首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The genes for glyceraldehyde-3-phosphate dehydrogenase (gap genes) from the mesophilic methanogenic archaebacteria Methanobacterium formicicum and Methanobacterium bryantii were cloned and sequenced. The deduced amino acid sequences show 95% identity to each other and about 70% identity to the glyceraldehyde-3-phosphate dehydrogenase from the thermophilic methanogenic archaebacterium Methanothermus fervidus. Although the sequence similarity between the archaebacterial glyceraldehyde-3-phosphate dehydrogenase and the homologous enzyme of eubacteria and eukaryotes is low, an equivalent secondary-structural arrangement can be deduced from the profiles of the physical parameters hydropathy, chain flexibility and amphipathy. In order to find possible thermophile-specific structural features of the enzyme from M. fervidus, a comparative primary-sequence analysis was performed. Amino acid exchanges leading, to a stabilization of the main-chain conformation, could be found throughout the sequence of the thermophile enzyme. Striking features of the thermophile sequence are the preference for isoleucine, especially in beta-sheets, and a low arginine/lysine ratio of 0.54.  相似文献   

2.
The D-glyceraldehyde-3-phosphate dehydrogenase from the extremely thermophilic archaebacterium Methanothermus fervidus was purified and crystallized. The enzyme is a homomeric tetramer (molecular mass of subunits 45 kDa). Partial sequence analysis shows homology to the enzymes from eubacteria and from the cytoplasm of eukaryotes. Unlike these enzymes, the D-glyceraldehyde-3-phosphate dehydrogenase from Methanothermus fervidus reacts with both NAD+ and NADP+ and is not inhibited by pentalenolactone. The enzyme is intrinsically stable up to 75 degrees C. It is stabilized by the coenzyme NADP+ and at high ionic strength up to about 90 degrees C. Breaks in the Arrhenius and Van't Hoff plots indicate conformational changes of the enzyme at around 52 degrees C.  相似文献   

3.
S Fabry  R Hensel 《Gene》1988,64(2):189-197
The gene for the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from the thermophilic methanogenic archaebacterium Methanothermus fervidus (growth optimum at 84 degrees C) was cloned in Escherichia coli and the nucleotide sequence was determined. A striking preference for adenine and thymidine bases was found in the gene, which is in agreement with the low G + C content of the M. fervidus DNA. The deduced amino acid sequence indicates an Mr of 37,500 for the protein subunit. Alignment with the amino acid sequences of GAPDHs from other organisms shows that the archaebacterial GAPDH is homologous to the respective eubacterial and eukaryotic enzymes, but the similarity between the archaebacterial enzyme and the eubacterial or eukaryotic GAPDHs is much less than that between the latter two.  相似文献   

4.
S Fabry  A Lehmacher  W Bode  R Hensel 《FEBS letters》1988,237(1-2):213-217
The gene of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from the extremely thermophilic archaebacterium Methanothermus fervidus (growth optimum 82 degrees C) was cloned in vector pJF118EH and expressed in E. coli cells. As shown by molecular mass determination, protein sequencing, heat stability, and substrate saturation kinetics, the enzyme synthesized in E. coli is identical to the original enzyme from M. fervidus. The high thermostability of the E. coli-produced M. fervidus GAPDH allows rapid purification to homogeneity. From this enzyme protein crystals were grown which proved to be suitable for X-ray analysis. The crystals are of tetragonal space group P4(1)22 and contain a dimer per asymmetric unit.  相似文献   

5.
L-Malate dehydrogenase from the extremely thermophilic mathanogen Methanothermus fervidus was isolated and its phenotypic properties were characterized. The primary structure of the protein was deducted from the coding gene. The enzyme is a homomeric dimer with a molecular mass of 70 kDa, possesses low specificity for NAD+ or NADP+ and catalyzes preferentially the reduction of oxalacetate. The temperature dependence of the activity as depicted in the Arrhenius and van't Hoff plots shows discontinuities near 52 degrees C, as was found for glyceraldehyde-3-phosphate dehydrogenase from the same organism. With respect to the primary structure, the archaebacterial L-malate dehydrogenase deviates strikingly from the eubacterial and eukaryotic enzymes. The sequence similarity is even lower than that between the L-malate dehydrogenases and L-lactate dehydrogenases of eubacteria and eukaryotes. The phylogenetic meaning of this relationship is discussed.  相似文献   

6.
J Biro  S Fabry  W Dietmaier  C Bogedain  R Hensel 《FEBS letters》1990,275(1-2):130-134
Construction of hybrid enzymes between the glyceraldehyde-3-phosphate dehydrogenases from the mesophilic Methanobacterium bryantii and the thermophilic Methanothermus fervidus by recombinant DNA techniques revealed that a short C-terminal fragment of the Mt. fervidus enzyme contributes largely to its thermostability. This C-terminal region appears to be homologous to the alpha 3-helix of eubacterial and eukaryotic glyceraldehyde-3-phosphate dehydrogenases which is involved in the contacts between the two domains of the enzyme subunit. Site-directed mutagenesis experiments indicate that hydrophobic interactions play an important role in these contacts.  相似文献   

7.
Abstract An inter- and intra-species correlation was found between the intracellular potassium concentration and growth temperature within the Methanobacteriales , comprising mesophiles as well as moderate ( Methanobacterium thermoautotrophicum ) and extreme thermophiles ( Methanothermus fervidus, Mt. sociabilis ). Potassium concentrations in different species were determined at optimal growth temperatures and for the same species cultured at different temperatures. The main anionic component was found to be the unusual trianionic cyclic 2,3-diphosphiglycerate. In vitro experiments with the thermolabile enzymes glyceraldehyde-3-phosphate dehydrogenase and malate dehydrogenase from Mt. fervidus indicated that the potassium salt of the cyclic diphosphoglycerate acts as potent thermostabilizer. Thus it appears that, for the methanogens, changes in the intracellular ion concentration are the basis of thermoadaptation.  相似文献   

8.
Abstract The lactate dehydrogenase gene, ldh , of Alcaligenes eutrophus H16 was identified on a 14-kbp Eco RI restriction fragment of a genomic library in the cosmid pHC79 by hybridization with a 50-mer synthetic oligonucleotide which was derived from the N-terminal amino acid sequence of the purified enzyme. Recombinant strains of Escherichia coli JM83, which harboured a 2.0-kbp Pst I subfragment in pUC9-1, expressed LDH at a high level, if ldh was downstream from and colinear to the E. coli lac promoter. The nucleotide sequence of a region of 4245 bp revealed several open reading frames which might represent coding regions. One represented the ldh gene. The amino acid sequence deduced from ldh exhibited 29% and 36% identity to the L-malate dehydrogenase of Methanothermus fervidus and to the putative translation product of an E. coli sequence of unknown function, respectively. The ldh was separated by short intergenic regions from two other open reading frames: ORF5 was located downstream of and colinear to ldh , and its putative translational product revealed 38 to 56% amino acid identity to penicillin-binding proteins. ORF3 was located upstream of and colinear to ldh , and its putative gene translational product represented a hydrophobic protein. A sequence, which resembled the A. eutrophus alcohol dehydrogenase promoter, was detected upstream of ORF3, which most probably represents the first transcribed gene of an operon consisting of ORF3, ldh and ORF5.  相似文献   

9.
10.
A 3.3-kilobase-pair region of the Methanothermus fervidus genome encoding part of the small subunit and all of the large subunit of the methyl viologen-reducing hydrogenase and a polyferredoxin was cloned and sequenced. The sequence of this hyperthermophilic hydrogenase conforms to the consensus sequence established for procaryotic [NiFe] hydrogenases. Although the M. fervidus polyferredoxin is the same size as the Methanobacterium thermoautotrophicum ferredoxin, containing six tandemly arranged bacterial ferredoxinlike domains, these two proteins are predicted to be only 64% identical in their primary sequences.  相似文献   

11.
In the previous study we cloned Pyrococcus woesei gene coding thermostable beta-galactosidase into pET30-LIC expression plasmid. The nucleotide sequence revealed that beta-galactosidase of P. woesei consists of 510 amino acids and has a molecular weight of 59, 056 kDa (GenBank Accession No. AF043283). It shows 99.9% nucleotide identity to the nucleotide sequence of beta-galactosidase from Pyrococcus furiosus. We also demonstrated that thermostable beta-galactosidase can be produced with high yield by Escherichia coli strain and can be easy separated by thermal precipitation of other bacterial proteins at 85 degrees C (S. D $$;abrowski, J. Maciuńska, and J. Synowiecki, 1998, Mol. Biotechnol. 10, 217-222). In this study we presented a new expression system for producing P. woesei beta-galactosidase in Escherichia coli and one-step chromatography purification procedure for obtaining pure enzyme (His(6)-tagged beta-galactosidase). The recombinant beta-galactosidase contained a polyhistidine tag at the N-terminus (20 additional amino acids) that allowed single-step isolation by Ni affinity chromatography. The enzyme was purified by heat treatment (to denature E. coli proteins), followed by metal-affinity chromatography on Ni(2+)-TED-Sepharose columns. The enzyme was characterized and displayed high activity and thermostability. This bacterial expression system appears to be a good method for production of the thermostable beta-galactosidase.  相似文献   

12.
13.
One of the most remarkable biochemical differences between the members of two domains Archaea and Bacteria is the stereochemistry of the glycerophosphate backbone of phospholipids, which are exclusively opposite. The enzyme responsible to the formation of Archaea-specific glycerophosphate was found to be NAD(P)-linked sn-glycerol-1-phosphate (G-1-P) dehydrogenase and it was first purified from Methanobacterium thermoautotrophicum cells and its gene was cloned. This structure gene named egsA (enantiomeric glycerophosphate synthase) consisted of 1,041 bp and coded the enzyme with 347 amino acid residues. The amino acid sequence deduced from the base sequence of the cloned gene (egsA) did not share any sequence similarity except for NAD-binding region with that of NAD(P)-linked sn-glycerol-3-phosphate (G-3-P) dehydrogenase of Escherichia coli which catalyzes the formation of G-3-P backbone of bacterial phospholipids, while the deduced protein sequence of the enzyme revealed some similarity with bacterial glycerol dehydrogenases. Because G-1-P dehydrogenase and G-3-P dehydrogenase would originate from different ancestor enzymes and it would be almost impossible to interchange stereospecificity of the enzymes, it seems likely that the stereostructure of membrane phospholipids of a cell must be maintained from the time of birth of the first cell. We propose here the hypothesis that Archaea and Bacteria were differentiated by the occurrence of cells enclosed by membranes of phospholipids with G-1-P and G-3-P as a backbone, respectively. Received: 24 March 1997 / Accepted: 21 May 1997  相似文献   

14.
A gene having high sequence homology (45-49%) with the glycerol-1-phosphate dehydrogenase gene from Methanobacterium thermoautotrophicum was cloned from the aerobic hyperthermophilic archaeon Aeropyrum pernix K1 (JCM 9820). This gene expressed in Escherichia coli with the pET vector system consists of 1113 nucleotides with an ATG initiation codon and a TAG termination codon. The molecular mass of the purified enzyme was estimated to be 38 kDa by SDS/PAGE and 72.4 kDa by gel column chromatography, indicating presence as a dimer. The optimum reaction temperature of this enzyme was observed to be 94-96 degrees C at near neutral pH. This enzyme was subjected to two-substrate kinetic analysis. The enzyme showed substrate specificity for NAD(P)H-dependent dihydroxyacetone phosphate reduction and NAD(+)-dependent glycerol-1-phosphate (Gro1P) oxidation. NADP(+)-dependent Gro1P oxidation was not observed with this enzyme. For the production of Gro1P in A. pernix cells, NADPH is the preferred coenzyme rather than NADH. Gro1P acted as a noncompetitive inhibitor against dihydroxyacetone phosphate and NAD(P)H. However, NAD(P)(+) acted as a competitive inhibitor against NAD(P)H and as a noncompetitive inhibitor against dihydroxyacetone phosphate. This kinetic data indicates that the catalytic reaction by glycerol- 1-phosphate dehydrogenase from A. pernix follows a ordered bi-bi mechanism.  相似文献   

15.
16.
Analysis of gene structure in the extremely thermophilic archaebacterium, Methanothermus fervidus, has revealed the presence of a cluster of stable RNA-encoding genes arranged 5'-7S RNA-tRNA(Ser)-16S rRNA-tRNA(Ala)-23S rRNA-5S rRNA. The genome of M. fervidus contains two rRNA operons but only one operon has the closely linked 7S RNA-encoding gene. The sequences upstream from the two rRNA operons are identical for 206 bp but diverge at the 3' base of the tRNA(Ser) gene. The secondary structures predicted for the M. fervidus 7S, 16S rRNA, tRNA(Ala) and tRNA(Ser) have been compared with those of functionally homologous molecules from moderately thermophilic and mesophilic archaebacteria. A consensus secondary structure for archaebacterial 7S RNAs has been developed which incorporates bases and structural features also conserved in eukaryotic signal-recognition-particle RNAs and eubacterial 4.5S RNAs.  相似文献   

17.
The mtl operon of Klebsiella pneumoniae KAY2026 (formerly Aerobacter aerogenes 1033-5P14) was shown to contain as the promoter-proximal gene mtlA, encoding a D-mannitol-specific enzyme II transporter (IICBA(Mtl)). This gene is followed by mtlD, coding for a mannitol-1-phosphate dehydrogenase (MtlD, 382 amino acid residues), and mtlR (MtlR, 195 amino acid residues) coding for a putative repressor, gene mtlR overlaps the termination codon of mtlD. The DNA and protein sequences are highly similar to the corresponding genes (81% identical bp) and proteins (79-85% identical amino acids) of Escherichia coli K-12. A truncated form of MtlD lacking the 162 C-terminal amino acid residues still shows 10% dehydrogenase activity which may explain the controversy in the literature concerning the properties of mannitol-phosphate and other medium-length dehydrogenases.  相似文献   

18.
19.
A gene encoding superoxide dismutase (SOD) was cloned from the archaebacterium Methanobacterium thermoautotrophicum, the first example from an anaerobic bacterium. The deduced amino acid sequence showed overall similarity to sequences of known Mn- and Fe-SODs from aerobic organisms. Judging from a detailed sequence comparison, the cloned SOD gene is classified as Mn-SOD. By comparison of Mn-SOD sequences among various species it was suggested that archaebacterial superoxide dismutase is a direct descendant of a primordial enzyme. Between a putative promoter and the start codon there is an inverted repeat sequence which is also found in the counterpart of Halobacterium halobium.  相似文献   

20.
A new method for theoretical analysis of the molecular phylogeny of bacteria, successfully applied earlier to nitrifying bacteria, was used to study the molecular phylogeny of methanogenic archaebacteria. The group studied included Methanococcus igneus, Methanococcus vannielii, Methanothermus fervidus, Methanolobus tindarius, Methanobacterium formicicum, Methanosarcina barkeri, Methanobacterium thermoformicicum, Methanoplanus limicola, Methanospirillum hungatei, and Methanobacterium thermoautotrophicum. Based on the hypothesis that direct linear regression always exists between evolutionary changes in the DNA G + C content and the primary structure of rRNA, the branching order of the phylogenetic tree of methanogenic archaebacteria was determined. For this tree, the values of the evolutionary distance between 16S rRNA primary structures Ei and the values of the G + C evolutionary distance P(i) exhibited a correlation coefficient 0.78. Thus, the DNA G + C content is not only an important taxonomic characteristics but also provides information helpful for the determination of the branching order of phylogenetic trees constructed based on 16S rRNA primary structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号