首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In 2005, high levels of mortality occurred in an outbreak of the gypsy moth population in Georgia. Resting spores typical of entomophthoralean fungi were found within larval cadavers and molecular analyses confirmed that the pathogen was Entomophaga maimaiga. This is the first record of this entomopathogen in Georgia and in this part of Europe.  相似文献   

2.
Cadavers of late instar Lymantria dispar (gypsy moth) larvae killed by the fungal pathogen Entomophaga maimaiga predominantly contain resting spores (azygospores). These cadavers frequently remain attached to tree trunks for several weeks before they detach and fall to the ground. Density gradient centrifugation was used to quantify resting spores in the soil and on tree bark. Titers of resting spores were extremely high at 0–10 cm from the base of the tree and the number decreased with distance from the trunk of the tree. Titers were also highest in the organic layer of the soil with numbers decreasing precipitously with increasing depth in the soil. While resting spores were obtained from tree bark, densities per unit area were much lower than those found in the organic soil layer at the base of the tree. Field bioassays were conducted with caged L. dispar larvae to compare infection levels with distance from the tree trunk as well as on the trunk. Highest infection levels were found at 50cm from the tree base with lowest infection on the tree trunk at 0.5 m height, although we expected the highest infection levels among larvae caged at the bases of trees, where highest spore titers occurred. Laboratory experiments demonstrated that L. dispar larvae exposed to resting spore- bearing soil at the soil surface became infected while larvae exposed to soil with resting spores buried at least 1 cm below the surface did not become infected.  相似文献   

3.
Germination of conidia of Entomophaga maimaiga, an important fungal pathogen of gypsy moth, Lymantria dispar, was investigated on water agar and larval cuticle at varying densities. Percent germination was positively associated with conidial density on water agar but not on larval cuticle. When conidia were showered onto water agar, the rate of germination was much slower than on the cuticle of L. dispar larvae. From the same conidial showers, the resulting conidial densities on water agar were much higher than those on larval cuticle in part because many conidia adhered to setae and did not reach the cuticle. A second factor influencing conidial densities on larval cuticle was the location conidia occurred on larvae. Few conidia were found on the flexible intersegmental membranes in comparison with the areas of more rigid cuticle, presumably because conidia were physically dislodged from intersegmental membranes when larvae moved. Conidia were also exposed to heightened CO(2) to evaluate whether this might influence germination. When conidia on water agar were exposed to heightened CO(2) levels, germinating conidia primarily formed germ tubes while most conidia exposed to ambient CO(2) rapidly formed secondary conidia.  相似文献   

4.
Pathogenic fungi of insects from Argentina (Zygomycetes: Entomophthorales). Three species of Entomophthorales entomopathogenic fungi (Zygomycotina: Zygomycetes) have been identified from insects in agricultural crops (Buenos Aires Province, Argentina): Zoophthora radicans Batko (Brefeld); Entomophthora planchoniana Cornu and Pandora gammae (Weiser) Humber. Fungal structure measurements are reported.  相似文献   

5.
In this study, we tested (1) whether non-North American gypsy moth strains are susceptible to North American isolates of Entomophaga maimaiga and (2) the potential for erosion in the efficacy of E. maimaiga in controlling gypsy moth. We used bioassays to assess the variability in virulence (measured as time to death) as well as fitness of the pathogen (measured as spore production) in four gypsy strains challenged with six E. maimaiga isolates, using host and pathogen strains originating from Asia, Europe, and North America. We found that all E. maimaiga isolates tested were pathogenic to all strains of Lymantria dispar, regardless of the geographical origin of the fungal isolate, with at least 86% mortality for all combinations of fungal isolate and gypsy moth strain. We therefore conclude that Asian gypsy moths are susceptible to North American strains of E. maimaiga. No significant interactions between fungal isolates and gypsy moth strains with regard to time to death were found, indicating that each fungal isolate had the same overall effect on all the gypsy moth strains tested. However, fungal isolates differed significantly with regard to virulence, with a Russian isolate being the slowest to kill gypsy moth (5.1+/-0.1 days) and a Japanese isolate being the overall fastest to kill its host (4.0+/-0.1 days). Fungal isolates also differed in fitness, with variability in types of spores produced. These differences in virulence and fitness were, however, not correlated with geographical origin of the fungal isolate. Gypsy moth strains had no or only little effect on fungal virulence and fitness. Based on our studies with laboratory-reared gypsy moth strains, erosion of successful control of gypsy moth by E. maimaiga seems unlikely.  相似文献   

6.
7.
The insect-pathogenic fungal pathogen Entomophaga maimaiga is endemic to northeastern Asia and was first found in North America in 1989. Due to repeated epizootics and spread within populations of the major forest defoliator in northeastern North America, the gypsy moth (Lymantria dispar), this pathogen has gained much notoriety. Although this pathogen was purposely introduced to North America for biological control of L. dispar in 1910 to 1911, it is questionable whether it became established at the time of release and then remained at innocuous levels until relatively recently. Alternatively, the fungal strain present in North America today could be a more recent accidental introduction. DNA analysis demonstrates that this pathogen differs significantly from North American members of the same species complex (the Lepidoptera-specific Entomophaga aulicae species complex), and, to date, isolates of this introduced pathogen display little heterogeneity in North America. Nonsusceptible lepidopteran larvae have been identified, and either E. maimaiga is unable to penetrate the cuticle or the fungus cannot survive within the hemocoel. In the latter case, although E. maimaiga grows as protoplasts lacking cell walls in the host hemolymph, glycoproteins on plasma membranes of the protoplasts could lead to host recognition. Epizootiological studies demonstrate a clear association between fungal activity and environmental moisture but little association with host density under hypothesized conditions of high fungal density. Prediction of the occurrence of epizootics is not yet possible. E. maimaiga is easily established in new areas by releasing azygospores, but the ability to use this pathogen further for biological control will depend, in large part, on the development of mass production systems.  相似文献   

8.
The survival of Neozygites cf. floridana (Weiser and Muma) as dry hyphal bodies in mummified cassava green mites, Mononychellus tanajoa (Bondar), at 5.0% RH in the dark was affected by storage temperature. Survival of the fungus in mummies kept at 24±1.0°C could be demonstrated for 6–7 months. When stored at 4°C, the fungus sporulated from 90% of the mummies liberating an average of 186.9 primary conidia per mummy even after a storage period of 16 months, when the experiment was terminated. The temperature, humidity and light condition significantly affected the viability of primary conidia. The percent viability across all factors dropped from 98.4% after 0 h (beginning of the experiment) to 23.4% after a 1 h exposure to the conditions tested. Lower temperatures maintained higher viabilities with 86.3% of the conidia surviving after 18 h at 18°C, whereas almost all conidia died after 12 h at 33°C. Conidia survived less than 1 h when exposed to SDs (saturation deficit) of 2.0 mm Hg or higher at any tested temperature.  相似文献   

9.
A clinal female flight polymorphism exists in the gypsy moth, Lymantria dispar L., where female flight diminishes from east to west across Eurasia. A Russian population where females are capable of sustained ascending flight and a North American population with females incapable of flight were crossed: parentals, reciprocal F(1) hybrids, double reciprocal F(2) hybrids, and all possible backcrosses to both the parental lines were compared. Heritabilities were estimated using a threshold model, female offspring on female parent regressions, and joint-scaling analyses. Heritability of female flight capability measured using a free flight test was at least 0.60, and variation in wing size, muscle strength, and flight behaviors contributed to the flight polymorphism. Relative wing size varied continuously and had a heritability of 0.70. Environmental variation accounted for >90% of the variation in female preflight weight and relative flight muscle strength, as estimated by an inverted female's ability to right herself. Preflight walking behavior and early deposition of eggs were each inherited through a single gene with two co-dominant alleles. There was no evidence for sex-linkage or maternal effects in female flight capability or associated traits. Continued vigilance to exclude and eradicate introductions of strains capable of female flight in North America is warranted even in areas where no females fly, because some of the alleles needed for full flight capability may not be present in the North American populations, and some flight capability is maintained in the hybrids that could increase the rate of spread of L. dispar.  相似文献   

10.
Aims: To isolate and formulate a native strain of Zoophthora radicans naturally infecting larvae of diamondback moth, Plutella xylostella, existing in South Australia and to provide evidence that formulation of the fungus is effective against P. xylostella larvae, and therefore, it could be used as a tool in pest management of this insect. Methods and Results: Dose–response bioassays using formulated and unformulated forms of the fungus strain were carried out against third instar larvae of P. xylostella. Results obtained have indicated a significant increase in the larval mortality when higher concentrations of a formulated form of the fungus strain were applied compared to the treatments with the unformulated form (85·0 vs 57·5% of larval mortality, respectively, at the top concentration of 107 conidia/ml). The median lethal concentration (LC50) for a formulated form was 100 times less than that of the unformulated form when they were applied against the third instar larvae of P. xylostella. In addition, the formulation used in the present bioassays has preserved the viability of introduced fungus conidia for longer time in comparison with the unformulated conidia. Conclusions: The effective application of a formulated fungus strain against P. xylostella larvae constitutes the first step towards its use in pest management of this insect. Significance and Impact of the Study: The formulated fungus in inverted emulsion could be used as an alternative tool to insecticides in pest management of P. xylostella larvae because of the development of resistance to insecticides in the treated larvae.  相似文献   

11.
Neozygites sp. is commonly found infecting the cassava green mite,Mononychellus tanajoa (Bondar), in parts of northeast Brazil. The introduction of this fungus into other regions requires the knowledge of its specificity, especially in relation to natural enemies of different cassava pests. Laboratory tests indicated the development of germination tubes ofNeozygites in some females ofTetranychus bastosi Tuttle et al. andT. urticae Koch, with subsequent formation of a reduced number of hyphal bodies in someT. bastosi. No females of the phytoseiid predatorsAmblyseius idaeus (Denmark & Muma) andAmblyseius limonicus Garman & McGregor s.l. were infected byNeozygites sp.  相似文献   

12.
The identity and activity of an entomopathogenic fungus belonging to the Entomophthora muscae species complex and infecting Musca domestica in poultry houses from La Plata, Argentina, is reported. Entomophthora caused natural infections between September 2001 and September 2003. Primary conidia of this fungus were on average 29.5 ± 1.2 × 23.4 ± 2.4 μm and contained, on average, 10.5 ± 0.1 nuclei (range: 7–15) with an average diameter of 4.8 ± 0.1 μm. This fungus is identified as E. ferdinandii Keller (this specific epithet includes a nomenclaturally required spelling correction); this is a first record of E. ferdinandii in South America and of any member of the E. muscae species complex from flies in Argentina.  相似文献   

13.
14.
T. M. Butt  R. A. Humber 《Protoplasma》1989,151(2-3):115-123
Summary Mitosis in a mite-pathogenic species ofNeozygites (Zygomycetes: Entomophthorales) was investigated by indirect immunofluorescence microscopy using an antibody against -tubulin for visualization of microtubules (MTs). DAPI and rhodamine-conjugated phalloidin were used to stain chromatin and actin, respectively. Salient features of mitosis inNeozygites sp. are (1) a strong tendency for mitotic synchrony in any given cell, (2) conical protrusions at the poles of metaphase and anaphase nuclei revealed by actin staining, (3) absence of astral and other cytoplasmic MTs, (4) a spindle that occupies most of the nuclear volume at metaphase, (5) a spindle that remains symmetrical throughout most of mitosis, (6) kinetochore MTs that shorten during anaphase A, (7) a central spindle that elongates during anaphase B, pushing the daughter nuclei into the cell apices, and (8) interpolar MTs that continue to elongate even after separation of the daughter nuclei. Cortical cytoplasmic MTs are present in a few interphasic and post-cytokinetic cells. The data presented show thatNeozygites possesses features unique to this genus and support the erection of theNeozygitaceae as a separate family in theEntomophthorales.Abbreviations DAPI 4,6-diamidino-2-phenylindole - MT microtubule - SPB spindle pole body  相似文献   

15.
Neozygites floridana (Weiser & Muma) (Zygomycetes: Entomophthorales) has been reported infecting naturally at least 18 species of tetranychids worldwide. However, the host range of N. floridana is unknown. Epizootics caused by this pathogen to tetranychid populations indicate that N. floridana has the potential to be used as a biological control agent. However, the virulence and specificity of species and strains of Neozygites need to be assessed in the laboratory to reveal its potential as a biological control agent. N. floridana isolates are currently been investigated in Brazil as biological control agents against the tomato red mite, Tetranychus evansi Baker & Pritchard, and the two-spotted spider mite, Tetranychus urticae Koch. The pathogenicity of five strains of N. floridana obtained from T. urticae, T. evansi and T. ludeni Zacher was assessed against populations of Mononychellus tanajoa (Bondar), Schizotetranychus sacharum Flechtmann & Baker, Tetranychus abacae Baker & Pritchard and Tetranychus armipenis Flechtmann & Baker, in addition to the species from which the fungus was obtained. Mummified mites were placed on leaf discs of the host plant of each tetranychid to promote fungal sporulation, and after 24 h the mites were transferred to the leaf discs. Contamination, infection and mummification were evaluated daily for seven days after confinement. Each isolate was pathogenic to three or four out of the six spider mite species tested. However, except for isolate ESALQ1421, all isolates caused higher levels of infection and significant mummification only to the tetranychid species from which they were collected. None of the isolates was pathogenic to S. sacharum and only one isolate infected T. abacae. Alternative hosts may be important for N. floridana survival in tropical regions where resting spores are rarely found.  相似文献   

16.
贾春生  洪波 《昆虫知识》2011,48(2):442-446
在中国首次报道了侵染摇蚊的库蚊虫霉(Entomophtora culichs)的形态特征、侵染症状以及发生动态等。库蚊虫霉初生分生孢子,钟罩形,顶部有一明显小尖突,(14.6±1.5)μm×(10.8±1.2)μm。次生分生孢子形似初生分生孢子,但略小,(11.0±1.1)μm×(8.0±0.5)μm。休眠孢子,球形至亚球形,直径(29.3±1.9)μm。被侵染摇蚊尸体以假根附着于基物上,通体覆盖着绿色的真菌子实层。库蚊虫霉侵染率在不同植物上明显不同。库蚊虫霉侵染率随季节不同波动很大,春季最高达90.2%,其次为秋季和冬季,夏季最低为0。2006—2009年库蚊虫霉侵染率为93.5%~95.7%,年际之间变动不大。  相似文献   

17.
Lettuce crops, Lactuca sativa, organically produced in La Plata, Argentina, were sampled in order to determine the prevalence of fungal diseased aphids. Nasonovia ribisnigri was the only aphid detected and its occurrence was highly variable. The fungal pathogen Pandora neoaphidis (Entomophthoromycotina: Entomophthorales) was the only pathogen detected. We recorded a maximum of 34.2 aphids per plant and the highest rate of fungal prevalence was 56.6% (n = 30) (aphids infected/total aphids). Infected aphids were observed in all sampling sites. No differences of infection rates were detected between the center and the edge of crops. Host density was an important factor determining infection. The majority of host population was comprised of nymphs which were the most infected in terms of individuals per habitat unit (lettuce plant), but considering the proportion of infected aphids per stage of development, the prevalence of infection in nymphs and adults was similar.  相似文献   

18.
Female gypsy moths, Lymantria dispar L., from 46 geographic strains were evaluated for flight capability and related traits. Males from 31 of the same strains were evaluated for genetic diversity using two polymorphic cytochrome oxidase I mitochondrial DNA restriction sites, the nuclear FS1 marker, and four microsatellite loci. Females capable of strong directed flight were found in strains that originated from Asia, Siberia, and the northeastern parts of Europe, but flight capability was not fixed in most strains. No flight-capable females were found in strains from the United States or southern and western Europe. Wing size and musculature were shown to correlate with flight capability and potentially could be used in predicting female flight capability. The mtDNA haplotypes broadly separated the gypsy moth strains into three groups: North American, European/Siberian, and Asian. Specific microsatellite or FS1 alleles were only fixed in a few strains, and there was a gradual increase in the frequency of alleles dominant in Asia at both the nuclear and microsatellite loci moving geographically from west to east. When all the genetic marker information was used, 94% of the individuals were accurately assigned to their broad geographic group of origin (North American, European, Siberian, and Asian), but female flight capability could not be predicted accurately. This suggests that gene flow or barriers to it are important in determining the current distribution of flight-capable females and shows the need for added markers when trying to predict female flight capability in introduced populations, especially when a European origin is suspected.  相似文献   

19.
Little information is available on the systemic effects of Bacillus thuringiensis toxins in the hemocoel of insects. In order to test whether B. thuringiensis-activated toxins elicit a toxic response in the hemocoel, we measured the effect of intrahemocoelic injections of several Cry1 toxins on the food intake, growth, and survival of Lymantria dispar (Lepidoptera) and Neobellieria bullata (Diptera) larvae. Injection of Cry1C was highly toxic to the Lymantria larvae and resulted in the complete inhibition of food intake, growth arrest, and death in a dose-dependent manner. Cry1Aa and Cry1Ab (5 microg/0.2 g [fresh weight] [g fresh wt]) also affected growth and food intake but were less toxic than Cry1C (0.5 microg/0.2 g fresh wt). Cry1E and Cry1Ac (5 microg/0.2 g fresh wt) had no toxic effect upon injection. Cry1C was also highly toxic to N. bullata larvae upon injection. Injection of 5 microg/0.2 g fresh wt resulted in rapid paralysis, followed by hemocytic melanization and death. Lower concentrations delayed pupariation or gave rise to malformation of the puparium. Finally, Cry1C was toxic to brain cells of Lymantria in vitro. The addition of Cry1C (20 microg/ml) to primary cultures of Lymantria brain cells resulted in rapid lysis of the cultured neurons.  相似文献   

20.
The lepidopteran-specific fungal pathogen Entomophaga maimaiga is highly virulent against Lymantria dispar (gypsy moth) larvae, and other members of the family Lymantriidae. Numerous species in the subfamily Cuculliinae (Family Noctuidae) are not susceptible to E. maimaiga due to the inability of this fungus to penetrate the larval cuticle. Conidial attachment and germination were compared among five cuculliine species and L. dispar using bioassays and scanning electron microscopy. Although conidia were showered evenly across larvae during bioassays, on L. dispar conidia were most abundant on segments, where they adhered well to the cuticle and germinated at high percentages. Conidia on cuculliine cuticles were predominantly found in large, loose aggregations in intersegmental areas. Few conidia on cuculliine cuticle germinated and scanning electron microscopy revealed a thick film of mucous enveloping conidia. We hypothesize that the conidia on cuculliines become coated by this film and were only loosely attached to the larval cuticle. No such film was seen on L. dispar larvae where individual conidia appeared well attached. On L. dispar larvae many conidia also adhered to setae. To determine if hydrophobicity affected the ability of E. maimaiga conidia to attach and germinate on a substrate, a goniometer was used to determine relative hydrophobicity of larval cuticles. L. dispar cuticle was more hydrophobic than cuculliine cuticle, suggesting that a high level of hydrophobicity could be a required characteristic for hosts. Cuticles from four cuculliine species and L. dispar were sequentially extracted using hexane, chloroform, and methanol. Conidia were showered onto glass slides coated with the different extracts and germination was quantified. Methanol extracts of cuculliine cuticle consistently decreased germination, compared to all extracts of L. dispar cuticle. For all L. dispar extracts, the majority of conidia produced germ tubes, which is a normal prerequisite for cuticular penetration. For the cuculliines, conidia exposed to hexane and chloroform extracts produced secondary conidia as did all controls, but the conidia exposed to cuculliine methanol extracts that germinated produced germ tubes. These studies demonstrated that a range of factors act in concert to prevent E. maimaiga infection of the cuculliine species investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号