首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We assessed the composition of the bacterioplankton in the Atlantic sector of the Southern Ocean in austral fall and winter and in New Zealand coastal waters in summer. The various water masses between the subtropics/Agulhas–Benguela boundary region and the Antarctic coastal current exhibited distinct bacterioplankton communities with the highest richness in the polar frontal region, as shown by denaturing gradient gel electrophoresis of 16S rRNA gene fragments. The SAR11 clade and the Roseobacter clade‐affiliated (RCA) cluster were quantified by real‐time quantitative PCR. SAR11 was detected in all samples analysed from subtropical waters to the coastal current and to depths of > 1000 m. In fall and winter, this clade constituted < 3% to 48% and 4–28% of total bacterial 16S rRNA genes respectively, with highest fractions in subtropical to polar frontal regions. The RCA cluster was only present in New Zealand coastal surface waters not exceeding 17°C, in the Agulhas–Benguela boundary region (visited only during the winter cruise), in subantarctic waters and in the Southern Ocean. In fall, this cluster constituted up to 36% of total bacterial 16S rRNA genes with highest fractions in the Antarctic coastal current and outnumbered the SAR11 clade at most stations in the polar frontal region and further south. In winter, the RCA cluster constituted lower proportions than the SAR11 clade and did not exceed 8% of total bacterial 16S rRNA genes. In fall, the RCA cluster exhibited significant positive correlations with latitude and ammonium concentrations and negative correlations with concentrations of nitrate, phosphate, and for near‐surface samples also with chlorophyll a, biomass production of heterotrophic prokaryotes and glucose turnover rates. The findings show that the various water masses between the subtropics and the Antarctic coastal current harbour distinct bacterioplankton communities. They further indicate that the RCA cluster, despite the narrow sequence similarity of > 98% of its 16S rRNA gene, is an abundant component of the heterotrophic bacterioplankton in the Southern Ocean, in particular in its coldest regions.  相似文献   

2.
Bacteria belonging to the SAR11 clade are among the most abundant prokaryotes in the pelagic zone of the ocean. 16S rRNA gene-based analyses indicate that they constitute up to 60% of the bacterioplankton community in the surface waters of the Red Sea. This extremely oligotrophic water body is further characterized by an epipelagic zone, which has a temperature above 24°C throughout the year, and a remarkable uniform temperature (∼22°C) and salinity (∼41 psu) from the mixed layer (∼200 m) to the bottom at over 2000 m depth. Despite these conditions that set it apart from other marine environments, the microbiology of this ecosystem is still vastly understudied. Prompted by the limited phylogenetic resolution of the 16S rRNA gene, we extended our previous study by sequencing the internal transcribed spacer (ITS) region of SAR11 in different depths of the Red Sea’s water column together with the respective 16S fragment. The overall diversity captured by the ITS loci was ten times higher than that of the corresponding 16S rRNA genes. Moreover, species estimates based on the ITS showed a highly diverse population of SAR11 in the mixed layer that became diminished in deep isothermal waters, which was in contrast to results of the related 16S rRNA genes. While the 16S rRNA gene-based sequences clustered into three phylogenetic subgroups, the related ITS fragments fell into several phylotypes that showed clear depth-dependent shifts in relative abundances. Blast-based analyses not only documented the observed vertical partitioning and universal co-occurrence of specific phylotypes in five other distinct oceanic provinces, but also highlighted the influence of ecosystem-specific traits (e.g., temperature, nutrient availability, and concentration of dissolved oxygen) on the population dynamics of this ubiquitous marine bacterium.  相似文献   

3.
The Roseobacter group and SAR11 clade constitute high proportions of the marine bacterioplankton, but only scarce information exists on the abundance of distinct populations of either lineage. Therefore, we quantified the abundance of the largest cluster of the Roseobacter group, the RCA (Roseobacter clade affiliated) cluster together with the SAR11 clade by quantitative PCR in the southern and eastern North Sea. The RCA cluster constituted up to 15 and 21% of total bacterial 16S ribosomal RNA (rRNA) genes in September 2005 and May 2006, respectively. At a few stations, the RCA cluster exceeded the SAR11 clade, whereas at most stations, SAR11 constituted higher fractions with maxima of 37%. In most samples, only one RCA ribotype was detected. RCA abundance was positively correlated with phaeopigments, chlorophyll, dissolved and particulate organic carbon (POC), turnover rates of dissolved free amino acids (DFAAs), temperature, and negatively correlated with salinity. The SAR11 clade was only correlated with POC (negatively, May) and with DFAA turnover rates (positively, September). An abundant RCA strain, ‘Candidatus Planktomarina temperata'', was isolated from the southern North Sea. This strain has an identical 16S rRNA gene sequence to the dominant RCA ribotype. Detection of the pufM gene, coding for a subunit of the reaction center of bacteriochlorophyll a, indicates the potential of the isolate for aerobic anoxygenic photosynthesis. Our study shows that a distinct population of the RCA cluster constitutes an abundant bacterioplankton group in a neritic sea of the temperate zone and indicates that this population has an important role during decaying phytoplankton blooms.  相似文献   

4.
A seven-year oceanographic time series in NW Mediterranean surface waters was combined with pyrosequencing of ribosomal RNA (16S rRNA) and ribosomal RNA gene copies (16S rDNA) to examine the environmental controls on SAR11 ecotype dynamics and potential activity. SAR11 diversity exhibited pronounced seasonal cycles remarkably similar to total bacterial diversity. The timing of diversity maxima was similar across narrow and broad phylogenetic clades and strongly associated with deep winter mixing. Diversity minima were associated with periods of stratification that were low in nutrients and phytoplankton biomass and characterised by intense phosphate limitation (turnover time<5 h). We propose a conceptual framework in which physical mixing of the water column periodically resets SAR11 communities to a high diversity state and the seasonal evolution of phosphate limitation competitively excludes deeper-dwelling ecotypes to promote low diversity states dominated (>80%) by SAR11 Ia. A partial least squares (PLS) regression model was developed that could reliably predict sequence abundances of SAR11 ecotypes (Q2=0.70) from measured environmental variables, of which mixed layer depth was quantitatively the most important. Comparison of clade-level SAR11 rRNA:rDNA signals with leucine incorporation enabled us to partially validate the use of these ratios as an in-situ activity measure. However, temporal trends in the activity of SAR11 ecotypes and their relationship to environmental variables were unclear. The strong and predictable temporal patterns observed in SAR11 sequence abundance was not linked to metabolic activity of different ecotypes at the phylogenetic and temporal resolution of our study.  相似文献   

5.
Microorganisms remineralize and respire half of marine primary production, yet the niches occupied by specific microbial groups, and how these different groups may interact, are poorly understood. In this study, we identify co-occurrence patterns for marine Archaea and specific bacterial groups in the chlorophyll maximum of the Southern California Bight. Quantitative PCR time series of marine group 1 (MG1) Crenarchaeota 16S rRNA genes varied substantially over time but were well-correlated (r2=0.94, P<0.001) with ammonia monooxygenase subunit A (amoA) genes, and were more weakly related to 16S rRNA genes for all Archaea (r2=0.39), indicating that other archaeal groups (for example, Euryarchaeota) were numerically important. These data sets were compared with variability in bacterial community composition based on automated ribosomal intergenic spacer analysis (ARISA). We found that archaeal amoA gene copies and a SAR11 (or Pelagibacter) group Ib operational taxonomic unit (OTU) displayed strong co-variation through time (r2=0.55, P<0.05), and archaeal amoA and MG1 16S rRNA genes also co-occurred with two SAR86 and two Bacteroidetes OTUs. The relative abundance of these groups increased and decreased in synchrony over the course of the time series, and peaked during periods of seasonal transition. By using a combination of quantitative and relative abundance estimates, our findings show that abundant microbial OTUs—including the marine Crenarchaeota, SAR11, SAR86 and the Bacteroidetes—co-occur non-randomly; they consequently have important implications for our understanding of microbial community ecology in the sea.  相似文献   

6.
Abundant proteorhodopsin genes in the North Atlantic Ocean   总被引:5,自引:0,他引:5  
Proteorhodopsin (PR) is a light-driven proton pump that has been found in a variety of marine bacteria, including Pelagibacter ubique , a member of the ubiquitous SAR11 clade. The goals of this study were to explore the diversity of PR genes and to estimate their abundance in the North Atlantic Ocean using quantitative polymerase chain reaction (QPCR). We found that PR genes in the western portion of the Sargasso Sea could be grouped into 27 clusters, but five clades had the most sequences. Sets of specific QPCR primers were designed to examine the abundance of PR genes in the following four of the five clades: SAR11 ( P. ubique and other SAR11 Alphaproteobacteria ), BACRED17H8 ( Alphaproteobacteria ), HOT2C01 ( Alphaproteobacteria ) and an uncultured subgroup of the Flavobacteria . Two groups (SAR11 and HOT2C01) dominated PR gene abundance in oligotrophic waters, but were significantly less abundant in nutrient- and chlorophyll-rich waters. The other two groups (BACRED17H8 and Flavobacteria subgroup NASB) were less abundant in all waters. Together, these four PR gene types were found in 50% of all bacteria in the Sargasso Sea. We found a significant negative correlation between total PR gene abundance and nutrients and chlorophyll but no significant correlation with light intensity for three of the four PR types in the depth profiles north of the Sargasso Sea. Our data suggest that PR is common in the North Atlantic Ocean, especially in SAR11 bacteria and another marine alphaproteobacterial group (HOT2C01), and that these PR-bearing bacteria are most abundant in oligotrophic waters.  相似文献   

7.
Ammonia-oxidizing Archaea in the Arctic Ocean and Antarctic coastal waters   总被引:1,自引:0,他引:1  
We compared abundance, distributions and phylogenetic composition of Crenarchaeota and ammonia-oxidizing Archaea (AOA) in samples collected from coastal waters west of the Antarctic Peninsula during the summers of 2005 and 2006, with samples from the central Arctic Ocean collected during the summer of 1997. Ammonia-oxidizing Archaea and Crenarchaeota abundances were estimated from quantitative PCR measurements of amoA and 16S rRNA gene abundances. Crenarchaeota and AOA were approximately fivefold more abundant at comparable depths in the Antarctic versus the Arctic Ocean. Crenarchaeota and AOA were essentially absent from the Antarctic Summer Surface Water (SSW) water mass (0–45 m depth). The ratio of Crenarchaeota 16S rRNA to archaeal amoA gene abundance in the Winter Water (WW) water mass (45–105 m depth) of the Southern Ocean was much lower (0.15) than expected and in sharp contrast to the ratio (2.0) in the Circumpolar Deep Water (CDW) water mass (105–3500 m depth) immediately below it. We did not observe comparable segregation of this ratio by depth or water mass in Arctic Ocean samples. A ubiquitous, abundant and polar-specific crenarchaeote was the dominant ribotype in the WW and important in the upper halocline of the Arctic Ocean. Our data suggest that this organism does not contain an ammonia monooxygenase gene. In contrast to other studies where Crenarchaeota populations apparently lacking amoA genes are found in bathypelagic waters, this organism appears to dominate in well-defined, ammonium-rich, near-surface water masses in polar oceans.  相似文献   

8.
A gene lineage (SAR406) related to Chlorobium and Fibrobacter species was found in 16S rRNA gene clone libraries prepared from samples from two oceans. The clone libraries were constructed from total picoplankton genomic DNA to assess bacterial diversity in the lower surface layer. The samples were collected by filtration from a depth of 80 m at a site in the western Sargasso Sea and from a depth of 120 m at a site in the Pacific Ocean, approximately 70 km from the Oregon coast. The PCR and primers which amplified nearly full-length 16S rRNA genes were used to prepare the clone libraries. Among the diverse gene clones in these libraries were two related clones (SAR406 and OCS307) which could not be assigned to any of the major bacterial phyla. Phylogenetic analyses demonstrated that these genes were distant relatives of the genus Fibrobacter and the green sulfur bacterial phylum, which includes the genus Chlorobium. The inclusion of SAR406 in phylogenetic trees inferred by several methods resulted in support from bootstrap replicates for the conclusion that Fibrobacter and Chlorobium species and SAR406 are a monophyletic group. An oligonucleotide probe that selectively hybridized to clone SAR406 was used to examine the distribution of this gene lineage in vertical profiles from the Atlantic and Pacific Oceans and in monthly time series at 0 and 200 m in the Atlantic Ocean. During stratified periods, the genes were most abundant slightly below the deep chlorophyll layer. Seasonal changes in the surface abundance of SAR406 rDNA were highly correlated with chlorophyll a levels (r = 0.75).  相似文献   

9.
Advances in next-generation sequencing technologies are providing longer nucleotide sequence reads that contain more information about phylogenetic relationships. We sought to use this information to understand the evolution and ecology of bacterioplankton at our long-term study site in the Western Sargasso Sea. A bioinformatics pipeline called PhyloAssigner was developed to align pyrosequencing reads to a reference multiple sequence alignment of 16S ribosomal RNA (rRNA) genes and assign them phylogenetic positions in a reference tree using a maximum likelihood algorithm. Here, we used this pipeline to investigate the ecologically important SAR11 clade of Alphaproteobacteria. A combined set of 2.7 million pyrosequencing reads from the 16S rRNA V1–V2 regions, representing 9 years at the Bermuda Atlantic Time-series Study (BATS) site, was quality checked and parsed into a comprehensive bacterial tree, yielding 929 036 Alphaproteobacteria reads. Phylogenetic structure within the SAR11 clade was linked to seasonally recurring spatiotemporal patterns. This analysis resolved four new SAR11 ecotypes in addition to five others that had been described previously at BATS. The data support a conclusion reached previously that the SAR11 clade diversified by subdivision of niche space in the ocean water column, but the new data reveal a more complex pattern in which deep branches of the clade diversified repeatedly across depth strata and seasonal regimes. The new data also revealed the presence of an unrecognized clade of Alphaproteobacteria, here named SMA-1 (Sargasso Mesopelagic Alphaproteobacteria, group 1), in the upper mesopelagic zone. The high-resolution phylogenetic analyses performed herein highlight significant, previously unknown, patterns of evolutionary diversification, within perhaps the most widely distributed heterotrophic marine bacterial clade, and strongly links to ecosystem regimes.  相似文献   

10.
Little is known about the changes in abundance of microbial taxa in relation to the chronosequence of receding glaciers. This study investigated how the abundances of ten bacterial phyla or classes varied along successional gradients in two glaciers, Ödenwinkelkees and Rotmoosferner, in the central Alps. Quantitative PCR was used to estimate the abundance of the different bacterial taxa in extended glacier chronosequences, including 10- to 160-year-old successional stages, the surface of the glacier, and a fully established soil. Actinobacteria (15–30%) was the dominant group within the chronosequences. Several taxa showed significant differences in the number of taxa-specific 16S rRNA gene copies per nanogram of DNA and/or in the ratio of taxa-specific to the total bacterial 16S rRNA gene copies (i.e., the relative abundance of the different taxa within the bacterial community) between the established soils or the glacier surface and the 10- to 160-year-old successional stages. A significantly higher proportion of Βetaproteobacteria (20%) was observed on the surface of both glaciers. However, no differences were observed between the 10- to 160-year-old successional stages in the number of taxa-specific 16S rRNA gene copies per nanogram of DNA or in the ratio of taxa-specific to the total bacterial 16S rRNA gene copies for the different taxa. Nevertheless, when the relative abundance data from all the studied taxa were combined and analyzed altogether, most of the sites could be distinguished from one other. This indicates that the overall composition of the bacterial community was more affected than the abundance of the targeted taxa by changes in environmental conditions along the chronosequences.  相似文献   

11.
Improved strategies for oil-spill remediation will follow a better understanding of the nature, activities and regulating parameters of petroleum hydrocarbon-degrading microbial communities in temperate marine environments. The addition of crude oil to estuarine water resulted in an immediate change in bacterial community structure, increased abundance of hydrocarbon-degrading microorganisms and a rapid rate of oil degradation, suggesting the presence of a pre-adapted oil-degrading microbial community and sufficient supply of nutrients. Relatively rapid degradation was found at 4°C, the lowest temperature tested; and it was temperature rather than nutrient addition that most influenced the community structure. A detailed phylogenetic analysis of oil-degrading microcosms showed that known hydrocarbonoclastic organisms like Thalassolituus and Cycloclasticus , as well as proposed oil degraders like Roseobacter , were present at both 4°C and 20°C, demonstrating the thermo-versatility of such organisms. Clones related to Oleispira antarctica (98% 16S rRNA similarity), a psychrophilic alkane degrader, were dominant in the 4°C oil-degrading community, whereas other clones constituting a different clade and showing 94% similarity 16S rRNA with O. antarctica were found in situ. These findings demonstrate the potential for intrinsic bioremediation throughout the course of the year in temperate estuarine waters, and highlight the importance of both versatile psychrotolerant and specialized psychrophilic hydrocarbon-degrading microbes in effecting this process at low temperatures.  相似文献   

12.
Bacterial assemblages from subsurface (100 m depth), meso- (200-1000 m depth) and bathy-pelagic (below 1000 m depth) zones at 10 stations along a North Atlantic Ocean transect from 60°N to 5°S were characterized using massively parallel pyrotag sequencing of the V6 region of the 16S rRNA gene (V6 pyrotags). In a dataset of more than 830,000 pyrotags, we identified 10,780 OTUs of which 52% were singletons. The singletons accounted for less than 2% of the OTU abundance, whereas the 100 and 1000 most abundant OTUs represented 80% and 96% respectively of all recovered OTUs. Non-metric Multi-Dimensional Scaling and Canonical Correspondence Analysis of all the OTUs excluding the singletons revealed a clear clustering of the bacterial communities according to the water masses. More than 80% of the 1000 most abundant OTUs corresponded to Proteobacteria of which 55% were Alphaproteobacteria, mostly composed of the SAR11 cluster. Gammaproteobacteria increased with depth and included a relatively large number of OTUs belonging to Alteromonadales and Oceanospirillales. The bathypelagic zone showed higher taxonomic evenness than the overlying waters, albeit bacterial diversity was remarkably variable. Both abundant and low-abundance OTUs were responsible for the distinct bacterial communities characterizing the major deep-water masses. Taken together, our results reveal that deep-water masses act as bio-oceanographic islands for bacterioplankton leading to water mass-specific bacterial communities in the deep waters of the Atlantic.  相似文献   

13.
14.
Since their initial discovery in samples from the north Atlantic Ocean, 16S rRNA genes related to the environmental gene clone cluster known as SAR202 have been recovered from pelagic freshwater, marine sediment, soil, and deep subsurface terrestrial environments. Together, these clones form a major, monophyletic subgroup of the phylum Chloroflexi. While members of this diverse group are consistently identified in the marine environment, there are currently no cultured representatives, and very little is known about their distribution or abundance in the world's oceans. In this study, published and newly identified SAR202-related 16S rRNA gene sequences were used to further resolve the phylogeny of this cluster and to design taxon-specific oligonucleotide probes for fluorescence in situ hybridization. Direct cell counts from the Bermuda Atlantic time series study site in the north Atlantic Ocean, the Hawaii ocean time series site in the central Pacific Ocean, and along the Newport hydroline in eastern Pacific coastal waters showed that SAR202 cluster cells were most abundant below the deep chlorophyll maximum and that they persisted to 3,600 m in the Atlantic Ocean and to 4,000 m in the Pacific Ocean, the deepest samples used in this study. On average, members of the SAR202 group accounted for 10.2% (±5.7%) of all DNA-containing bacterioplankton between 500 and 4,000 m.  相似文献   

15.
We have developed a highly sensitive approach to assess the abundance of uncultured bacteria in water samples from the central Baltic Sea by using a noncultured member of the "Epsilonproteobacteria" related to Thiomicrospira denitrificans as an example. Environmental seawater samples and samples enriched for the target taxon provided a unique opportunity to test the approach over a broad range of abundances. The approach is based on a combination of taxon- and domain-specific real-time PCR measurements determining the relative T. denitrificans-like 16S rRNA gene and 16S rRNA abundances, as well as the determination of total cell counts and environmental RNA content. It allowed quantification of T. denitrificans-like 16S rRNA molecules or 16S rRNA genes as well as calculation of the number of ribosomes per T. denitrificans-like cell. Every real-time measurement and its specific primer system were calibrated using environmental nucleic acids obtained from the original habitat for external standardization. These standards, as well as the respective samples to be measured, were prepared from the same DNA or RNA extract. Enrichment samples could be analyzed directly, whereas environmental templates had to be preamplified with general bacterial primers before quantification. Preamplification increased the sensitivity of the assay by more than 4 orders of magnitude. Quantification of enrichments with or without a preamplification step yielded comparable results. T. denitrificans-like 16S rRNA molecules ranged from 7.1 x 10(3) to 4.4 x 10(9) copies ml(-1) or 0.002 to 49.7% relative abundance. T. denitrificans-like 16S rRNA genes ranged from 9.0 x 10(1) to 2.2 x10(6) copies ml(-1) or 0.01 to 49.7% relative abundance. Detection limits of this real-time-PCR approach were 20 16S rRNA molecules or 0.2 16S rRNA gene ml(-1). The number of ribosomes per T. denitrificans-like cell was estimated to range from 20 to 200 in seawater and reached up to 2,000 in the enrichments. The results indicate that our real-time PCR approach can be used to determine cellular and relative abundances of uncultured marine bacterial taxa and to provide information about their levels of activity in their natural environment.  相似文献   

16.
In order to extend previous comparisons between coastal marine bacterioplankton communities and their open ocean and freshwater counterparts, here we summarize and provide new data on a clone library of 105 SSU rRNA genes recovered from seawater collected over the western continental shelf of the USA in the Pacific Ocean. Comparisons to previously published data revealed that this coastal bacterioplankton clone library was dominated by SSU rRNA gene phylotypes originally described from surface waters of the open ocean, but also revealed unique SSU rRNA gene lineages of beta Proteobacteria related to those found in clone libraries from freshwater habitats. beta Proteobacteria lineages common to coastal and freshwater samples included members of a clade of obligately methylotrophic bacteria, SSU rRNA genes affiliated with Xylophilus ampelinus, and a clade related to the genus Duganella. In addition, SSU rRNA genes were recovered from such previously recognized marine bacterioplankton SSU rRNA gene clone clusters as the SAR86, SAR11, and SAR116 clusters within the class Proteobacteria, the Roseobacter clade of the alpha subclass of the Proteobacteria, the marine group A/SAR406 cluster, and the marine Actinobacteria clade. Overall, these results support and extend previous observations concerning the global distribution of several marine planktonic prokaryote SSU rRNA gene phylotypes, but also show that coastal bacterioplankton communities contain SSU rRNA gene lineages (and presumably bacterioplankton) shown previously to be prevalent in freshwater habitats.  相似文献   

17.
A sulfate-reducing bacterial consortium was enriched from an anoxic aquifer contaminated with BTEX compounds, using toluene as a growth substrate. Total cell counts, protein contents and sulfide production were determined to follow growth at the in situ temperature (14 °C) and at 25 °C, respectively. Community members were identified by 16S rRNA gene cloning and sequencing. Phylogenetic analysis revealed 12 sequence types belonging to Deltaproteobacteria (several groups) , Epsilonproteobacteria, Bacteroidetes, Spirochaetaceae and an unclassified bacterial clade. The most prominent phylotype comprising 34% of all clones was affiliated to the Desulfobulbaceae and closely related to environmental clones retrieved from hydrocarbon-contaminated aquifers. Flow-cytometric methods were applied to analyze the community dynamics and to identify key organisms involved in toluene assimilation. Flow-cytometric measurement of DNA contents and scatter behavior served to detect and quantify dominant and newly emerging clusters of subcommunities. Up to seven subcommunities, two of them dominant, were distinguished. Cell sorting was used to facilitate the analysis of conspicuous clusters for phylogenetic identity by terminal restriction fragment length polymorphism profiling of the 16S rRNA genes. The Desulfobulbaceae phylotype accounted for up to 87% in proliferating subcommunities, indicating that it represents the key organism of toluene degradation within this complex anaerobic consortium.  相似文献   

18.
The bacteria associated with oceanic algal blooms are acknowledged to play important roles in carbon, nitrogen, and sulfur cycling, yet little information is available on their identities or phylogenetic affiliations. Three culture-independent methods were used to characterize bacteria from a dimethylsulfoniopropionate (DMSP)-producing algal bloom in the North Atlantic. Group-specific 16S rRNA-targeted oligonucleotides, 16S ribosomal DNA (rDNA) clone libraries, and terminal restriction fragment length polymorphism analysis all indicated that the marine Roseobacter lineage was numerically important in the heterotrophic bacterial community, averaging >20% of the 16S rDNA sampled. Two other groups of heterotrophic bacteria, the SAR86 and SAR11 clades, were also shown by the three 16S rRNA-based methods to be abundant in the bloom community. In surface waters, the Roseobacter, SAR86, and SAR11 lineages together accounted for over 50% of the bacterial rDNA and showed little spatial variability in abundance despite variations in the dominant algal species. Depth profiles indicated that Roseobacter phylotype abundance decreased with depth and was positively correlated with chlorophyll a, DMSP, and total organic sulfur (dimethyl sulfide plus DMSP plus dimethyl sulfoxide) concentrations. Based on these data and previous physiological studies of cultured Roseobacter strains, we hypothesize that this lineage plays a role in cycling organic sulfur compounds produced within the bloom. Three other abundant bacterial phylotypes (representing a cyanobacterium and two members of the alpha Proteobacteria) were primarily associated with chlorophyll-rich surface waters of the bloom (0 to 50 m), while two others (representing Cytophagales and delta Proteobacteria) were primarily found in deeper waters (200 to 500 m).  相似文献   

19.
Since their initial discovery in samples from the north Atlantic Ocean, 16S rRNA genes related to the environmental gene clone cluster known as SAR202 have been recovered from pelagic freshwater, marine sediment, soil, and deep subsurface terrestrial environments. Together, these clones form a major, monophyletic subgroup of the phylum Chloroflexi: While members of this diverse group are consistently identified in the marine environment, there are currently no cultured representatives, and very little is known about their distribution or abundance in the world's oceans. In this study, published and newly identified SAR202-related 16S rRNA gene sequences were used to further resolve the phylogeny of this cluster and to design taxon-specific oligonucleotide probes for fluorescence in situ hybridization. Direct cell counts from the Bermuda Atlantic time series study site in the north Atlantic Ocean, the Hawaii ocean time series site in the central Pacific Ocean, and along the Newport hydroline in eastern Pacific coastal waters showed that SAR202 cluster cells were most abundant below the deep chlorophyll maximum and that they persisted to 3600 m in the Atlantic Ocean and to 4000 m in the Pacific Ocean, the deepest samples used in this study. On average, members of the SAR202 group accounted for 10.2% (+/-5.7%) of all DNA-containing bacterioplankton between 500 and 4000 m.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号