首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
D A Jans  B A Hemmings 《FEBS letters》1991,281(1-2):267-271
The relationship between activation of the cAMP-dependent protein kinase (cAMP-PK) and ligand binding and internalization by the vasopressin renal (V2-type) receptor of LLC-PK1 renal epithelial cells was examined. Upon cAMP-PK activation through 1 h treatment with the cAMP analogue 8-bromo-cAMP (BrcA), a marked reduction in V2-receptor steady state number and internalization in LLC-PK1 cells was effected. In cells treated for 17 h with BrcA and hence down-regulated for cAMP-PK, the V2-receptor number was normal but internalization was markedly reduced. Cells of the LLC-PK1 mutant FIB4, which possesses about 10% parental cAMP-PK catalytic subunit activity, exhibited lower V2-receptor steady state number and internalization in comparison to untreated LLC-PK1 cells. A negative correlation was thus evident between cAMP-PK activation and V2-receptor number, and internalization. Phosphorylation by cAMP-PK may effect ligand-independent removal of receptor from the plasma membrane.  相似文献   

2.
Interaction of the type 2 vasopressin receptor (V2R) with hormone causes desensitization and internalization. To study the role of the V2R NPxxY motif (which is involved in the clathrin-mediated endocytosis of several other receptors) in this process, we expressed FLAG-tagged wild-type V2R and a Y325F mutant V2R in LLC-PK1a epithelial cells that have low levels of endogenous V2R. Both proteins had a similar apical (35%) and basolateral (65%) membrane distribution. Substitution of Tyr325 with Phe325 prevented ligand-induced internalization of V2R determined by [3H]AVP binding and immunofluorescence but did not prevent ligand binding or signal transduction via adenylyl cyclase. Desensitization and resensitization of the V2R-Y325F mutation occurred independently of internalization. The involvement of clathrin in V2R downregulation was also shown by immunogold electron microscopy. We conclude that the NPxxY motif of the V2R is critically involved in receptor downregulation via clathrin-mediated internalization. However, this motif is not essential for the apical/basolateral sorting and polarized distribution of the V2R in LLC-PK1a cells or for adenylyl cyclase-mediated signal transduction. polarized cell culture; tyrosine motif; µ1b adaptor motif; protein traffic  相似文献   

3.
D A Jans  R Peters  J Zsigo    F Fahrenholz 《The EMBO journal》1989,8(9):2481-2488
The lateral mobility of membrane-associated hormone receptors has been proposed to play an important role in signal transduction. Direct measurements, however, have shown that the receptors for insulin, epidermal growth factor and beta-adrenergic antagonists exhibit low mobility at physiological temperature. The present study, which represents the first report of lateral mobility of a polypeptide hormone receptor coupled to adenylate cyclase, yielded quite different results. The lateral mobility of the vasopressin renal-type (V2)-receptor was measured in the basal plasma membrane of cells of the LLC-PK1 porcine epithelial line, using the technique of fluorescence microphotolysis (photobleaching) and a rhodamine-labelled analogue of vasopressin. The analogue, 1-deamino[8-lysine(N6-tetramethylrhodamylaminothiocarbonyl)] vasopressin (TR-LVP) was synthesized and shown to have binding properties and biological activities very similar to those of Arg8-vasopressin (AVP). TR-LVP could be used to label specifically the V2-receptor of living LLC-PK1 cells, whereby LLC-PK1 cells incubated with TR-LVP in the presence of a 100-fold excess of AVP, or cells from the LLC-PK1 V2-receptor-deficient line M18 incubated with TR-LVP could be used as controls for non-specific binding. Using optical sectioning, specific receptor mobility could be measured both in the absence and presence of free TR-LVP. The V2-receptor was found to be largely mobile at 37 degrees C: the mobile fraction (f) was approximately 0.9, and the apparent lateral diffusion coefficient (D) approximately 3.0 X 10(-10) cm2/s. V2-receptor mobility greatly decreased with decreasing temperature: at 10 degrees C f was reduced to approximately 0.1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
We have previously demonstrated that apical Na+ channels in A6 renal epithelial cells are associated with spectrin-based membrane cytoskeleton proteins and that the lateral mobility of these channels, as determined by fluorescence photobleach recovery (FPR) analysis, is severely restricted by this association (Smith et al., 1991. Proc. Natl. Acad. Sci. USA 88:6971–6975). Recent data indicate that the actin component of the cytoskeleton may play a role in modulating Na+ channel activity (Cantiello et al., 1991. Am. J. Physiol. 261:C882–C888); however, it is unknown if the Na+ channel's linkage to the spectrin-based membrane cytoskeleton is also involved in regulating channel activity. In this study, we have used FPR to examine if the linkage of the Na+ channels to the membrane cytoskeleton is a site for modulation of Na+ channel activity in filter grown A6 cells by vasopressin and aldosterone. We hypothesized that if the linkage of the Na+ channels to the membrane cytoskeleton is a site for regulation of Na+ channel activity by vasopressin and aldosterone, then hormone-mediated changes in either the membrane cytoskeleton or the affinity of the Na+ channel for the membrane cytoskeleton, should be reflected in changes in the lateral mobility and/or mobile fraction of Na+ channels on the cell surface. FPR revealed that although the rates of lateral mobility were not affected, there was a twofold increase in mobility fraction (f) of apical Na+ channels in aldosterone-treated (16 hr) monolayers (f = 32.31 ± 5.42%) when compared to control (unstimulated) (f = 14.2 ± 0.77%) and vasopressin-treated (20 min) (f = 12.7 ± 2.4%) monolayers. The twofold increase in mobile fraction of Na+ channels corresponds to the average increase in Na+ transport in response to aldosterone in A6 cells. The aldosterone-induced increase in Na+ transport and mobile fraction can be inhibited by the methylation inhibitor, 3-deazaadenosine, consistent with the hypothesis that a methylation event is involved in aldosterone induced upregulation of Na+ transport. We propose that the membrane cytoskeleton is involved in the aldosterone-mediated activation of epithelial Na+ channels.Supported by NIH grants DK37206 (DJB), NS26733 and NS28072 (KJA), DK46705 (PRS) and AHA New York Affiliate grant 91007G (LCS).  相似文献   

5.
Binding of arginine-vasopressin (AVP) to its V2 receptor (V2R) in the basolateral membrane of principal cells induces Aquaporin-2-mediated water reabsorption in the kidney. To study the regulation of the V2R by dDAVP in a proper model, a polarized renal cell line stably-expressing V2R-GFP was generated. Labeled AVP-binding studies revealed an equal basolateral vs. apical membrane distribution for V2R-GFP and endogenous V2R. In these cells, GFP-V2R was expressed in its mature form and localized for 75% in the basolateral membrane and for 25% to late endosomes/lysosomes. dDAVP caused a dose- and time-dependent internalization of V2R-GFP, which was completed within 1 h with 100 nM dDAVP, was prevented by coincubation with a V2R antagonist, and which reduced its half-life from 11.5 to 2.8 h. Semiquantification of the V2R-GFP colocalization with E-cadherin (basolateral membrane), early endosomal antigen-1 (EEA-1) and lysosome-associated membrane protein-2 (LAMP-2) in time revealed that most dDAVP-bound V2R was internalized via early endosomes to late endosomes/lysosomes, where it was degraded. The dDAVP-internalized V2R did not recycle to the basolateral membrane. In conclusion, we established the itinerary of the V2R in a polarized cell model that likely resembles the in vivo V2R localization and regulation by AVP to a great extent.  相似文献   

6.
D A Jans  R Peters    F Fahrenholz 《The EMBO journal》1990,9(9):2693-2699
The present work examines lateral mobility of the vasopressin V1-type receptor, representing the first determination of lateral mobility of a hormone receptor coupled to phospholipase C activation. The V1-receptor of A7r5 smooth muscle cells was characterized for [Arg8] vasopressin (AVP) binding properties and affinity for the fluorescent vasopressin analogue 1-deamino[8-lysine (N6-tetramethylrhodamylaminothiocarbonyl)] vasopressin (TR-LVP). TR-LVP was biologically active in A7r5 cells, inducing inositol 1,4,5-trisphosphate turnover in similar fashion to AVP. TR-LVP was used to specifically label the V1-receptor of living A7r5 cells, and lateral mobility of the V1-receptor was measured using the technique of fluorescence microphotolysis. The apparent lateral diffusion coefficient (D) at 37 degrees C was 5.1 x 10(-10) cm2/s, falling to 2.9 x 10(-10) cm2/s at 13 degrees C. These D values are higher than comparable values for the adenylate cyclase-activating vasopressin V2-receptor of LLC-PK1 renal epithelial cells analysed with the same fluorescent ligand. In contrast to the V2-receptor, no marked temperature dependence was observed for the V1-receptor mobile fraction (f). From 37 degrees C to 13 degrees C, f was relatively low (between 0.4 and 0.5) consistent with V1-receptor immobilization through internalization, which is rapid even at room temperature in A7r5 cells. These differences between V1- and V2-receptor lateral mobility are discussed in terms of the implications for their respective signal transduction systems.  相似文献   

7.
The role of N-glycosylation in the function and biosynthesis of the vasopressin V2-receptor in LLC-PK1 renal epithelial cells was examined using various lectins and inhibitors operating at different steps of the glycosidic pathway. Tunicamycin, which blocks all N-glycosylation, and castanospermine, which inhibits glycosidase I and hence blocks formation of high-mannose-type N-glycosylated intermediates, resembled one another in affecting V2-receptor biosynthesis and internalization in a concentration-dependent manner. In contrast, swainsonine, an inhibitor of mannosidase II and hence of complex-type oligosaccharide formation, had no effect. Interestingly, the alpha-D-mannose/alpha-D-glucose-specific lectin concanavalin A, (Con A), in contrast to the beta-D-galactose-specific lectin ricin, had a marked effect on the V2-receptor in LLC-PK1 cells, increasing both receptor numbers up to twofold in vivo and specific [3H]AVP binding up to 50% in vitro in a concentration-dependent manner. The concentrations inducing half-maximal response were about 0.2 and 20 micrograms/ml for the in vivo and in vitro responses, respectively, implying distinct effects on V2-expression and ligand binding. That the in vitro effect on binding was due to a direct effect on the V2-receptor could be shown by the lack of a Con A effect on [3H]AVP binding in membranes prepared from LLC-PK1 cells down-regulated for the V2-receptor or from cells of the LLC-PK1 V2-receptor deficient mutant M18. All results were consistent with a functional role for N-glycosylation of the V2-receptor in LLC-PK1 cells.  相似文献   

8.
9.
The role of hormone receptor lateral mobility in signal transduction was studied using a cellular system in which the receptor mobile fraction could be reversibly modulated to largely varying extents. The G-protein-coupled vasopressin V2-type receptor was labeled in LLC-PK1 renal epithelial cells using a fluorescent analogue of vasopressin, and receptor lateral mobility measured using fluorescence microphotolysis (fluorescence photobleaching recovery). The receptor mobile fraction (f) was approximately 0.9 at 37 degrees C and less than 0.1 at 10 degrees C, in accordance with previous studies. When cells were incubated for 1 h at 4 degrees C without hormone, and then warmed up to 37 degrees C and labeled with the vasopressin analogue, f increased from approximately 0.4 to 0.8 over approximately 1 h. The apparent lateral diffusion coefficient was not markedly affected by temperature pretreatment. Studies with radiolabeled vasopressin indicated that temperature pretreatment influenced neither receptor number nor binding/internalization kinetics. F-actin staining revealed that temperature change resulted in reversible changes of cytoskeletal structure. The maximal rate of in vivo cAMP production at 37 degrees C in response to vasopressin, but not to forskolin (receptor-independent agonist), was also markedly influenced by preincubation of cells at 4 degrees C, thus paralleling the effects of temperature preincubation on f. A linear correlation between f and maximal cAMP production was observed, suggesting that the receptor mobile fraction is a key parameter in hormone signal transduction in vivo. We conclude that mobile receptors are required to activate G-proteins, and discuss the implications of this for signal transduction mechanisms.  相似文献   

10.
Alanine uptake by LLC-PK1 cells has previously been demonstrated to be almost exclusively sodium dependent. We here confirm that when the cells are grown on an impermeable substratum there is a marked fall in uptake as confluence is reached. By applying an autoradiographic technique to visualize transported alanine, it is clear, however, that even in subconfluent cultures there is marked cellular inhomogeneity with regard to uptake, which takes place predominantly in those cells at the periphery of growing islands and not those at the interior. In contrast, when cells are grown on permeable substrata, a uniform distribution of silver grains is found. In two other types of experiment, we found that when confluent cell monolayers on an impermeable support were treated briefly with a chelating agent or suspended by mechanical treatment, there was a marked increase per cell in sodium-dependent alanine uptake and in ouabain-sensitive potassium uptake. We conclude that the apparent fall in alanine uptake as cells reach confluence on an impermeable support is due to masking of transport sites, which are predominantly, if not exclusively, located at the basolateral membrane.  相似文献   

11.
The effects of propylthiouracil (PTU) treatment on the plasma vasopressin level, on the number of hepatic (V1) or renal (V2) vasopressin receptors and on the hormone-sensitive adenylate cyclase activity in the kidney of developing rats were studied in parallel. In addition, we investigated the corrective effects of thyroxine therapy on the plasma vasopressin level and parameters related to the liver, and the effects of vasopressin therapy on the parameters related to the kidney. As already reported in the case of the number of V2 receptors and adenylate cyclase activity in the kidney, the deficient plasma vasopressin level in hypothyroid rats was completely corrected by two daily physiological doses of thyroxine given from birth to the age of sacrifice (1 month). Unlike the V1 receptors, the V2 receptors are known to be highly dependent on their specific circulating ligand. Since, first of all, the deficit was similar in the numbers of V1 and V2 receptors in hypothyroid rats, and, secondly, the treatment of hypothyroid rats by two daily physiological doses of long lasting vasopressin was found ineffective to recover the deficit in the number of V2 receptors, it can be concluded that thyroid deficiency directly alters vasopressin receptor biosynthesis in both liver and kidney, instead of acting via the depressed plasma vasopressin level.  相似文献   

12.
BACKGROUND INFORMATION: Aquaporin 2 (AQP2) plays an important, VP (vasopressin)-regulated role in water reabsorption by the kidney. The amount of AQP2 expressed at the surface of principal cells results from an equilibrium between the AQP2 in intracellular vesicles and the AQP2 on the plasma membrane. VP shifts the equilibrium in favour of the plasma membrane and this allows osmotic equilibration to occur between the collecting duct lumen and the interstitial space. Membrane accumulation of AQP2 could result from a VP-induced increase in exocytosis, a decrease in endocytosis, or both. In the present study, we further investigated AQP2 accumulation at the cell surface, and compared it with V2R (VP type 2 receptor) trafficking using cells that express epitope-tagged AQP2 and V2R. RESULTS: Endocytosis of V2R and of AQP2 are independent events that can be separated temporally and spatially. The burst of endocytosis seen after VP addition to target cells, when AQP2 accumulates at the cell surface, is primarily due to internalization of the V2R. Increased endocytosis is not induced by forskolin, which also induces membrane accumulation of AQP2 by direct stimulation of adenylate cyclase. This indicates that cAMP elevation is not the primary cause of the initial, VP-induced endocytic process. After VP exposure, AQP2 is not located in endosomes with internalized V2R. Instead, it remains at the cell surface in 'endocytosis-resistant' membrane domains, visualized by confocal imaging. After VP washout, AQP2 is progressively internalized with the fluid-phase marker FITC-dextran, indicating that VP washout releases an endocytotic block that maintains AQP2 at the cell surface. Finally, polarized application of VP to filter-grown cells shows that apical VP can induce basolateral endocytosis and V2R down-regulation, and vice versa. CONCLUSIONS: After VP stimulation of renal epithelial cells, AQP2 accumulates at the cell surface, while the V2R is actively internalized. This endocytotic block may involve a reduced capacity of phosphorylated AQP2 to interact with components of the endocytotic machinery. In addition, a complex cross-talk exists between the apical and basolateral plasma-membrane domains with respect to endocytosis and V2R down-regulation. This may be of physiological significance in down-regulating the VP response in the kidney in vivo.  相似文献   

13.
14.
Eukaryotic elongation factor-1 (eEF1) is essential for peptide-chain elongation during translation. We report that its gamma subunit (eEF1Bgamma) specifically binds, and bundles, keratin intermediate filaments. Disrupting this interaction depresses translation by approximately 20% and selectively increases 80S ribosomes in epithelial cells, an outcome recapitulated by RNA interference-mediated silencing of eEF1Bgamma. These findings extend the emerging relationship between keratin proteins and the translational machinery.  相似文献   

15.
Y Terashima  K Kondo  Y Oiso 《Life sciences》1999,64(16):1447-1453
Oxytocin (OT) binds to the vasopressin V2 receptor (V2R) because of its structural similarity to arginine vasopressin (AVP). Though the affinity of OT for V2R is low, it is known that OT causes antidiuresis. To clarify the effect of OT as an agonist of V2R, we investigated the influence of acute elevation of plasma OT levels on the rat mRNA expression of V2R and aquaporin-2 (AQP2), the water channel regulated by V2R. The plasma OT level increased from 11.1+/-1.6 pg/ml to 331.0+/-67.9 pg/ml by 1 h after subcutaneousinjection of 20 microg OT. V2R mRNA expression decreased to 68.3+/-4.1% of the control at 3 h, and AQP2 mRNA expression increased to 239.3+/-26.8% of the control at 6 h. The plasma AVP level did not change significantly during the experiment. The influence of a subcutaneous injection of 20 microg OT on V2R and AQP2 mRNA expression is comparable to that of 10 microg AVP that we documented in the previous study. In conclusion, OT can downregulate V2R mRNA expression and upregulate AQP2 mRNA expression in the collecting duct as an agonist of the V2R like AVP.  相似文献   

16.
Different rigidities of adhesive collagen substrate affect cellular functions with unclear mechanisms. Here, we cultured a renal epithelial cell line (LLC-PK1) and a tumor cell line (HeLa) on substrates of different rigidities and compared the cell type-specific responses. The culture dish was coated with a very thin layer of collagen gel (control group) or overlaid with collagen gel (soft substrate). LLC-PK1 cells contracted as they grew on collagen gel and the apoptotic bodies obviously appeared with time. The protein levels of procaspase-12 and its downstream target procaspase-3 were decreased when LLC-PK1 cells cultured on collagen gel. Mu-calpain was activated on collagen gel. Collage gel also induced the cleavage of alpha-spectrin which resulted in the disorganization of actin cytoskeleton. In contrast, there was no significant change in cytochrome c revelation, mitochondrial membrane potential, and the protein levels of procaspase-8 and procaspase-9. Moreover, soft substrate caused elevated cytosolic Ca(2+), Ca(2+) overload in ER and upregulation of capacitative calcium entry. Ca(2+) chelator or channel blocker partially rescued the collagen-gel induced apoptosis by inhibiting mu-calpain activation. In contrast, for HeLa cells cultured either on collagen gel or on gel-coated dish, there was no significant change in positive Annexin V staining, no activation of procaspase-12 and no cleavage of mu-calpain. Thus, soft substrate induces apoptosis in LLC-PK1 cells by the disturbance of Ca(2+) homeostasis.  相似文献   

17.
We have studied arginine vasopressin (AVP)-, thapsigargin- and inositol 1,4,5-trisphosphate (InsP3)-mediated Ca2+ release in renal epithelial LLC-PK1 cells. AVP-induced changes in the intracellular free calcium concentration ([Ca2+]i) were studied in indo-1 loaded single cells by confocal laser cytometry. AVP-mediated Ca2+ mobilization was also observed in the absence of extracellular Ca2+, but was completely abolished after depletion of the intracellular Ca2+ stores by 2 μM thapsigargin. Using 45Ca2+ fluxes in saponin-permeabilized cell monolayers, we have analysed how InsP3 affected the Ca2+ content of nonmitochondrial Ca2+ pools in different loading and release conditions. Less than 10% of the Ca2+ was taken up in a thapsigargin-insensitive pool when loading was performed in a medium containing 0.1 μM Ca2+. The thapsigargin-insensitive compartment amounted to 35% in the presence of 110 μM Ca2+, but Ca2+ sequestered in this pool could not be released by InsP3. The thapsigargin-sensitive Ca2+ pool, in contrast, was nearly completely InsP3 sensitive. A submaximal [InsP3], however, released only a fraction of the sequestered Ca2+. This fraction was dependent on the cytosolic as well as on the luminal [Ca2+]. The cytosolic free [Ca2+] affected the InsP3-induced Ca2+ release in a biphasic way. Maximal sensitivity toward InsP3 was found at a free cytosolic [Ca2+] between 0.1 and 0.5 μM, whereas higher cytosolic [Ca2+] decreased the InsP3 sensitivity. Other divalent cations or La3+ did not provoke similar inhibitory effects on InsP3-induced Ca2+ release. The luminal free [Ca2+] was manipulated by varying the time of incubation of Ca2+ -loaded cells in an EGTA-containing medium. Reduction of the Ca2+ content to one-third of its initial value resulted in a fivefold decrease in the InsP3 sensitivity of the Ca2+ release. © 1993 Wiley-Liss, Inc.  相似文献   

18.
19.
The reggies/flotillins are oligomeric scaffolding proteins for membrane microdomains. We show here that reggie-1/flotillin-2 microdomains are organized along cortical F-actin in several cell types. Interaction with F-actin is mediated by the SPFH domain as shown by in vivo co-localization and in vitro binding experiments. Reggie-1/flotillin-2 microdomains form independent of actin, but disruption or stabilization of the actin cytoskeleton modulate the lateral mobility of reggie-1/flotillin-2 as shown by FRAP. Furthermore, reggie/flotillin microdomains can efficiently be immobilized by actin polymerisation, while exchange of reggie-1/flotillin-2 molecules between microdomains is enhanced by actin disruption as shown by tracking of individual microdomains using TIRF microscopy.  相似文献   

20.
Polycystin-2 (PC2, TRPP2) is a nonselective cation channel whose dysfunction is associated with the onset of autosomal dominant polycystic kidney disease (ADPKD). PC2 contributes to Ca2+ transport and cell signaling in renal epithelia and other tissues. Little is known however, as to the external Ca2+ regulation of PC2 channel function. In this study, we explored the effect of external Ca2+ on endogenous PC2 in wild type LLC-PK1 renal epithelial cells. We obtained whole cell currents at different external Ca2+ concentrations, and observed that the basal whole cell conductance in normal Ca2+(1.2 mM), decreased by 30.2% in zero (nominal) Ca2+ and conversely, increased by 38% in high external Ca2+(6.2 mM). The high Ca2+-increased whole cell currents were completely inhibited by either PC2 gene silencing, or intracellular dialysis with active, but not denatured by boiling, PC2 antibody. Exposure of cells to high Ca2+ was also associated with relocation of PC2 to the plasma membrane. To explore whether a Ca2+ sensing receptor (CaSR) was implicated in the external Ca2+ modulation of PC2 currents, we tested the effect of the CaSR agonists, spermine and the calcimimetic R-568, which largely mimicked the effect of high Ca2+ under Ca2+-free conditions. The CaSR agonist gentamicin also increased the PC2 currents in the presence of normal Ca2+. The presence of CaSR was confirmed by immunocytochemistry, which partially colocalized with the intracellular PC2 protein, in an external Ca2+-dependent manner. The data support a novel Ca2+ sensing mechanism for PC2 expression and functional regulation in renal epithelial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号