首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Effects of water stress at pre-flowering stage were studied in three genotypes (RMO-40, Maru moth and CZM-32 E) of moth bean [Vigna aconitifolia (Jacq.) Marechal]. Increasing water stress progressively decreased plant water potential, leaf area, net photosynthetic rate, starch and soluble protein contents and nitrate reductase activity while contents of reducing sugars, total soluble sugar, free amino acids and free proline progressively increased. Significant genotypic differences were observed and genotype CZM-32-E displayed a better drought tolerance than other genotypes.  相似文献   

3.
The possibility of improving the recovery of plant photosynthesis after water stress by cytokinin-induced stimulation of stomatal opening or delay of leaf senescence was tested. The 6-benzylaminopurine (BAP) in concentrations 1 and 10 M was applied to the substrate (sand + nutrient solution) or sprayed on primary leaves of 14-d-old Phaseolus vulgaris L. plants sufficiently supplied with water or water-stressed for 4 d. The later ones having relative water content decreased to 69 % were fully rehydrated during the following three days. Parameters of photosynthesis and water relations were measured in primary leaves of 7-, 10-, 14-, and 17-d-old plants. Application of 1 M BAP slightly delayed leaf senescence: in 17-d-old control plants, net photosynthetic rate (PN) and chlorophyll (Chl) content, and when sprayed on leaves also some of Chl a fluorescence kinetic parameters of BAP-treated leaves were slightly higher than those of untreated leaves. Both types of application of 1 M BAP slightly improved recovery of plants during rehydration after water stress in terms of increased gad, gab and PN, i.e., parameters which were markedly decreased by mild water stress. However, contents of Chl a, Chl b and carotenoids and parameters of Chl a fluorescence kinetic were not markedly affected by mild water stress and after rehydration were not stimulated by 1 M BAP. 10 M BAP had mostly negative effects on the parameters measured.  相似文献   

4.
The effect of benzyladenine (BA) and ascorbic acid (AA) on relative water content, proline accumulation, net photosynthetic rate (PN), chlorophyll (Chl) content and nitrate reductase (NR) activity, under sufficient water supply and moisture stress was studied in senna (Cassia angustifolia Vahl.) at seedling, vegetative, flowering and pod formation stages. AA treatment resulted in a higher accumulation of proline at all the stages of growth. Both BA and AA enhanced PN, Chl content and NR activity, and ameliorate the negative effect of water stress.  相似文献   

5.
The role of random amplified polymorphic DNA (RAPD) markers in detecting intra-clonal genetic variability in vegetatively propagated UPASI-9 clone of tea (Camellia sinensis) was studied. Twenty five decamer primers were used, of which three did not amplify, three gave single bands and the rest of nineteen primers generated upto twelve bands (an average of 6.3 bands per primer). Twenty one primers exhibiting amplified products gave monomorphic banding patterns. Only one primer (OPE-17) gave a unique extra band of similar size in four plants.  相似文献   

6.
Relative water content (RWC), leaf water potential (w) and osmotic potential (s), contents of chlorophyll (Chl) a, Chl b, soluble sugars, and seed quality (gum content) were used to evaluate the role of phosphorus in alleviation of the deleterious effect of water deficit in clusterbean (Cyamopsis tetragonoloba L. Taub). Under water stress, w, s, and Chl and gum contents decreased and soluble sugar contents increased. Phosphorus application increased Chl and sugar contents in control plants and ameliorated negative effects of water stress.  相似文献   

7.
为探明氮素水平对不同品种茶树的光合系统的影响机制,以‘福鼎大白茶’、‘保靖黄金茶1号’、‘白毫早’两年生茶苗为材料,设置不施氮N_0(0g)、低氮N_1(11g)、中氮N_2(22g)和高氮N_3(33g)4个氮素[(NH_4)_2SO_4]水平的盆栽实验,研究了铵态氮对3个品种茶树的生长势、叶片叶绿素含量、光合参数与叶绿素荧光参数的影响。结果表明:(1)施氮处理能够显著促进茶树的生长,提高茶树叶片叶绿素含量、净光合速率(Pn)、气孔导度(Gs)、蒸腾速率(Tr),降低胞间CO_2浓度(Ci),并以N_2处理最好,但水分利用率(WUE)在3个品种茶树间表现不同。(2)在N_2处理下,3个茶树品种的叶片光系统Ⅱ(PSⅡ)暗适应下的最大光化学效率(F_v/F_m)、光化学猝灭系数(qP)、PSⅡ的相对电子传递速率(rETR)亦增加最大,非光化学淬灭系数(NPQ)降低。(3)茶树叶片叶绿素含量与光合参数间存在着一定的联系,并且具有品种特异性。研究发现,适量施氮能够显著增加茶树叶绿素含量、气孔导度、光合活性,从而使得各品种茶树净光合速率增加;氮素水平对各茶树品种的光合及荧光特性影响存在差异,水分利用率亦具有品种特异性;生产中应综合叶绿素含量、光合作用参数、叶绿素荧光参数,可快速、直观地评价不同品种茶树对氮素营养的内在需求,为茶园施肥管理提供指导。  相似文献   

8.
Effects of Paclobutrazol on Response of Two Barley Cultivars to Salt Stress   总被引:1,自引:0,他引:1  
The seeds of two barley (Hordeum vulgare L.) cultivars (a drought resistant cv. Tokak-137/57 and a drought sensitive cv. Erginel-90) were imbibed either in distilled water (control) or in a solution containing 40 mg dm−3 paclobutrazol (PBZ) and air dried. Seeds were germinated and grown in a glasshouse for 21 d and seedlings were subjected to salt stress by treating them with 100 and 200 mM NaCl for 12 d. The height of shoots was significantly decreased and root length was increased in PBZ-treated plants prior and after NaCl stress for 12 d leading to an increase in root to shoot ratio. Leaf chlorophyll and carotenoid contents in PBZ treated plants were increased in controls and especially in plants subjected to salt stress. PBZ induced increase in superoxide dismutase (SOD) activities was higher in cv. Tokak-157/37, than in cv. Erginel-90. However, an increase in SOD activity was not accompanied by an increase in peroxidase activity. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
A series of experiments were conducted to characterize the water stress-induced changes in the activities of RuBP carboxylase (RuBPCO) and sucrose phosphate synthase (SPS), photosystem 2 activity, and contents of chlorophylls, carotenoids, starch, sucrose, amino acids, free proline, proteins and nucleic acids in mulberry (Morus alba L. cv. K-2) leaves. Water stress progressively reduced the activities of RuBPCO and SPS in the leaf extracts, the chlorophyll content, and PS2 activity in isolated chloroplasts. Plants exposed to drought showed lower content of starch and sucrose but higher total sugar content than control plants. While the soluble protein content decreased under water stress, the amino acid content increased. Proline accumulation (2.5-fold) was noticed in stressed leaves. A reduction in the contents of DNA and RNA was observed. Reduced nitrogen content was associated with the reduction in nitrate reductase activity. SDS-PAGE protein profile showed few additional proteins (78 and 92 kDa) in the water stressed plants compared to control plants.  相似文献   

10.
Photosynthetic Response of Barley Plants to Soil Flooding   总被引:1,自引:0,他引:1  
Yordanova  R.Y.  Popova  L.P. 《Photosynthetica》2001,39(4):515-520
72 to 120 h of soil flooding of barley plants (Hordeum vulgare L. cv. Alfa) led to a noticeable decrease in the rates of CO2 assimilation and transpiration, and in chlorophyll and dry mass contents. Stomatal conductance decreased following flooding without appreciable changes in the values of intercellular CO2 concentrations. A drop in the activity of ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.39) and of the photorespiratory enzymes phosphoglycollate phosphatase (EC 3.1.3.18) and glycollate oxidase (EC 1.1.3.1) was observed, while the activity of phosphoenolpyruvate carboxylase (EC 4.1.1.31) increased in all flooded plants. Flooding of barley plants caused an increase in proline content and in leaf acidity.  相似文献   

11.
Two tomato (Lycopersicon esculentum L.) cultivars: Robin (tolerant) and Roma (sensitive to heat stress) were studied. Chlorophyll fluorescence induction parameters (Fv/Fp, Amax, and Rfd) at 25 °C showed that the PS2 activity was similar for both cultivars. The parameters, measured at 38 °C, decreased in both cultivars, but more in cv. Roma. Exogenous application of 4 mM spermidine improved the plant heat-resistance in both cultivars, and especially in cv. Roma. Analysis of chlorophyll fluorescence changes during linear increase in temperature showed that cv. Robin plants have higher ability to hardening and higher resistance to thermal damage of the pigment-protein complexes structure and the activity of PS2 than cv. Roma.  相似文献   

12.
The possibility to improve the recovery of sugar beet plants after water stress by application of synthetic cytokinins N6-benzyladenine (BA) or N6-(m-hydroxybenzyl)adenosine (HBA) was tested. Relative water content (RWC), net photosynthetic rate (PN), transpiration rate (E), stomatal conductance (gs), chlorophyll (Chl) a and Chl b contents, and photosystem 2 efficiency characterized by variable to maximal fluorescence ratio (Fv/Fm) were measured in control plants, in water-stressed plants, and after rehydration (4, 8, 24, and 48 h). Water stress markedly decreased parameters of gas exchange, but they started to recover soon after irrigation. Application of BA or HBA to the substrate or sprayed on leaves only slightly stimulated recovery of PN, E, and gs in rehydrated plants, especially during the first phases of recovery. Chl contents decreased only under severe water stress and Fv/Fm ratio was not significantly affected by water stress applied. Positive effects of BA or HBA application on Chl content and Fv/Fm ratio were mostly not observed.  相似文献   

13.
Abscisic acid (ABA) content and relative water content (RWC) in second fully expanded leaves of cold hardened plants and in dehydrated leaves of freezing tolerant barley (Hordeum vulgare L. cv. Lunet) were compared. ABA content and RWC in leaves did not change during the first day of cold hardening. On the contrary, dehydration of leaves led to a decrease of RWC and to an increase of ABA content.  相似文献   

14.
Growth and Metabolism of Senna as Affected by Salt Stress   总被引:1,自引:0,他引:1  
Pot culture experiments were conducted using different NaCl concentrations to assess their impact on the growth and metabolic changes in senna (Cassia angustifolia Vahl.). Five treatments (0, 40, 80, 120, and 160 mM NaCl) were given to the plants at three phenological stages, i.e. at pre-flowering, (45 days after sowing, DAS); flowering (75 DAS) and post-flowering (90 DAS) stages. A significant reduction in the biomass and length of the roots and shoots, photosynthetic rate, stomatal conductance, the total chlorophyll content, protein content, nitrate reductase activity, and reduced nitrogen content of the leaves was observed at each phenological stage with each salt concentration applied. Contrary to this, proline and nitrate contents of the leaves increased markedly. The post-flowering stage was most sensitive to NaCl treatment.  相似文献   

15.
With the imposition of salt stress (0.5 to 3 % NaCl or CaCl2) a decrease in germination rate and accumulation of proline was observed in the root tissue. Both NaCl and CaCl2 solutions induced an increase in the total peroxide content and lipid peroxidation and decrease in catalase, guaiacol peroxidase and superoxide dismutase activities in root tissues suggesting an oxidative stress in the salt sensitive rice cultivar.  相似文献   

16.
Recent Advances of Tea (Camellia Sinensis) Biotechnology   总被引:6,自引:1,他引:6  
Tea is one of the most important non-alcoholic beverage drinks worldwide and gaining further popularity as an important health drink. It is served as morning drink for 2/3rd of world population daily. Although conventional breeding and propagation contributed significantly for last several decades for varietal improvement, due to the limitations of conventional breeding coupled with the demand for increasing productivity with lower cost of production, application of biotechnology becomes an alternative approach. Therefore, apart from a dozen of tea research institutes globally, several other groups are working on tea and related genera that have registered many valuable information with several achievements. The present review deals with progress in-depth of various aspects of biotechnological works such as micropropagation and alternative approaches, cell and organ culture techniques, genetic transformation, DNA markers as well as organelle genome and gene cloned from tea and related genera which will be valuable information for the workers working on various aspects of Camellia biotechnology.  相似文献   

17.
Water stress is by far the leading environmental stress limiting crop yields worldwide. Genetic engineering techniques hold great promise for developing crop cultivars with high tolerance to water stress. In this study, theBrassica oleracea var.acephala BoRS1 gene was transferred into tobacco throughAgrobacterium- mediated leaf disc transformation. The transgenic status and transgene expression of the transgenic plants was confirmed by polymerase chain reaction (PCR) analysis, Southern hybridization and semi-quantitative one step RT-PCR analysis respectively. Subsequently, the growth status under water stress, and physiological responses to water stress of transgenic tobacco were studied. The results showed that the transgenic plants exhibited better growth status under water stress condition compared to the untransformed control plants. In physiological assessment of water tolerance, transgenic plants showed more dry matter accumulation and maintained significantly higher levels of leaf chlorophyll content along with increasing levels of water stress than the untransformed control plants. This study shows thatBoRS1 is a candidate gene in the engineering of crops for enhanced water stress tolerance.  相似文献   

18.
Jeyaramraja  P.R.  Raj Kumar  R.  Pius  P.K.  Thomas  Jibu 《Photosynthetica》2003,41(4):579-582
Net photosynthetic rate (P N) in the mother leaves was higher in the drought tolerant (DT) clones of tea (Camellia sinensis) while liberation of the fixed 14C in light from the mother leaves was higher in the drought susceptible (DS) clones. The DT clones translocated more photosynthates to the crop shoots (three leaves and a bud) from the mother leaf than the DS clones. Concentrations of RuBP carboxylase (RuBPC) or oxygenase (RuBPO) had no relationship with the drought tolerant nature of tea clones but their ratio correlated with the same. DT tea clones had higher catalase activity that could scavenge the hydrogen peroxide formed in the photorespiratory pathway and thereby reduced photorespiration rate (P R). The ratio of RuBPC/RuBPO had a positive correlation with P N and catalase activity. Negative correlation between RuBPC/RuBPO and P R and between catalase activity and RuBPO activity was established.  相似文献   

19.
We studied the effect of water stress imposed at anthesis and pre-anthesis stages on oxidative stress and antioxidant activity in four wheat cultivars, two hexaploid Triticum aestivum cultivars, drought resistant cv. C 306 and drought susceptible cv. Hira, and two tetraploid cultivars, T. durum cv. A 9-30-1 and T. dicoccum cv. HW 24. Water stress decreased relative water content (RWC), membrane stability index (MSI), and increased H2O2 and malondialdehyde (MDA) contents as well as activity of superoxide dismutase (SOD), catalase (Cat) and peroxidase (POX) in all the genotypes at all the stages. Both the tetraploid cultivars showed higher RWC, MSI and SOD activity, and lower H2O2 and MDA contents under water stress than hexaploid ones. Cat and POX activities were highest in C 306.  相似文献   

20.
Physiological Response of Maize to Arsenic Contamination   总被引:4,自引:0,他引:4  
The objective of the study was to investigate the effect of As on some physiological parameters of maize in the early growth phases. Seedlings grown in a climatic box in a Hoagland-Arnon nutrient solution were treated with 0, 2 and 5 mg(As) dm−3 (pH 5.5). After 5 d of As treatment the changes in growth, leaf gas-exchange, chlorophyll (Chl) content, Chl fluorescence, peroxidase activity and lipid peroxidation in roots were recorded. The applied As decreased the growth, leaf area, and biomass accumulation, induced lipid peroxidation and increased peroxidase activity, especially at concentration 5 mg(As) dm−3. It also decreased the Chl, carotenoid (Car) and protein contents. A decrease in the variable to maximum fluorescence ratio (Fv/Fm) indicated lower photosynthetic efficiency. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号