NADPH, including the conformational changes of the protein, is described. NADH binding is clearly shown to involve a trapped inorganic phosphate at the position normally occupied by the 2'-phosphate of NADPH. A comparison of the binding of NADPH with the binding of the fragments and analogues provides a structural explanation for their relative binding affinities. In this respect, proper charge and hydrogen-bonding characteristics of buried parts of the ligand seem to be particularly important.  相似文献   

15.
Enzyme function often involves a conformational change. There is a general agreement that loops play a vital role in correctly positioning the catalytically important residues. Nevertheless, predicting the functional loops and most importantly their role in enzyme function remains a difficult task. A major reason for this difficulty is that loops that undergo conformational change are frequently not well conserved in their primary sequence. beta1,4-Galactosyltransferase is one such enzyme. There, the amino acid sequence of a long loop that undergoes a large conformational change upon substrate binding is not well conserved. Our molecular dynamics simulations show that the large conformational change in the long loop is brought about by a second, interacting loop. Interestingly, while the structural change of the second loop is much smaller than that of the long loop, its sequence (particularly glycine residues) is highly conserved. We further examine the generality of the proposition that there are loops that trigger movements but nevertheless show little or no structural changes in crystals. We focus on two other enzymes, enolase and lipase. We chose these enzymes, since they too undergo conformational change upon ligand binding, however, they have different folds and different functions. Through multiple sets of simulations we show that the conformational change of the functional loop(s) is brought about through communication of flexibility by triggering loops that have several glycine residues. We further propose that similar to the conservation of common favorable fold types and structural motifs, evolution has also conserved common "skillful" mechanisms. Mechanisms may be conserved across different folds, sequences and functions, with adaptation to specific enzymatic roles.  相似文献   

16.
17.
We present an approach for calculating conformational changes in membrane proteins using limited distance information. The method, named restraint-driven Cartesian transformations, involves 1) the use of relative distance changes; 2) the systematic sampling of rigid body movements in Cartesian space; 3) a penalty evaluation; and 4) model refinement using energy minimization. As a test case, we have analyzed the structural basis of activation gating in the Streptomyces lividans potassium channel (KcsA). A total of 10 pairs of distance restraints derived from site-directed spin labeling and electron paramagnetic resonance (SDSL-EPR) spectra were used to calculate the open conformation of the second transmembrane domains of KcsA (TM2). The SDSL-EPR based structure reveals a gating mechanism consistent with a scissoring-type motion of the TM2 segments that includes a pivot point near middle of the helix. The present approach considerably reduces the amount of time and effort required to establish the overall nature of conformational changes in membrane proteins. It is expected that this approach can be implemented into restrained molecular dynamics protocol to calculate the structure and conformational changes in a variety of membrane protein systems.  相似文献   

18.
Structural studies of large proteins and protein assemblies are a difficult and pressing challenge in molecular biology. Experiments often yield only low-resolution or sparse data that are not sufficient to fully determine atomistic structures. We have developed a general geometry-based algorithm that efficiently samples conformational space under constraints imposed by low-resolution density maps obtained from electron microscopy or X-ray crystallography experiments. A deformable elastic network (DEN) is used to restrain the sampling to prior knowledge of an approximate structure. The DEN restraints dramatically reduce over-fitting, especially at low resolution. Cross-validation is used to optimally weight the structural information and experimental data. Our algorithm is robust even for noise-added density maps and has a large radius of convergence for our test case. The DEN restraints can also be used to enhance reciprocal space simulated annealing refinement.  相似文献   

19.
FAS (TNF receptor superfamily member 6, also known as CD95) plays a major role in T-cell apoptosis and is often dysregulated in CTCL. We searched for structural alterations of the FAS gene with the potential to affect its function. Although several heterozygous FAS promoter single nucleotide polymorphisms (SNPs) were detected, the only homozygous one was the −671 GG SNP present in 24/80 CTCL cases (30%). This SNP maps to an interferon response element activated by STAT-1. EMSA and supershift EMSA showed decreased CTCL nuclear protein/STAT-1 binding to oligonucleotides bearing this SNP. Luciferase reporters showed significantly less interferon-alfa responsive expression by FAS promoter constructs containing this SNP in multiple CTCL lines. Finally, FAS was upregulated by interferon-alfa in wildtype CTCL cells but not those bearing the −671 GG SNP. These findings indicate that many CTCL patients harbor the homozygous FAS promoter −671 GG SNP capable of blunting its response to interferon. This may have implications for CTCL pathogenesis, racial incidence and the response of patients to interferon-alfa therapy. In contrast, functionally significant mutations in FAS coding sequences were detected uncommonly. Among CTCL lines with the potential to serve as models of FAS regulation, FAS-high MyLa had both FAS alleles, FAS-low HH was FAS-hemizygous and FAS-negative SeAx was FAS-null.  相似文献   

20.
随着肥胖及其相关疾病的患病率不断上升,肥胖并发的慢性炎症已成为一个不容忽视的公共卫生问题,迫切需要针对肥胖相关慢性炎症新的治疗方案和干预策略。脂肪酸合酶(Fatty acid synthase,FAS)是一种多功能复合酶,是治疗肥胖、糖尿病、非酒精性脂肪肝、炎症和癌症的潜在靶点。持续的炎症反应是潜在的危险因素。一些关键的炎症标志物与肥胖密切相关,其中特别是FAS抑制剂的研究受到越来越多的关注。在我国,中药已广泛被应用于炎症的治疗,其中有多种中药对FAS表现出强抑制作用。本文综述了中药FAS抑制剂的结构和活性特点,对于研发中药FAS抑制剂治疗炎症提供了依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号