首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In plant species not containing polyols, boron (B) is regarded as practically phloem immobile. This has been explained by the high membrane permeability of boric acid (BA) resulting in a rapid efflux out of the phloem and re-transport into the leaf in the xylem. The present study investigated how the xylem flow rate affects the phloem mobility of foliar-applied BA in Ricinus communis L. cv. Impala. Xylem flow rates were varied by exposure of the canopy to different levels of relative humidity (RH). In seedlings with severed hypocotyls, i.e. without xylem flow, B was highly mobile. In intact seedlings and plants, the degree of mobility and the within-plant distribution of B were strongly RH-dependent. At RH of 70% or above, up to 16–24% of the B was translocated to other plant parts, whereas at lower RH no significant movement of B was detected. Only at an intermediate RH (70–80%), did leaf-applied B accumulate in roots. At 100% RH, B transport in the xylem was significantly increased, suggesting that the build up of root pressure induced the recycling of phloem delivered B from roots to shoots. These results indicate that in R. communis phloem B mobility is not constant, but strongly affected by transpiration rates.  相似文献   

2.
Wheat (Triticum aestivum L. cv. ‘Arina’) shoots grown in the field were excised post-anthesis and incubated in the laboratory for 72 h standing in 2 mM RbCl+2 mM SrCl2. Strontium is a phloemimmobile, xylem-mobile element and indicates the distribution of the xylem sap in the plant. Rubidium is easily transported in the phloem and behaves similarly to the highly mobile K as far as the redistribution within the plant is concerned, although Rb cannot substitute physiologically or biochemically for K. The Sr contents in the ear were hardly affected by stem length or by steam-girdling (phloem-interruption). Rubidium on the other hand accumulated in the stem. A peduncle length of 5 cm was sufficient to decrease the Rb concentration in the xylem by more than 50% at 25°C. Only a minor quantity of Rb reached the ear after passing through 20 cm of stem without nodes and this transport was prevented by steam-girdling. A remarkable flux of Rb into the ear was observed in shoots with a vascular connection between the flag leaf lamina and the ear. Our results suggest that Sr was transported with the transpiration stream, while Rb was rapidly eliminated from the xylem and reached the ear via the phloem. The temperature optimum for the removal of Rb from the xylem was around 35°C. The nodes may further contribute, but are not prerequisites for this redistribution. The observed transfer processes could allow a solute specific transport via the xylem and phloem of maturing cereals and may be an important factor influencing the nutrient economy in the field.  相似文献   

3.
This study addressed whether the winter annual Arabidopsis thaliana can adjust foliar phloem and xylem anatomy both differentially and in parallel. In plants acclimated to hot vs cool temperature, foliar minor vein xylem‐to‐phloem ratio was greater, whereas xylem and phloem responded concomitantly to growth light intensity. Across all growth conditions, xylem anatomy correlated with transpiration rate, while phloem anatomy correlated with photosynthetic capacity for two plant lines (wild‐type Col‐0 and tocopherol‐deficient vte1 mutant) irrespective of tocopherol status. A high foliar vein density (VD) was associated with greater numbers and cross‐sectional areas of both xylem and phloem cells per vein as well as higher rates of both photosynthesis and transpiration under high vs low light intensities. Under hot vs cool temperature, high foliar VD was associated with a higher xylem‐to‐phloem ratio and greater relative rates of transpiration to photosynthesis. Tocopherol status affected development of foliar vasculature as dependent on growth environment. The most notable impact of tocopherol deficiency was seen under hot growth temperature, where the vte1 mutant exhibited greater numbers of tracheary elements (TEs) per vein, a greater ratio of TEs to sieve elements, with smaller individual sizes of TEs, and resulting similar total areas of TEs per vein and transpiration rates compared with Col‐0 wild‐type. These findings illustrate the plasticity of foliar vascular anatomy acclimation to growth environment resulting from independent adjustments of the vasculature's components.  相似文献   

4.
The toxic heavy metal cadmium is taken up by plants and maycontaminate harvested parts of agricultural crops. In the experimentsreported here, cadmium was introduced together with markersfor phloem (rubidium) and xylem (strontium) transport, eitherinto intact shoots via a flap below the flag leaf node, or intodetached shoots via the cut stem. Cadmium introduced into intactplants was redistributed during maturation from the peduncleand the flag leaf lamina to the grain. In detached shoots, somecadmium was removed from the transpiration stream, as judgedfrom the comparison of shoots steam-girdled below the ear andof controls with an intact phloem in the peduncle. A minor quantityof cadmium was transported to the grain via the phloem in controlshoots while a high percentage of this element was retainedin the peduncle. The cadmium content of the grain increasedin response to the increased cadmium concentrations in the feedingsolutions (0.1 to 10 µM). The cadmium content of the grainwas slightly lower when zinc (>10 µM) was introducedat the same time as cadmium (1 µM).Copyright 1997 Annalsof Botany Company Triticum aestivumL.; cadmium; phloem transport; wheat; zinc  相似文献   

5.
Phloem loading of several amino acids (D- and L-Val, Arg, Asn,Asp, Leu) was studied in shoots of L. albus using a phloem bleedingtechnique on both intact plants and detached shoots fed viathe transpiration stream. Val was singled out for intensivestudy due to the minimal amount of metabolism it underwent inthe shoot For the amino acids studied, the relationship between xylem,phloem, and leaflet concentrations was determined by the interactionof rates of xylem supply, metabolism, and export. At elevatedxylem fluid concentrations, low rates of loading of D-Val intothe phloem and little metabolism in the tissues resulted inhigh levels in the leaflets. For other amino acids (Arg, Asp,Leu) rapid metabolism in the leaflets prevented a build-up inconcentration in either phloem or leaflets. Asn was rapidlytransferred to the phloem, thus high levels in the xylem leadto high concentrations in the phloem without greatly affectingleaflet concentrations. L-Val responded in a manner intermediatebetween Asn and D-Val. A detailed study of L-Val showed it to be loaded into the phloemagainst a concentration gradient in both stem and leaflets.Some of this Val originated from the transpiration stream atboth locations but in the leaflets as much as 64% of the Valoriginated from other sources, e.g. recent photosynthesis. L-Valsupplied to the phloem in the stem was derived from a largestorage pool and did not come directly from the xylem fluid.As a consequence the rate of stem loading was independent ofshort-term fluctuations in the xylem fluid Val concentration.L-Val entering the leaflets in the xylem initially bypassedthe large storage pool and was loaded directly into the phloem.However, after 350 min the pools had reached an equilibriumand rate of phloem loading was dependent on total leaflet concentration.  相似文献   

6.
For the further optimization of antibody expression in plants,it is essential to determine the final accumulation sites ofplant-made antibodies. Previously, we have shown that, uponsecretion, IgG antibodies and Fab fragments can be detectedin the intercellular spaces of leaf mesophyil cells of transgenicArabidopsis thaliana plants. However, immunofluorescence microscopyshowed that this is probably not their final accumulation site.In leaves, IgG and Fabfragments accumulate also at the interiorside of the epidermal cell layers and in xylem vessels. Theseaccumulation sites correspond with the leaf regions where waterof the transpiration stream is entering a space impermeableto the proteins or where water is evaporating. In roots, plant-madeFab fragments accumulate in intercellular spaces of cortex cells,in the cytoplasm of pericycle and, to a lesser extent, endodermiscells, and in cells of the vascular cylinder. In other words,antibody accumulation occurs at the sites where water passeson its radial pathway towards and within the vascular bundle.Taken together, our results suggest that, upon secretion ofplant-made antibodies or Fab fragments, a large proportion ofthese proteins are transported in the apoplast of A. thaliana,possibly by the water flow in the transpiration stream. 4Corresponding author. Fax 32-9-2645349; e-mail: anpic{at}gengenp.rug.ac.be  相似文献   

7.
In a long-term experiment with maize grown at different humidities, Tanner and Beevers (1990) demonstrated that the amount of water lost by the plants in transpiration (plus guttation) could be reduced by a factor of three without any adverse effect on growth. As a consequence, the authors questioned the importance of the transpiration stream in supplying the shoot with minerals, arguing that there are other causes of mass flow in the xylem (such as Münch counterflow from phloem to xylem, and water consumed by growing sink tissues) that may, in the limit, be capable on their own of providing the shoot with minerals. This hypothesis is discussed here in the light of recent work on xylem water relations. It is shown to involve the incorrect premise that, if transpiration were required for long-distance ion transport, plants should grow less well at high humidity. Instead, solute flux to the shoot can be demonstrated by experiment to remain constant over a wide range of transpiration rates, since the concentration of solutes in the xylem sap varies inversely with transpiration rate. Independent evidence suggests that the non-transpirational component of mass flow in the xylem is small and is unlikely to be able to provide the shoot adequately with minerals in the absence of transpiration. A simple corollary of this view is that plant growth should be reduced at very low transpiration rates, a prediction that should be testable at sufficiently high humidities under carefully controlled conditions.  相似文献   

8.
The economy of carbon, nitrogen and water during growth of nodulated, nitrogen-fixing plants of white lupin (Lupinus albus L.) was studied by measuring C, N and H2O content of plant parts, concentrations of C and N in bleeding sap of xylem and phloem, transpirational losses of whole shoots and shoot parts, and daily exchanges of CO2 between shoot and root parts and the surrounding atmosphere. Relationships were studied between water use and dry matter accumulation of shoot and fruits, and between net photosynthesis rate and leaf area, transpiration rate and nitrogen fixation. Conversion efficiencies were computed for utilization of net photosynthate for nitrogen fixation and for production of dry matter and protein in seeds. Partitioning of the plant's intake of C, N and H2O was described in terms of growth, transpiration, and respiration of plant parts. An empirically-based model was developed to describe transport exchanges in xylem and phloem for a 10-day interval of growth. The model depicted quantitatively the mixtures of xylem and phloem streams which matched precisely the recorded amounts of C, N and H2O assimilated, absorbed or consumed by the various parts of the plant. The model provided information on phloem translocation of carbon and nitrogen to roots from shoots, the cycling of carbon and nitrogen through leaves, the relationship between transpiration and nitrogen partitioning to shoot organs through the xylem, the relative amount of the plant's water budget committed to phloem translocation, and the significance of xylem to phloem transfer of nitrogen in stems as a means of supplying nitrogen to apical regions of the shoot.  相似文献   

9.
The aim of this study is to understand the parameters regulatingcalcium ion distribution in leaves. Accumulation of ions inleaf tissue is in part dependent on import from the xylem. Thisimport via the transpiration stream is more important for ionssuch as calcium that are xylem but not phloem mobile and cannottherefore be retranslocated. Accumulation of calcium was measuredon bulk coriander leaf tissue (Coriandrum sativum L. cv. Lemon)using ion chromatography and calcium uptake was visualized usingphosphor-images of 45Ca2+. Leaves of plants grown in hydroponicshad elevated calcium in the centre of the leaf compared withthe leaf margin, while K+ was distributed homogeneously overthe leaf. This calcium was shown to be localised to the mesophyllvacuoles using EDAX. Stomatal density and evapotranspiration(water loss per unit area of leaf) were equal at inner and outersections of the leaf. Unequal ion distribution but uniformityof water loss suggested that there was a difference in the extentof uncoupling of calcium and water transport between the innerand outer leaf. Since isolated tissue from the inner and outerleaf were able to accumulate similar amounts of calcium, itis proposed that the spatial variation of leaf calcium concentrationis due to differential ion delivery to the two regions ratherthan tissue/cell-specific differences in ion uptake capacity.There was a positive correlation between whole leaf calciumconcentration and the difference in calcium concentration betweeninner and outer leaf tissue. Exposing the plants to increasedhumidity reduced transpiration and calcium delivery to the leafand abolished this spatial variation of calcium concentration.Mechanisms of calcium delivery to leaves are discussed. An understandingof calcium delivery and distribution within coriander will informstrategies to reduce the incidence of calcium-related syndromessuch as tip-burn and provides a robust model for the transportof ions and other substances in the leaf xylem. Key words: Calcium, Coriandrum sativum, distribution, ion chromatography, leaves, radioisotope, spatial variation, transpiration, uptake Received 29 August 2008; Accepted 16 October 2008  相似文献   

10.
The amino acid, protein, carbohydrate, and mineral element contents and composition of the xylem, phloem, and leaves of healthy and insect-damaged Caragana korshinskii plants were analyzed to evaluate the changes in the nutrient content of C. korshinskii after damage by Chlorophorus caragana. The amino acid content decreased in the leaf and phloem but increased in the xylem in response to damage, while the protein content did not change in the leaf, increased in the xylem, and decreased in the phloem. The carbohydrate content increased slightly in the leaf but decreased in the xylem and phloem. The six mineral elements analyzed, namely, phosphorous, potassium, magnesium, zinc, manganese, and iron decreased in the xylem, phloem, and leaf. The present results may provide a basis for understanding the mechanisms underlying the effect of C. caragana on the loss of viability of C. korshinskii.  相似文献   

11.
Ion (K+, Na+, Mg2+, Ca2+ and Cl) flows and partitioning in thepetiole and lamina of leaf 6 of castor bean {Ricinus communisL.) plants growing in the presence of a mean of 71 mol m–3NaCl were described by an empirical modelling technique. Thiscombined data on changes in ion contents of petiole and lamina,ion: carbon molar ratios of phloem bleeding sap and pressure-inducedxylem exudates of the leaf with previously described informationon the economies of C and N in identical leaf material. Datawere expressed as daily exchanges of ions in xylem and phloem,or depicted as models of ion balance and transport activityof petiole and lamina during four consecutive phases of leaflife. The early import phase was characterized by high intakeof K and Mg through phloem, and of Ca mainly through xylem,but only limited intake of Na and Cl. The next phase up to fullleaf expansion showed similar relative differences in xylemintake between ions and the onset of rapid phloem export fromthe lamina of K and Mg, some export of Na and Cl but scarcelyany of Ca. The next mature phase, marked by maximal photosynthesisand transpiration by the leaf, showed high xylem intake of allions in xylem. This was more than matched by phloem export ofMg and K, but by only fractional re-export of Na and Cl andagain very limited cycling through the leaf of Ca. The finalpre-senescence phase exhibited similar behaviour, but with generallygreater contribution to phloem transport from mobilization ofion reserves of the lamina. The petiole retained particularlylarge amounts of Na and Cl in its early growth, thereby protectingthe lamina from excessive entry of salt, but these petiolarpools, together with those or other nutrient ions, were laterpartially mobilized to the lamina via the xylem stream. Datawere discussed in relation to the relatively high salt toleranceexhibited by the species. Key words: Ricinus communis, xylem and phloem transport, ion balance, K+ economy, Na+ exclusion, NaCl-stress, salt tolerance, leaf development  相似文献   

12.
The diurnal water budget of developing grape (Vitis vinifera L.) berries was evaluated before and after the onset of fruit ripening (veraison). The diameter of individual berries of potted ‘Zinfandel’ and ‘Cabernet Sauvignon’ grapevines was measured continuously with electronic displacement transducers over 24 h periods under controlled environmental conditions, and leaf water status was determined by the pressure chamber technique. For well-watered vines, daytime contraction was much less during ripening (after veraison) than before ripening. Daytime contraction was reduced by restricting berry or shoot transpiration, with the larger effect being shoot transpiration pre-veraison and berry transpiration post-veraison. The contributions of the pedicel xylem and phloem as well as berry transpiration to the net diurnal water budget of the fruit were estimated by eliminating phloem or phloem and xylem pathways. Berry transpiration was significant and comprised the bulk of water outflow for the berry both before and after veraison. A nearly exclusive role for the xylem in water transport into the berry was evident during pre-veraison development, but the phloem was clearly dominant in the post-veraison water budget. Daytime contraction was very sensitive to plant water status before veraison but was remarkably insensitive to changes in plant water status after veraison. This transition is attributed to an increased phloem inflow and a partial discontinuity in berry xylem during ripening.  相似文献   

13.
Time lags for xylem and stem diameter variations in a Scots pine tree   总被引:9,自引:1,他引:8  
Diameter variations in the xylem and whole stem (i.e. over bark) stem of a Scots pine (Pinus sylvestris L.) tree were measured at four heights over a 23 d period at 5 min intervals. Cross‐correlation analysis was used to calculate time lags between the measurements. Xylem diameter measurements at the different heights had time lags varying from 10 to 50 min, measurements at the lower heights lagging behind the most. This result was in good agreement with the cohesion theory of transpiration. For the whole stem diameter measurements, the treetop lagged behind all other heights and the shortest lags were midway along the stem. Changes in whole stem diameter always lagged behind those of xylem stem diameter (30–110 min), and at all heights. The considerable differences in the behaviour of xylem and whole stem diameter support the Münch hypothesis of phloem flow. Time lags calculated separately for the shrinkage (morning) and swelling (afternoon) periods indicated shorter time lags during the swelling periods. The non‐destructive methods used show promise in the simultaneous study of flow dynamics of xylem and phloem in trees.  相似文献   

14.
Cytokinins are predominantly root-born phytohormones which are distributed in the shoot via the xylem stream. In the hormone message concept they are considered as root signals mediating the transport of the photosynthates to the various sinks of a plant. In this paper the cytokinin relations of Urtica dioica L., the stinging nettle, are described, based on the daily flux from the roots to the shoot. Trans-zeatin-type cytokinins predominate in the various tissues of Urtica (Wagner and Beck, 1993), and accordingly trans-zeatin riboside and trans-zeatin are the forms transported by the xylem sap. The daily time-course of cytokinin concentration in root pressure exudates and in xylem sap collected from a petiole after pressurizing the root bed showed high concentrations in the morning, followed by a substantial drop to a level of 15–30% of the initial concentration which was then maintained during the afternoon. This time-course is interpreted as resulting from continuous synthesis and exudation of cytokinins into the xylem fluid of the roots whose cytokinin concentration is then modified by the dynamics of the transpiration stream. Loading of cytokinins into the xylem sap could be enhanced several times by increasing the flux rate of the xylem stream to the maximal transpiration rate when a maximum export rate was reached. The total daily cytokinin gain by the shoot depended on the nitrogen status of the plant. Roots of Urtica plants grown on a sufficient nitrogen supply had a significantly higher cytokinin content and exuded more cytokinins into the shoot than those of plants raised under nitrogen shortage. A positive correlation was found between the steady rates of cytokinin export measured during the afternoon and the shoot to root-ratios of biomass which, in turn, corresponded to the nitrogen status of the plants.  相似文献   

15.
Changes in resource availability and biotic and abiotic stress may alter the defensive mechanisms of pine trees. The effect of fertilisation on the resin canal structure of Pinus pinaster seedlings established in two trials in NW Spain, one attacked by Hylobius abietis and the other non-attacked, was studied. The leaders of 50 plants were destructively sampled and the resin canal density, the canal area and its relative conductive area in the phloem and xylem were assessed. Experimentally increased nutrient availability significantly decreased resin canal density in the phloem of the seedlings in the two analysed trials, where unfertilised seedlings presented up to 30% more resin canal density than the fertilised seedlings (mean value ± SEM = 0.32 ± 0.02 resin canals mm−2 in the fertilised plants versus 0.45 ± 0.04 resin canals mm−2 in the control plants). Fertilisation had no effect on the resin canal system in the xylem, but significantly increased tracheid size. Significant differences of resin canals among sites were observed mainly in the xylem; the resin canal density was 1.7-fold greater in the attacked site than in the non-attacked site. The similar structure of phloem resin canals in both sites supports that phloem resin canals are constitutive mechanisms of defence in P. pinaster, whereas xylem resin canals would be constitutive mechanisms but also inducible mechanisms of resistance following the attack of pine weevils or bark beetles. XM and LS equally contributed to this paper.  相似文献   

16.
Using water infiltration of the plant and individual shoots with the subsequent intercellular liquid extraction by the pressure chamber, dynamics of the movement 14C-photosynthates from cell to apoplast, and 14C distribution among photosynthetic products in mesophyll cells and apoplast were studied. The relative quantity of 14C-photosynthetes in leaf apoplast depended on growing conditions; drought increased, and nitrate supply decreased it. When the middle leaves absorbed 14CO2, photosynthates moving down in stem phloem appeared in intercellular space, where they were transported up by transpiration stream. 14C-photosynthates entering to the apex and young leaves were utilized a accumulated, and photosynthates transported to the mature leaves were reloaded into the phloem and reexported. Thus, photosynthates circulated through the plant and were redistributed to the plant organs according to their transpiration. In leaf apoplast photosynthetic sucrose was partly hydrolyzed to glucose and fructose. This increased under high nitrogen supply. The result indicate that apoplast sucrose hydrolysis is the basic cause of the reduction of photosynthate flux from leaves when the nitrate concentration in soil increases.  相似文献   

17.
The alkali metals cesium, rubidium, lithium and sodium were introduced together with strontium via flaps into leaf laminas or into the stem of maturing, intact winter wheat (Triticum aestivum L. cv. Arina) grown in a field. Long-distance transport of these elements and the influence of the application date and of different application positions were investigated. The phloem-immobile Sr served as a marker for the distribution of the xylem sap in the plants. Dry matter accumulation in the grains and the transpiration per shoot were not markedly affected by the treatments as compared to control plants. The phloem mobility was rather high for Cs and Rb. Li was almost immobile in the phloem (similarly to Sr). An application into the cut stem xylem below the second leaf node contributed more to the contents in the grains than an application into the flag leaf. An earlier feeding date led to a higher accumulation in the grains. The marked losses of the elements applied during maturation (most pronounced for Li) can be explained by leakage in the rain.  相似文献   

18.
The study was conducted in order to determine whether water stress affects the accumulation of dry matter in tomato fruits similarly to salinity, and whether the increase in fruit dry matter content is solely a result of the decrease in water content. Although the rate of water transport to tomato fruits decreased throughout the entire season in saline water irrigated plants, accumulation rates of dry matter increased significantly. Phloem water transport contributed 80–85% of the total water transport in the control and water-stressed plants, and over 90% under salinity. The concentration of organic compounds in the phloem sap was increased by 40% by salinity. The rate of ions transported via the xylem was also significantly increased by salinity, but their contribution to fruit osmotic adjustment was less. The rate of fruit transpiration was also markedly reduced by salinity. Water stress also decreased the rate of water transport to the tomato fruit and increased the rate of dry matter accumulation, but much less than salinity. The similar changes, 10–15%, indicate that the rise in dry matter accumulation was a result of the decrease in water transport. Other parameters such as fruit transpiration rates, phloem and xylem sap concentration, relative transport via phloem and xylem, solutes contributing to osmotic adjustment of fruits and leaves, were only slightly affected by water stress. The smaller response of these parameters to water stress as compared to salinity could not be attributed to milder stress intensity, as leaf water potential was found to be more negative. Measuring fruit growth of girdled trusses, in which phloem flow was inactive, and comparing it with ungirdled trusses validated the mechanistic model. The relative transport of girdled as compared to ungirdled fruits resembled the calculated values of xylem transport.  相似文献   

19.
Intact plants and stem-girdled plants of Phaseolus vulgaris grown hydroponically were exposed to 5 degrees C for up to 4 d; stem girdling was used to inhibit the phloem transport from the leaves to the roots. After initial water stress, stomatal closure and an amelioration of root water transport properties allowed the plants to rehydrate and regain turgor. Chilling augmented the concentration of abscisic acid (ABA) content in leaves, roots and xylem sap. In intact plants stomatal closure and leaf ABA accumulation were preceded by a slight alkalinization of xylem sap, but they occurred earlier than any increase in xylem ABA concentration could be detected. Stem girdling did not affect the influence of chilling on plant water relations and leaf ABA content, but it reduced slightly the alkalinization of xylem sap and, principally, prevented the massive ABA accumulation in root tissues and the associated transport in the xylem that was observed in non-girdled plants. When the plants were defoliated just prior to chilling or after 10 h at 5 degrees C, root and xylem sap ABA concentration remained unchanged throughout the whole stress period. When the plants were chilled under conditions preventing the occurrence of leaf water deficit (i.e. at 100% relative humidity), there were no significant variations in endogenous ABA levels. The increase in root hydraulic conductance in chilled plants was a response neither to root ABA accretion, nor to some leaf-borne chemical signal transported downwards in the phloem, nor to low temperature per se, as indicated by the results of the experiments with defoliated or girdled plants and with plants chilled at 100% relative humidity. It was concluded that the root system contributed substantially to the bean's ability to cope with chilling-induced water stress, but not in an ABA-dependent manner.  相似文献   

20.
Circular patches of bark were surgically isolated on the sides of sugar maple (Acer saccharum Marsh.) trees at breast height at various times during the dormant and growing seasons. Subsequently, samples of wood and attached bark were taken from isolated and control sites to determine the effects of isolation of the bark on cambial activity and xylem and phloem development. In control sites cambial activity and xylem and phloem development occurred normally. Isolation of bark during the dormant season (in November, February, or March) prevented initiation of cambial activity and xylem and phloem development in isolated areas of half of the trees. Varying degrees of cambial activity (periclinal divisions) occurred in the remaining isolated areas, but normal cambial activity and xylem and phloem development were prevented. Isolation of bark after initiation of cambial activity and phloem differentiation, but prior to initiation of xylem differentiation, resulted in the formation of very narrow xylem and phloem increments with atypically short vessel members and sieve-tube members, respectively. The xylem increments consisted primarily of parenchyma cells. Isolation of bark after initiation of xylem differentiation resulted in curtailment of secondary wall formation in the last-formed part of many increments. The last-formed vessel members of all these xylem increments were atypically short. Similarly, the last formed sieve-tube members of corresponding phloem increments were atypically short. The atypically short cells in the xylem and phloem of isolated areas reflected the effect of isolation on the cambial region, viz., the subdivision of all fusiform cells into strands of cells. Ultimately, the strands of short fusiform cells lapsed into maturity, leaving only strands of parenchymatous elements between xylem and phloem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号