首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Graded single oral doses of prostacyclin significantly enhance in dose-dependent manner the DNA and RNA content of rat gastric fundic mucosa, - resulting in a decreased RNA/DNA ratio. This latter phenomenon is convincing sign of new cell formation. In the antral region no significant changes could be encountered but the RNA content showed a tendency-like elevation, evoking an elevated RNA/DNA ratio, which corresponds to de novo protein synthesis. The diversity of the noted changes gives further evidence to the tenet the antral and the fundic gastric mucosa of the rat reacts differently toward external stimuli.  相似文献   

4.
The content of nucleic acids in the cell culture of fern-leaf aralia Polyscias filicifolia (Moore ex Fournter) Bailey (Araliaceae) exposed to heat shock (3 h at 45°C) decreased significantly (by 20–30%). The decrease in DNA and RNA contents was even larger (30–40%) after longer heat shock (24 h). Cold (24 h at 7°C) caused an even more dramatic decrease in DNA (by 34.2%) and total RNA (by 48%) contents. To judge from the DNA production rate, the presence of hydrogen peroxide and phenazine methosulfate in the culture exerted a dose-dependent and differently directed action on cell proliferation.  相似文献   

5.
6.
7.
DNA and RNA can be separated by microchip electrophoresis (ME) and detected using an intercalating fluorescent dye. The advantages of this method are short sensing times (<3 min), avoidance of a radioisotope labeling detection system, relatively low costs, and reduced labor intensity. In the present study, RNA aptamer-protein or -peptide interactions were analyzed using ME and the regression of free aptamers corresponding to unbound RNA was detected as the target protein or peptide increased in a dose-dependent manner. Our results demonstrate the applicability of this method to simple, rapid ligand screening in the interactions between oligonucleotides and their targets.  相似文献   

8.
9.
The efficacy of lipid-encapsulated, chemically modified short interfering RNA (siRNA) targeted to hepatitis B virus (HBV) was examined in an in vivo mouse model of HBV replication. Stabilized siRNA targeted to the HBV RNA was incorporated into a specialized liposome to form a stable nucleic-acid-lipid particle (SNALP) and administered by intravenous injection into mice carrying replicating HBV. The improved efficacy of siRNA-SNALP compared to unformulated siRNA correlates with a longer half-life in plasma and liver. Three daily intravenous injections of 3 mg/kg/day reduced serum HBV DNA >1.0 log(10). The reduction in HBV DNA was specific, dose-dependent and lasted for up to 7 d after dosing. Furthermore, reductions were seen in serum HBV DNA for up to 6 weeks with weekly dosing. The advances demonstrated here, including persistence of in vivo activity, use of lower doses and reduced dosing frequency are important steps in making siRNA a clinically viable therapeutic approach.  相似文献   

10.

DNA and RNA can be separated by microchip electrophoresis (ME) and detected using an intercalating fluorescent dye. The advantages of this method are short sensing times (< 3 min), avoidance of a radioisotope labeling detection system, relatively low costs, and reduced labor intensity. In the present study, RNA aptamer-protein or -peptide interactions were analyzed using ME and the regression of free aptamers corresponding to unbound RNA was detected as the target protein or peptide increased in a dose-dependent manner. Our results demonstrate the applicability of this method to simple, rapid ligand screening in the interactions between oligonucleotides and their targets.  相似文献   

11.
We have developed a PCR-based short interfering RNA (siRNA) quantification method based on competition between siRNA and a homologous DNA primer for annealing to template DNA, avoiding the requirement for prior conversion of RNA to cDNA. Primers and probe were designed to amplify regions of the human papillomavirus E6 or enhanced green fluorescent protein genes. Having confirmed siRNA could not act as primer for amplicon generation, the lowest competing primer concentration yielding a linear relationship between template DNA amount (0.1–50 ng) and cycle of threshold (Ct) was determined (6.25 nM). Under these conditions addition of sequence-specific siRNA to the competitive quantitative PCR (cqPCR), resulted in a dose-dependent linear increase in Ct value. 2′-O-methyl ribose-modified siRNA retained an ability to inhibit template amplification in serum, unlike unmodified siRNAs that were susceptible to endonucleases. Mismatch-bearing or truncated siRNAs failed to inhibit template amplification confirming sequence specificity and an ability to discriminate between degraded and non-degraded siRNA sequences. Following delivery of E6 siRNA to C33-A cells using oligofectamine or His6 reducible polymers, siRNA uptake was quantified by cqPCR, revealing dose-dependent uptake. We anticipate that cqPCR will allow accurate determination of siRNA pharmacokinetics following in vivo delivery, greatly facilitating development of therapeutic siRNA delivery strategies.  相似文献   

12.
Numerous epidemiological studies suggest that arsenic (As) compounds are carcinogens, however, recent data have renewed the interest in their anticarcinogenic properties. The cytotoxic effects of three arsenic compounds were assessed: sodium arsenite, sodium arsenate and sodium cacodylate, representing the trivalent and pentavalent species of arsenic, along with a dimethylated pentavalent arsenic species. HeLa cells and Salmonella typhimurium (strains TA98 and TA100) were exposed to As compounds and the cytotoxic effects were evaluated. Alterations on RNA and DNA synthesis in HeLa cells were also examined. All arsenic compounds produced a dose-dependent inhibition on colony formation and DNA synthesis in HeLa cells, yet any of them significantly influenced RNA synthesis in these cells. No evidence of arsenic-induced mutagenicity or antimutagenicity was observed using the Ames assay. In bacterial cells, only sodium arsenite caused a dose-dependent inhibition of colony formation.Collectively, these results indicate that in both, HeLa and S. typhimurium cell systems, only trivalent sodium arsenite can act as an effective inhibitor of cell growth. The possible mechanism(s) of the cytotoxic effect of arsenite in these two different cell systems might be due to its reactivity with intracellular sulfhydryl groups.  相似文献   

13.
Erythroblast proliferation and maturation in bone marrow are the processes leading to the formation of polychromatic erythrocytes (PE) and normochromatic erythrocytes (NE), respectively. PE contain RNA but no DNA, and can therefore be distinguished both from NE (which lack both RNA and DNA) and from nucleated cells (which contain both DNA and RNA). Cytotoxic agents that induce impairment of the maturation process change the PE:NE ratio. We have developed a simple and rapid method of determining the PE:NE ratio, based on flow cytometric analysis of formaldehyde-fixed, acridine orange (AO)-stained cells. The effects of cyclophosphamide (CP), mitomycin C (MMC), and vincristine (VC) were tested and the PE:NE ratio was evaluated over 7 days of treatment. In this study we monitored the kinetics of these compounds and were able to demonstrate both a time- and a dose-dependent effect. We detected a difference between the effects of the alkylating agents tested and those induced by the spindle inhibitor tested. Flow cytometry of fixed bone marrow samples stained with AO provides more information, better and more rapid statistical analysis, than conventional microscopic methods for counting the PE:NE ratio.  相似文献   

14.
15.
Cycling probe technology (CPT), which utilizes a chimeric DNA-RNA-DNA probe and RNase H, is a rapid, isothermal probe amplification system for the detection of target DNA. Upon hybridization of the probe to its target DNA, RNase H cleaves the RNA portion of the DNA/RNA hybrid. Utilizing CPT, we designed a catalytically cleavable fluorescence probe (CataCleave probe) containing two internal fluorophores. Fluorescence intensity of the probe itself was weak due to F?rster resonance energy transfer. Cleavage of the probe by RNase H in the presence of its target DNA caused enhancement of donor fluorescence, but this was not observed with nonspecific target DNA. Further, RNase H reactions with CataCleave probe exhibit a catalytic dose-dependent response to target DNA. This confirms the capability for the direct detection of specific target DNA through a signal amplification process. Moreover, CataCleave probe is also ideal for detecting DNA amplification processes, such as polymerase chain reaction (PCR) and isothermal rolling circle amplification (RCA). In fact, we observed signal enhancement proportional to the amount of RCA product formed. We were also able to monitor real-time PCR by measuring enhancement of donor fluorescence. Hence, CataCleave probe is useful for real-time monitoring of both isothermal and temperature-cycling nucleic acid amplification methods.  相似文献   

16.
1. A quantitative study was made of the relationship between survival of colony-forming ability in Escherichia coli strains B/r and B(s-1) and the extents of alkylation of cellular DNA, RNA and protein after treatment with mono- or di-functional sulphur mustards, methyl methanesulphonate or iodoacetamide. 2. The mustards and methyl methanesulphonate react with nucleic acids in the cells, in the same way as found previously from chemical studies in vitro, and with proteins. Iodoacetamide reacts only with protein, principally with the thiol groups of cysteine residues. 3. The extents of alkylation of cellular constituents required to prevent cell division vary widely according to the strain of bacteria and the nature of the alkylating agent. 4. The extents of alkylation of the sensitive and resistant strains at a given dose of alkylating agent do not differ significantly. 5. Removal of alkyl groups from DNA of cells of the resistant strains B/r and 15T(-) after alkylation with difunctional sulphur mustard was demonstrated; the product di(guanin-7-ylethyl) sulphide, characteristic of di- as opposed to mono-functional alkylation, was selectively removed; the time-scale of this effect suggests an enzymic rather than a chemical mechanism. 6. The sensitive strain B(s-1) removed alkyl groups from DNA in this way only at very low extents of alkylation. When sensitized to mustard action by treatment with iodoacetamide, acriflavine or caffeine, the extent of alkylation of cellular DNA corresponding to a mean lethal dose was decreased to approximately 3 molecules of di(guanin-7-ylethyl) sulphide in the genome of this strain. 7. Relatively large numbers of monofunctional alkylations per genome can be withstood by this sensitive strain. Iodoacetamide had the weakest cytotoxic action of the agents investigated; methyl methanesulphonate was significantly weaker in effect than the monofunctional sulphur mustard, which was in turn weaker than the difunctional sulphur mustard. 8. Effects of the sulphur mustards on nucleic acid synthesis in sensitive and resistant strains were studied. DNA synthesis was inhibited in both strains at low doses in a dose-dependent manner, but RNA and protein synthesis were not affected in this way. 9. DNA synthesis in E. coli B(s-1) was permanently inhibited by low doses of mustards. In the resistant strains 15T(-) and B/r a characteristic recovery in DNA synthesis was observed after a dose-dependent time-lag. This effect could be shown at low doses in the region of the mean lethal dose. 10. Cellular DNA was isotopically prelabelled and the effect of mustards on stability of DNA was investigated. With resistant strains a dose-dependent release of DNA nucleotide material into acid-soluble form was found; this was much more extensive with the difunctional mustard (about 400 nucleotides released per DNA alkylation) than with the monofunctional mustard (about 10 nucleotides per alkylation). With the sensitive strain no dose-dependent release was found, though the DNA was less stable independent of cellular alkylation. 11. The results are discussed in terms of the concepts that alkylation of cellular DNA induces lesions which interfere with DNA replication, but which can be enzymically ;repaired'. The possible nature of these lesions is discussed in terms of the known reactions of the alkylating agents with DNA.  相似文献   

17.
The anti-proliferative effect of methylglyoxal bis(cyclopentyl-amidino-hydrazone) (MGBCP), a multi-enzyme inhibitor of polyamine biosynthesis, on the growth of Helicobacter pylori was investigated. MGBCP inhibited the cell growth of H. pylori in a dose-dependent manner. The inhibition was partially reversed by the addition of spermidine. Synthesis of macromolecules, DNA, RNA and protein, was inhibited in the spermidine-depleted H. pylori cells. These findings suggest that MGBCP exhibits an anti-proliferative effect on H. pylori by suppression of macromolecule synthesis.  相似文献   

18.
DNA damage, stalled replication forks, errors in mRNA splicing and availability of nutrients activate specific phosphatidylinositiol-3-kinase-like kinases (PIKKs) that in turn phosphorylate downstream targets such as p53 on serine 15. While the PIKK proteins ATM and ATR respond to specific DNA lesions, SMG1 responds to errors in mRNA splicing and when cells are exposed to genotoxic stress. Yet, whether genotoxic stress activates SMG1 through specific types of DNA lesions or RNA damage remains poorly understood. Here, we demonstrate that siRNA oligonucleotides targeting the mRNA surveillance proteins SMG1, Upf1, Upf2 or the PIKK protein ATM attenuated p53 (ser15) phosphorylation in cells damaged by high oxygen (hyperoxia), a model of persistent oxidative stress that damages nucleotides. In contrast, loss of SMG1 or ATM, but not Upf1 or Upf2 reduced p53 (ser15) phosphorylation in response to DNA double strand breaks produced by expression of the endonuclease I-PpoI. To determine whether SMG1-dependent activation of p53 was in response to oxidative mRNA damage, mRNA encoding green fluorescence protein (GFP) transcribed in vitro was oxidized by Fenton chemistry and transfected into cells. Although oxidation of GFP mRNA resulted in dose-dependent fragmentation of the mRNA and reduced expression of GFP, it did not stimulate p53 or the p53-target gene p21. These findings establish SMG1 activates p53 in response to DNA double strand breaks independent of the RNA surveillance proteins Upf1 or Upf2; however, these proteins can stimulate p53 in response to oxidative stress but not necessarily oxidized RNA.Key words: DNA double strand breaks, nonsense-mediated mRNA decay (NMD), oxidative stress, phosphatidylinositiol-3-kinase-like kinases (PIKKs), RNA damage  相似文献   

19.
CspD is a stationary phase-induced, stress response protein in the CspA family of Escherichia coli. Here, we demonstrate that overproduction of CspD is lethal, with the cells displaying a morphology typical of cells with impaired DNA replication. CspD consists mainly of beta-strands, and the purified protein exists exclusively as a dimer and binds to single-stranded (ss)DNA and RNA in a dose-dependent manner without apparent sequence specificity. CsdD effectively inhibits both the initiation and the elongation steps of minichromosome replication in vitro. Electron microscopic studies revealed that CspD tightly packs ssDNA, resulting in structures distinctly different from those of SSB-coated DNA. We propose that CspD dimers, with two independent beta-sheets interacting with ssDNA, function as a novel inhibitor of DNA replication and play a regulatory role in chromosomal replication in nutrient-depleted cells.  相似文献   

20.
DNA damage, stalled replication forks, errors in mRNA splicing, and availability of nutrients activate specific phosphatidylinositiol-3 kinase-like kinases (PIKKs) that in turn phosphorylate downstream targets such as p53 on serine 15. While the PIKK proteins ATM and ATR respond to specific DNA lesions, SMG1 responds to errors in mRNA splicing and when cells are exposed to genotoxic stress. Yet, whether genotoxic stress activates SMG1 through specific types of DNA lesions or RNA damage remains poorly understood. Here, we demonstrate that siRNA oligonucleotides targeting the mRNA surveillance proteins SMG1, Upf1, Upf2, or the PIKK protein ATM attenuated p53 (ser15) phosphorylation in cells damaged by high oxygen (hyperoxia), a model of persistent oxidative stress that damages nucleotides. In contrast, loss of SMG1 or ATM, but not Upf1 or Upf2 reduced p53 (ser15) phosphorylation in response to DNA double strand breaks produced by expression of the endonuclease I-PpoI. To determine whether SMG1-dependent activation of p53 was in response to oxidative mRNA damage, mRNA encoding green fluorescence protein (GFP) transcribed in vitro was oxidized by Fenton chemistry and transfected into cells. Although oxidation of GFP mRNA resulted in dose-dependent fragmentation of the mRNA and reduced expression of GFP, it did not stimulate p53 or the p53-target gene p21. These findings establish SMG1 activates p53 in response to DNA double-strand breaks independent of the RNA surveillance proteins Upf1 or Upf2; however, these proteins can stimulate p53 in response to oxidative stress but not necessarily oxidized RNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号