首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Seedlings of a susceptible inbred line of male-fertile corn were inoculated with conidia of Helminthosporium maydis race O. Histological and ultrastructural observations of mesophyll, bundle sheath and phloem were made over a period of 8 days. Histological observations at 1 day revealed that lesions were comprised of several dead mesophyll cells bordered by a pair of vascular bundles. By 3 days lesions had developed their characteristic appearance caused by mesophyll collapse and had increased to a width of 10–12 bundles. At the ultrastructural level, the first signs of mesophyll cell change were rupture of the tonoplast and swelling of the mitochondrial matrix followed by a disintegration of the cytoplasm and swelling of the chloroplast stroma. Following these changes the cytoplasm became filled with an electron dense material and the plasmalemma ruptured leaving only partial remnants of chloroplasts as recognizable organelles. All of these changes occurred by 1 day. Bundle sheath cells were more resistant and intact cells could be observed in 3-day-old lesions. Phloem showed signs of degeneration by 1 day with distortion of the sieve-tube element membranes and disintegration of the companion cell cytoplasm. By 4 days the phloem had disintegrated.  相似文献   

2.
Healthy chloroplasts of Hordeum vulgare are compared with chloroplasts subjected to abnormal stresses such as in situ disruption, isolation, isolation plus washing in 0.5 m sucrose, and isolation plus washing in 0.5 m sucrose and distilled H2O. Normal chloroplasts resemble those of Nicotiana rustica and Phaseolus vulgaris in being composed of compartmented grana connected by an anastomosing fretwork system. They differ in having a somewhat greater incidence of parallel frets and double partitions. Under conditions of stress both grana and fretwork undergo varying degrees of swelling, and the double partition maintains its structural integrity. Grana are more resistant to abnormal stresses than the fretwork. Fret connections with more than 3 grana do not generally occur, but in some micrographs a single pathway may be traced through several grana. Washing isolated chloroplasts in distilled water results in an enlargement involving compartments of 2 or more grana together with the associated fretwork membranes. These results indicate that the grana in mature chloroplasts of Hordeum vulgare, like those of Nicotiana rustica and Phaseolus vulgaris, are compartmented structural units and not a series of localized aligned thickenings in regular extensive discs. These enlargements are complex structures comprising the membranes and spaces of both grana and frets. The swelling indicates an increase of locular and fret channel substance and possibly an enlargement of membrane surfaces. Dried down on grids, the compartments and frets appear as flat discs with radial appendages.  相似文献   

3.
Tubakia dryina, the causal agent of red oak (Quercus rubra) leaf spot, produced the phytotoxins isosclerone, 3-hydroxyisosclerone, 6-hydroxyisosclerone and 6-hydroxymellein in liquid culture. All toxins caused large necrosis when placed on leaves of red oak. Necrosis was also caused on white oak and eight different weed species. All toxins were non-specific phytotoxins.  相似文献   

4.
Izawa S  Good NE 《Plant physiology》1966,41(3):544-552
Spinach chloroplasts isolated in media containing salts and the rare chloroplasts which are still within their envelopes alike retain grana similar to those seen in chloroplasts in situ.

Chloroplasts isolated in low-salt media lose their grana without losing any chlorophyll. These grana-free chloroplasts are considerably swollen and consist almost entirely of continuous sheets of paired-membrane structures. These double structures, the lamellae, are only loosely held together, primarily at the edges, by tenuous material which does not react with permanganate.

Addition of salts (methylamine hydrochloride, NaCl, MgCl2) to the grana-free low-salt chloroplasts provide strong interlamellar attractions. These attractions result in a stacking of the lamellae which is sometimes almost random but sometimes results in regular structures indistinguishable from the original grana.

The phosphorylation-uncoupler atebrin causes further swelling of the chloroplasts in the absence of electron transport by increasing the space between the paired membranes of the lamellae.

The rapid electron transport (Hill reaction) made possible by atebrin-uncoupling is associated with a great decrease in chloroplast volume. This decrease results from a collapsing together of the widely separated lamellar membrane pairs. The pairs approach each other so closely that they usually appear as a single membrane when viewed with the electron microscope. The much slower electron transport which occurs in the absence of uncouplers is associated with a similar but smaller decrease in the space between the lamellar membrane pairs.

Chloroplasts swell during the rapid electron transport made possible by the phosphorylation-uncoupler methylamine. This swelling is accompanied by a degree of membrane distortion which precludes an interpretation of the mechanism. As with atebrin-faciliated electron transport, obviously paired membranes disappear but it is not yet clear whether this is by association or dissociation of the pairs.

  相似文献   

5.
Transfer of Lemna minor fronds to culture medium containing 50% (v/v) deuterium oxide induces a large increase in the rate of protein breakdown, which is not due to an increase in the activity of acidic or neutral proteolytic enzymes or peptidases. Biochemical and ultrastructural evidence indicates that deuterium oxide affects the properties of certain membranes, particularly the tonoplast, and allows vacuolar proteolytic enzymes to pass into the cytoplasm and cause the increased protein breakdown.Abbreviations BAPA benzylarginine-p-nitroanilide - LPA leucine-p-nitroanilide - TCA trichloroacetic acid  相似文献   

6.
Summary The mechanism of the cessation of cytoplasmic streaming upon membrane excitation inCharaceae internodal cells was investigated.Cell fragments containing only cytoplasm were prepared by collecting the endoplasm at one cell end by centrifugation. In such cell fragments lacking the tonoplast, an action potential induced streaming cessation, indicating that an action potential at the plasmalemma alone is enough to stop the streaming.The active rotation of chloroplasts passively flowing together with the endoplasm also stopped simultaneously with the streaming cessation upon excitation. The time lag or interval between the rotation cessation and the electrical stimulation for inducing the action potential increased with the distance of the chloroplasts from the cortex. The time lag was about 1 second/15 m, suggesting that an agent causing the rotation cessation is diffused throughout the endoplasm.Using internodes whose tonoplast was removed by replacing the cell sap with EGTA-containing solution (tonoplast-free cells,Tazawa et al. 1976), we investigated the streaming rate with respect to the internal Ca2+ concentration. The rate was roughly identical to that of normal cells at a Ca2+ concentration of less than 10–7 M. It decreased with an increase in the internal Ca2+ concentration and was zero at 1 mM Ca2+.The above results, together with the two facts that Ca2+ reversibly inhibits chloroplast rotation (Hayama andTazawa, unpublished) and the streaming in tonoplast-free cells does not stop upon excitation (Tazawa et al. 1976), lead us to conclude that a transient increase in the Ca2+ concentration in the cytoplasm directly stops the cytoplasmic streaming. Both Ca influxes across the resting and active membranes were roughly proportional to the external Ca2+ concentration, which did not affect the rate of streaming recovery. Based on these results, several possibilities for the increase in Ca2+ concentration in the cytoplasm causing streaming cessation were discussed.  相似文献   

7.
One of the earliest events in the process of leaf senescence is dismantling of chloroplasts. Mesophyll cell chloroplasts from rosette leaves were studied in Arabidopsis thaliana undergoing natural senescence. The number of chloroplasts decreased by only 17% in fully yellow leaves, and chloroplasts were found to undergo progressive photosynthetic and ultrastructural changes as senescence proceeded. In ultrastructural studies, an intact tonoplast could not be visualized, thus, a 35S-GFP::δ-TIP line with a GFP-labeled tonoplast was used to demonstrate that chloroplasts remain outside of the tonoplast even at late stages of senescence. Chloroplast DNA was measured by real-time PCR at four different chloroplast loci, and a fourfold decrease in chloroplast DNA per chloroplast was noted in yellow senescent leaves when compared to green leaves from plants of the same age. Although chloroplast DNA did decrease, the chloroplast/nuclear gene copy ratio was still 31:1 in yellow leaves. Interestingly, mRNA levels for the four loci differed: psbA and ndhB mRNAs remained abundant late into senescence, while rpoC1 and rbcL mRNAs decreased in parallel to chloroplast DNA. Together, these data demonstrate that, during senescence, chloroplasts remain outside of the vacuole as distinct organelles while the thylakoid membranes are dismantled internally. As thylakoids were dismantled, Rubisco large subunit, Lhcb1, and chloroplast DNA levels declined, but variable levels of mRNA persisted.  相似文献   

8.
Summary. The ultrastructure of the several micrometers thick cytoplasmic layer of the giant marine alga Valonia utricularis displays characteristics which are apparently linked with the capability of this alga to regulate turgor pressure. Transmission and scanning electron microscopy of cells prefixed in different ways, including a protocol that allows prefixation of the alga in a turgescent state, revealed a highly dendritic network of cytoplasmic strands connecting and enveloping the chloroplasts and the nuclei. Innumerable vacuolar entities are embedded in the network, giving the cytoplasm a spongy appearance. Vacuolar perfusion of turgor-pressure-clamped cells with prefixation solution containing tannic acid presented evidence that these vacuolar entities together with the huge central vacuole form a large unstirred continuum. In contrast to the tonoplast, the plasmalemma followed smoothly the lining of the cell wall, even at the numerous cell wall ingrowths. Sucrose, but not polyethylene glycol 6000, induced chloroplast clustering. Acute hypoosmotic treatment (established by reduction of external NaCl or by replacement of part of the external NaCl by equivalent osmotic concentrations of sucrose or polyethylene glycol 6000) resulted in a local relocation of the chloroplasts and cytoplasm towards the central vacuole. This effect did not occur when the relatively low reflection coefficients of these two osmolytes were taken into account. The increase in spacing between the spongy cytoplasm and the plasmalemma by chloroplast relocation (viewed by confocal laser scanning microscopy) was associated with a speckled appearance of the affected surface area under the light microscope. As indicated by electron microscopy, hypoosmotically induced chloroplast relocation resulted from disproportionate swelling of the vacuolar entities located close to the plasmalemma. The cytoskeleton in the cytoplasm and the mucopolysaccharide network in the central vacuole apparently resisted swelling of these compartments. This finding has the important consequence that relevant hydrostatic pressure gradients can be built up throughout the entire multifolded vacuolar space. This gradient could represent the trigger for turgor pressure regulation which is manifested electrically first in the tonoplast.Correspondence and reprints: Lehrstuhl für Biotechnologie, Biozentrum, Am Hubland, 97074 Würzburg, Federal Republic of Germany.  相似文献   

9.
Stagonospora apocyni causes a leaf spot disease on hemp dogbane (Apocynum cannabinum L.). The fungus produced phytotoxins citrinin, mellein, tyrosol and α–acetylorcinol in liquid culture. All toxins caused necrosis when placed on leaves of hemp dogbane, and eight other weed species. All four toxins were non–specific phytotoxins. Citrinin showed antimicrobial properties against some bacteria and fungi.  相似文献   

10.
Gliotoxin (GT) is a hydrophobic fungal metabolite of the epipolythiodioxopiperazine group which reacts with membrane thiols. When added to a suspension of energized brain mitochondria, it induces matrix swelling of low amplitude, collapse of membrane potential (DeltaPsi), and efflux of endogenous cations such as Ca2+ and Mg2+, typical events of mitochondrial permeability transition (MPT) induction. These effects are due to opening of the membrane transition pore. The addition of cyclosporin A (CsA) or ADP slightly reduces membrane potential collapse, matrix swelling and Ca2+ efflux; Mg2+ efflux is not affected at all. The presence of exogenous Mg2+ or spermine completely preserve mitochondria against DeltaPsi collapse, matrix swelling and Ca2+ release. Instead, Mg2+ efflux is only slightly affected by spermine. Our results demonstrate that, besides inducing MPT, gliotoxin activates a specific Mg2+ efflux system from brain mitochondria.  相似文献   

11.
In intergeneric fusion fromMougeotia andZygnema protoplasts, the fate of fusion products, as well as nuclei and chloroplasts, could be classified according to the number of protoplasts involved from the two algae. Stable elongation growth occurred only in products of groups involving one protoplast from one alga and several protoplasts from the other alga. The features of the elongating products were those of the alga more numerously represented. The different nuclei combined by fusion failed to co-exist. In the groups involving one protoplast from one alga and several from the other, the nucleus from the former degenerated in an early period and only the nuclei from the latter were maintained. Also, the different chloroplasts combined did not co-exist. The genus of the chloroplasts maintained coincided with that of the nuclei maintained. The chloroplasts from the other genus degenerated gradually. An early morphological change in the degenerating chloroplasts was seen in the quantity of starch grains. Later, the chloroplasts generally became rounded, In degeneratingZygnema chloroplasts, thylakoid stacking was prominent. Without collapse of the thylakoid or accumulation of plastoglobules, the degenerating chlorplasts showed rupture of the chloroplast envelope.  相似文献   

12.
Summary The ultrastructure of chloroplasts from two genera of coenocytic green algae,Codium andCaulerpa, were examined after suspension in hypotonic solution and in detergent at various concentrations. The capacity of the suspensions to carry out CO2-dependent and ferricyanide-dependent O2 evolution was measured under the same conditions of osmotic strength and detergent concentration.The chloroplasts in the preparations were in the form of cytoplasts and gave rates of O2 evolution comparable with those expected from undamaged chloroplasts. Suspension in hypotonic solution depressed the rate of CO2-dependent O2 evolution in both species, but this was partially restored in theCodium chloroplasts when these were re-suspended in iso-osmotic solutions. Major structural changes were observed only after suspension in buffer when theCodium chloroplasts lost their outer envelope, most of their stroma, and the thylakoids became swollen.Caulerpa chloroplasts were more variable in their response and, even when suspended in buffer only, the proportion of the plastids which had lost all of their stroma and thylakoid swelling was never as common as inCodium chloroplasts. However, once suspended in hyper-osmotic medium below 700 mosmolar,Caulerpa chloroplasts could not regain their capacity for CO2-dependent O2 evolution.Detergent treatment removed the cytoplast membrane but not the cytoplasmic material adhering to the chloroplast envelope. High concentrations of detergent were needed to cause loss of the chloroplast envelope, loss of stromal contents and unstacking of the thylakoids.Caulerpa chloroplasts were less sensitive to detergent than those ofCodium. There was no indication that specific structures such as the thylakoid organizing body were resistant to detergent action. The results show that exposure to hypotonic solutions and to detergent results in less damage to these chloroplasts than it would to those of higher plants. It is proposed that the basis of this unusual resistance is not due to the properties of the chloroplast membranes but to the presence of material which coats the organelles during isolation. This material is likely to be identical with the sulphated xylo-mannogalactan isolated from the vacuole contents of these algae and which has the visco-elastic properties essential to allow the organelles to resist disruption by osmotic forces and disintegration by detergents.  相似文献   

13.
NaCl对齿肋赤藓叶肉细胞超微结构的影响   总被引:3,自引:0,他引:3  
刘卫国  丁俊祥  邹杰  林喆  唐立松 《生态学报》2016,36(12):3556-3563
齿肋赤藓(Syntrichia caninervis)是古尔班通古特沙漠苔藓结皮层中的优势物种,对荒漠生态系统的稳定性及功能多样性具有十分重要的意义。利用透射电镜技术对不同浓度Na Cl胁迫下齿肋赤藓叶肉细胞超微结构进行了观察。结果表明:齿肋赤藓叶肉细胞在未胁迫(0 mmol/L)处理下排列疏松,各种细胞结构完整,叶绿体基质排列均匀且叶绿体内含少量淀粉粒和脂质球。在轻度盐Na Cl胁迫(100 mmol/L)下,齿肋赤藓叶肉细胞结构依然保持完整,叶绿体基质均匀,叶肉细胞超微结构仅有较小变化。在中度盐Na Cl胁迫(200、300 mmol/L)下,齿肋赤藓叶肉细胞发生质壁分离,出现晶体结构,且中央大液泡发生破裂;叶绿体由梭形变成椭球形或圆球状,出现空泡化并伴随有轻微的解体;叶绿体类囊体肿胀,脂质球数量增加。在高度Na Cl胁迫(400、500 mmol/L)下,齿肋赤藓细胞的质壁分离加剧,叶肉细胞出现大量泡状结构和膜片层,叶肉细胞死亡;叶绿体片层结构消失,空泡化加重,脂质球数量增加且体积变大,叶绿体内外膜消失,叶绿体大部分解体,在叶肉细胞中几乎看不到叶绿体的存在。上述结果表明,叶绿体膜结构的损伤与盐胁迫下叶肉细胞死亡有密切关系。  相似文献   

14.
Summary Effects of the phytotoxic compounds (AAL-toxins) isolated from cell-free culture filtrates of Alternaria alternata f.sp. lycopersici on in vitro pollen development were studied. AAL-toxins inhibited both germination and tube growth of pollen from several Lycopersicon genotypes. Pollen from susceptible genotypes, however, was more sensitive for AAL-toxins than pollen from resistant plants, while pollen of species not belonging to the host range of the fungus was not significantly affected by the tested toxin concentrations. AAL-toxins elicit symptoms in detached leaf bioassays indistinguishable from those observed on leaves of fungal infected tomato plants, and toxins play a major role in the pathogenesis. Apparently, pathogenesis-related processes and mechanisms involved in disease resistance are expressed in both vegetative and generative tissues. This overlap in gene expression between the sporophytic and gametophytic level of a plant may be advantageously utilized in plant breeding programmes. Pollen may be used to distinguish susceptible and resistant plants and to select for resistances and tolerances against phytotoxins and other selective agents.  相似文献   

15.
Diclofop-methyl (methyl ester of 2-[4-(2′,4′-dichlorophenoxy)phenoxy]propionate; 100 micromolar) and diclofop (100 micromolar) inhibited both ATP- and PPi-dependent formation of H+ gradients by tonoplast vesicles isolated from oat (Avena sativa L., cv Dal) roots. Diclofop-methyl (1 micromolar) significantly reduced the steady-state H+ gradient generated in the presence of ATP. The ester (diclofop-methyl) was more inhibitory than the free acid (diclofop) at pH 7.4, but this relative activity was reversed at pH 5.7. Neither compound affected the rate of ATP or PPi hydrolysis by the proton-pumping enzymes. Diclofop-methyl (50, 100 micromolar), but not diclofop (100 micromolar), accelerated the decay of nonmetabolic H+ gradients established across vesicle membranes. Diclofop-methyl (100 micromolar) did not collapse K+ gradients across vesicle membranes. Both the (+)- and (−)-enantiomers of diclofop-methyl dissipated nonmetabolic H+ gradients established across vesicle membranes. Diclofop-methyl, but not diclofop (each 100 micromolar), accelerated the decay of H+ gradients imposed across liposomal membranes. These results show that diclofop-methyl causes a specific increase in the H+ permeability of tonoplast.  相似文献   

16.
Summary Desiccation-induced alterations in cell structure were investigated in sunflower (Helianthus annum L.) leaves using light and electron microscopy. Desiccation was imposed by withholding water from the tissue, and all tissue fixation was carried out under isosmotic conditions. In addition to shrinkage of the vacuoles and intercellular spaces caused by water loss, the significant features of cell desiccation were the appearance of lipid droplets and vesicles close to dictyosomes, and plasmalemma and/or tonoplast breakage in the mesophyll cells. Breakage was followed by massive loss of cell organelles except for the thylakoid membranes of the chloroplasts, which retained much of their integrity even in the air-dried state. Plasmalemma and tonoplast disruption began in a few cells at water potentials of — 15 bars (relative water contents of 47%) and went to completion below —26 bars (relative water contents less than 28%) in the leaf mesophyll. Typically in this tissue, net photosynthesis becomes zero and the tissue becomes increasingly incapable of full rehydration at water potentials below — 20 bars. By contrast, water potentials of — 26 bars had no detectable effects on the phloem tissue. Structural alterations were little influenced by the rapidity of desiccation (a few minutes to as long as four days). It was concluded that desiccation-induced changes in cell structure are tissue-specific and occur on a cell-by-cell basis rather than in all cells of a tissue at once. The concentration of the cytoplasm and the disruption of the plasmalemma and/or tonoplast seem to be central events in the alteration of cell ultrastructure by desiccation.This research was supported by NSF grant GB41314.  相似文献   

17.
The effects of salinity (400 mM NaCl) on growth, biomass partitioning, photosynthesis, and leaf ultrastructure were studied in hydroponically grown plants of Aeluropus littoralis (Willd) Parl. NaCl produced a significant inhibition of the main growth parameters and a reduction in leaf gas exchange (e.g. decreased rates of photosynthesis and stomatal conductance). However, NaCl salinity affected neither the composition of photosynthesis pigments nor leaf water content. The reduction in leaf gas exchange seemed to correlate with a decrease in mesophyll thickness as well as a severe disorganisation of chloroplast structure, with misshapen chloroplasts and dilated thylakoid membranes. Conspicuously, mesophyll chloroplasts were more sensitive to salt treatment than those of bundle sheath cells. The effects of NaCl toxicity on leaf structure and ultrastructure and the associated physiological implications are discussed in relation to the degree of salt resistance of A. littoralis.  相似文献   

18.
Effects of pH on proton transport by vacuolar pumps from maize roots   总被引:1,自引:0,他引:1  
Protons pumps of the tonoplast may be involved in the regulation of cytosolic pH, but the effects of pH on the coupled activities of these transporters are poorly understood. The effects of pH on the activities of the H+-translocating pyrophosphatase (PPiase) and vacuolar-type H+-translocating adenosine triphosphatase (H+-ATPase) from maize ( Zea mays L. cv. FRB 73) root membranes were assessed by model that simultaneously considers proton transport by the pump and those processes that reduce net transport. The addition of either pyrophosphate or ATP to either microsomal or tonoplast membranes generated a pH gradient. The pH gradient generated in the presence of both substrates was not the sum of the gradients produced by the two substrates added separately. When membranes were separated by sucrose density gradient centrifugation, pyrophosphate (PPi)-dependent proton transport was associated with light density membranes having tonoplast H+-ATPase activity. These results indicate that some portion of the PPiase was located on the same membrane system as the tonoplast ATPase; however, tonoplast vesicles may be heterogeneous, differing slightly in the ratio of ATP- to PPi-dependent transport. Proton transport by both the PPiase and ATPase had maximal activity at pH 7.0 to 8.0 Decreases in proton transport by the ATPase at pH above the optimum were associated with increases in the processes that reduce net transport. Such an association was not observed at pH values below the optimum. These results are discussed in terms of in situ regulation of cytoplasmic pH by the two pumps.  相似文献   

19.
Comparative electron paramagnetic resonance spectroscopic studies on spin-labeled native and protein-free purified tonoplast membranes in the CAM plant Kalanchoë daigremontiana showed that the phenotypic decrease in tonoplast fluidity occurring upon acclimation to elevated temperature is brought about by specific protein-lipid interaction. However, there are indications that, to some extent, the properties of the bulk tonoplast lipids may also be affected by acclimation to high temperature. In contrast to heat acclimated individuals and for still unknown reasons, in plants grown at normal temperature depletion of the tonoplast membrane of its proteins had no effect on membrane fluidity. The results are considered as evidence for the occurrence of homeoviscous adaptation in the tonoplast of CAM plants towards changes in the temperature climate during growth.  相似文献   

20.
The method of stopped flow was used to follow the changes in light scattering by the vesicles of plasmalemma and tonoplast isolated from maize (Zea maysL.) roots and treated by osmotic pressure. In both membrane preparations, the rate of the process depended on the osmotic gradient and was described with the simple exponential function. The rate constants derived from these functions were the following: the coefficient of water permeability in the tonoplast (P= 165 ± 7 m/s) exceeded by an order of magnitude the corresponding index for plasmalemma (11 ± 2 m/s). The presence of HgCl2(1.6 nmol/g membrane protein) decreased the tonoplast water permeability by 80%. Microviscosity studies of the hydrocarbon zone in the isolated membranes by using a fluorescent diphenylhexatriene probe demonstrated that the two membranes do not differ in the phase state of their lipid bilayer. The authors conclude that the observed difference in water permeability does not depend on the state of the lipid phase and probably reflects the dissimilar functional activity of plasmalemma and tonoplast aquaporins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号