首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new topoisomerase capable of relaxing negatively supercoiled DNA in Escherichia coli has been identified during chromatography on novobiocin-Sepharose. A simple and reproducible purification procedure is described to obtain this enzyme, called topoisomerase III (topo III), in a homogeneous form. The protein is a single polypeptide with a molecular weight of 74 000 +/- 2000 and is a type I topoisomerase, changing the linking number of DNA circles in steps of one. It is present in deletion strains lacking the topA gene and further differs from the well-studied topoisomerase I (omega protein; Eco topo I) in (1) its requirement for K+ in addition to Mg2+ to exhibit optimal activity and (2) its affinity to novobiocin-Sepharose. Positively supercoiled DNA is not relaxed during exposure to the enzyme. Topo III has no ATPase activity, and ATP does not show any discernible effect on the reduction of superhelical turns. The purified topoisomerase has no supercoiling activity and is unaffected by high concentrations of oxolinic acid and novobiocin in the relaxing reaction. Single-stranded DNA and spermidine strongly inhibit the topoisomerase activity.  相似文献   

2.
In order to study the double-strand DNA passage reaction of eukaryotic type II topoisomerases, a quantitative assay to monitor the enzymic conversion of supercoiled circular DNA to relaxed circular DNA was developed. Under conditions of maximal activity, relaxation catalyzed by the Drosophila melanogaster topoisomerase II was processive and the energy of activation was 14.3 kcal . mol-1. Removal of supercoils was accompanied by the hydrolysis of either ATP or dATP to inorganic phosphate and the corresponding nucleoside diphosphate. Apparent Km values were 200 microM for pBR322 plasmid DNA, 140 microM for SV40 viral DNA, 280 microM for ATP, and 630 microM for dATP. The turnover number for the Drosophila enzyme was at least 200 supercoils of DNA relaxed/min/molecule of topoisomerase II. The enzyme interacts preferentially with negatively supercoiled DNA over relaxed molecules, is capable of removing positive superhelical twists, and was found to be strongly inhibited by single-stranded DNA. Kinetic and inhibition studies indicated that the beta and gamma phosphate groups, the 2'-OH of the ribose sugar, and the C6-NH2 of the adenine ring are important for the interaction of ATP with the enzyme. While the binding of ATP to Drosophila topoisomerase II was sufficient to induce a DNA strand passage event, hydrolysis was required for enzyme turnover. The ATPase activity of the topoisomerase was stimulated 17-fold by the presence of negatively supercoiled DNA and approximately 4 molecules of ATP were hydrolyzed/supercoil removed. Finally, a kinetic model describing the switch from a processive to a distributive relaxation reaction is presented.  相似文献   

3.
Human topoisomerase 1B has been simulated covalently bound to a negatively supercoiled DNA minicircle, and its behavior compared to the enzyme bound to a simple linear DNA duplex. The presence of the more realistic supercoiled substrate facilitates the formation of larger number of protein–DNA interactions when compared to a simple linear duplex fragment. The number of protein–DNA hydrogen bonds doubles in proximity to the active site, affecting all of the residues in the catalytic pentad. The clamp over the DNA, characterized by the salt bridge between Lys369 and Glu497, undergoes reduced fluctuations when bound to the supercoiled minicircle. The linker domain of the enzyme, which is implicated in the controlled relaxation of superhelical stress, also displays an increased number of contacts with the minicircle compared to linear DNA. Finally, the more complex topology of the supercoiled DNA minicircle gives rise to a secondary DNA binding site involving four residues located on subdomain III. The simulation trajectories reveal significant changes in the interactions between the enzyme and the DNA for the more complex DNA topology, which are consistent with the experimental observation that the protein has a preference for binding to supercoiled DNA.  相似文献   

4.
Removal of negative superhelical turns in ColE1 plasmid DNA by Escherichia coli topoisomerase I was markedly enhanced by the presence of single-stranded DNA binding protein from E. coli. A lack of species specificity makes unlikely the possibility of physical association between topoisomerase I and single-stranded DNA binding proteins. Stabilization of single-stranded regions in supercoiled DNA by single-stranded DNA binding protein would appear to be the basis of the enhancement of topoisomerase activity.  相似文献   

5.
McClendon AK  Dickey JS  Osheroff N 《Biochemistry》2006,45(38):11674-11680
Previous studies with human and bacterial topoisomerases suggest that the type II enzyme utilizes two distinct mechanisms to recognize the handedness of DNA supercoils. It has been proposed that the ability of some type II enzymes, such as human topoisomerase IIalpha and Escherichia coli topoisomerase IV, to distinguish supercoil geometry during DNA relaxation is mediated by elements in the variable C-terminal domain of the protein. In contrast, the ability of human topoisomerase IIalpha and topoisomerase IIbeta to discern the handedness of supercoils during DNA cleavage suggests that residues in the conserved N-terminal or central domain of the protein are involved in this process. To test this hypothesis, the ability of Paramecium bursaria chlorella virus-1 (PBCV-1) and chlorella virus Marburg-1 (CVM-1) topoisomerase II to relax and cleave negatively and positively supercoiled plasmids was assessed. These enzymes display a high degree of sequence identity with the N-terminal and central domains of eukaryotic topoisomerase II but naturally lack the C-terminal domain. While PBCV-1 and CVM-1 topoisomerase II relaxed under- and overwound substrates at similar rates, they were able to discern the handedness of supercoils during the cleavage reaction and preferentially cut negatively supercoiled DNA. Preferential cleavage was not due to a change in site specificity, DNA binding, or religation. These findings are consistent with a bimodal recognition of DNA geometry in which topoisomerase II uses elements in the C-terminal domain to sense the handedness of supercoils during DNA relaxation and elements in the conserved N-terminal or central domain during DNA cleavage.  相似文献   

6.
The DNA maintenance enzyme, topoisomerase I, is thought to play crucial roles in all living cells and for this reason inhibitors of this enzyme have been much studied. In this paper we describe a gel electrophoresis method capable of characterizing and quantifying inhibition of topoisomerase I by selected compounds. Inhibitors of topoisomerase I are often associated with intercalative binding to DNA and the method can simultaneously determine intercalative binding (as DNA unwinding) except in the cases where inhibition is prohibitively strong. The method uses closed circular (plasmid) DNA and can separate single-strand nicked, linearized (double-strand nicked), fully relaxed, partially relaxed (topoisomers), and supercoiled forms of the plasmid so that topoisomerase-dependent DNA cleavage (poisoning) can also be determined. By quantifying poisoning, inhibition, and intercalation simultaneously and separately in relation to reference compounds it is possible to make quantitative determinations of these phenomena for comparative purposes. Data for the topoisomerase I inhibitor, luteolin, are presented.  相似文献   

7.
Topoisomerases are essential ubiquitous enzymes, falling into two distinct classes. A number of eubacteria including Escherichia coli, typically contain four topoisomerases, two type I topoisomerases and two type II topoisomerases viz. DNA gyrase and topoisomerase IV. In contrast several other bacterial genomes including mycobacteria, encode for one type I topoisomerase and a DNA gyrase. Here we describe a new type II topoisomerase from Mycobacterium smegmatis which is different from DNA gyrase or topoisomerase IV in its characteristics and origin. The topoisomerase is distinct with respect to domain organization, properties and drug sensitivity. The enzyme catalyses relaxation of negatively supercoiled DNA in an ATP-dependent manner and also introduces positive supercoils to both relaxed and negatively supercoiled substrates. The genes for this additional topoisomerase are not found in other sequenced mycobacterial genomes and may represent a distant lineage.  相似文献   

8.
9.
10.
It was previously observed that two steps of the reaction of eukaryotic DNA topoisomerase I (topoisomerization and cleavage) depend upon the conformation of the DNA substrate: in both instances the supercoiled form is a more efficient substrate than the relaxed one. This paper reports the analysis of two other steps of the reaction: the binding of DNA topoisomerase I to DNA and the catalytic constants (Kcs) of topoisomerization as a function of the topology of the substrate. Binding. Competition assays show that supercoiled DNA binds the enzyme with even slower kinetics than the relaxed form. Therefore, the preferential topoisomerization of supercoiled DNA is not due to the binding step. Additional evidence that the rate-limiting step of the topoisomerization reaction is not the binding of the enzyme to DNA is provided by the fact that the kinetics of relaxation is first order. Catalysis. The Kcs of the topoisomerization reaction have been calculated and it was shown that they do not vary as a function of the topology of the substrate or of its size. Taken together, the data on binding, cleavage, topoisomerization, and Kcs suggest that the preferential topoisomerization of torsionally strained DNA is due to the higher availability, on this topological form, of DNA sites that allow the onset of the reaction.  相似文献   

11.
Characterization of a potent catenation activity of HeLa cell nuclei   总被引:1,自引:0,他引:1  
Using an assay which measures catenation of a supercoiled DNA template, we have characterized and quantitated a potent activity identified in crude fractions of HeLa cell nuclei. Catenation requires Mg-ATP and a DNA-condensing agent, polyvinyl alcohol. A filter-binding or agarose gel assay can be used to quantitate activity. In this reaction, DNA topoisomerase I relaxes the input supercoiled DNA to provide DNA topoisomerase II, a strongly favored template for catenation. DNA topoisomerase II preferentially catenates relaxed DNA over supercoiled DNA by a factor of 100. One molecule of DNA topoisomerase II is able to catenate about 20 circles of relaxed DNA/min at 30 degrees C but only 0.16 circle of supercoiled DNA/min at 30 degrees C. The purified HeLa topoisomerase I can also catenate DNA under these assay conditions, yet in an ATP-independent fashion. It is much less efficient than topoisomerase II; one molecule of topoisomerase I catenates only about 3.8 X 10(-3) molecules of supercoiled DNA/min at 30 degrees C with a DNA template containing 5% nicked circles. This remarkable difference between the two enzymes allows quantitation of DNA topoisomerase II activity seen in the presence of excess topoisomerase I. Unlike Escherichia coli topoisomerase I (omega), catenation by the HeLa topoisomerase I is not stimulated by gapped circles.  相似文献   

12.
13.
A topoisomerase able to introduce positive supercoils in a closed circular DNA, has been isolated from the archaebacterium Sulfolobus acidocaldarius. This enzyme, fully active at 75 degrees C, performed in vitro positive supercoiling either from negatively supercoiled, or from relaxed DNA in a catalytic reaction. In the presence of polyethylene glycol (PEG 6000), this reaction became very fast and highly processive, and the product was positively supercoiled DNA with a high superhelical density (form I+). Very low (5 - 10 micromoles) ATP concentrations were sufficient to support full supercoiling; the nonhydrolyzable analogue adenosine-5' -0-(3-thiotriphosphate) also sustained the production of positive supercoils, but to a lesser extent, suggesting that ATP hydrolysis was necessary for efficient activity. Nevertheless, low residual of positive supercoiling occurred, even in the absence of ATP, when the substrate was negatively supercoiled. Finally, the different ATP-driven topoisomerizations observed, i.e., relaxation of negative supercoils and positive supercoiling, in all cases increased the linking number of DNA in steps of 1, suggesting the action of a type I, rather than a type II topoisomerase.=  相似文献   

14.
The digestion products of superhelical component I of SV40 DNA incubated with various concentrations of nuclease S1 from Aspergillus Oryzae, an enzyme specific for single-stranded nucleic acid, were studied. The enzyme shows a preference for supercoiled DNA I as opposed to relaxed DNA II molecules, and converts SV40 DNA I into linear molecules. Conditions have been developed under which the majority of SV40 DNA I molecules is converted into form II DNA. By using high concentrations of enzyme, it was possible to introduce further breaks in the DNA molecule; by increasing ionic strengh or using SDS this activity was not eliminated.  相似文献   

15.
The influence of DNA structure on topoisomerase I-DNA interaction has been investigated using a high affinity binding site and mutant derivatives thereof. Parallel determinations of complex formation and helix structure in the absence of superhelical stress suggest that the interaction is intensified by stable helix curvature. Previous work showed that a topoisomerase I binding site consists of two functionally distinct subdomains. A region located 5' to the topoisomerase I cleavage site is essential for binding. The region 3' to the cleavage site is covered by the enzyme, but not essential. We report here that the helix conformation of the latter region is an important modulator of complex formation. Thus, complex formation is markedly stimulated, when an intrinsically bent DNA segment is installed in this region. A unique pattern of phosphate ethylation interferences in the 3'-part of the binding site indicates that sensing of curvature involves backbone contacts. Since dynamic curvature in supercoiled DNA may substitute for stable curvature, our findings suggest that topoisomerase I is able to probe DNA topology by assessment of writhe, rather than twist.  相似文献   

16.
Yp20 is an abundant 20 kDa chromatin associated protein which has been shown to be related antigenically to genuine Hras products. Using Southwestern blots we have demonstrated that Yp20 is a DNA binding protein. It is also shown that protein Yp20 like protein HM (an abundant thermostable 20 kDa DNA binding protein isolated from mitochondria) and like the 21 kDa autonomously replicating sequence binding factor II (ABFII) is able to introduce superhelical turns into circular relaxed DNA in the presence of DNA topoisomerase I activity. We suggest that this protein may be important for chromatin structure and function.  相似文献   

17.
18.
K Jo  M D Topal 《Nucleic acids research》1998,26(10):2380-2384
Nae I protein was originally isolated for its restriction endonuclease properties. Nae I was later discovered to either relax or cleave supercoiled DNA, depending upon whether Nae I position 43 contains a lysine (43K) or leucine (43L) respectively. Nae I-43K DNA relaxation activity appears to be the product of coupling separate endonuclease and ligase domains within the same polypeptide. Whereas Nae I relaxes supercoiled DNA like a topoisomerase, even forming a transient covalent intermediate with the substrate DNA, Nae I shows no obvious sequence similarity to the topoisomerases. To further characterize the topoisomerase activity of Nae I, we report here that Nae I-43K changes the linking number of a single negatively supercoiled topoisomer of pBR322 by units of one and therefore is a type I topoisomerase. Positively supercoiled pBR322 was resistant to Nae I-43K. At low salt concentration Nae I-43K was processive; non-saturating amounts of enzyme relaxed a fraction of the DNA. At high salt concentration the same non-saturating amounts of Nae I-43K partially relaxed all the DNA in a step-wise fashion to give a Gaussian distribution of topoisomers, demonstrating a switch from a processive to a distributive mode of action. Nae I-43K decatenated kinetoplast DNA containing nicked circles, implying that Nae I-43K can cleave opposite a nick. The products of the reaction are decatenated nicked circles under both processive and distributive conditions. The behavior of Nae I-43K is consistent with that of a prokaryotic type I topoisomerase.  相似文献   

19.
The DNA topoisomerase I has been isolated from neurons of rat cerebral cortex. The most homogeneous fraction purified contains only one polypeptide of Mr approx. 100 000. The enzyme relaxes supercoiled DNA in the absence of ATP or Mg2+. The optimum monovalent cation concentration for the relaxation of superhelical DNA under conditions of DNA excess is found to be 175-200 mM. The neuron enzyme is similar to other mammalian type I DNA topoisomerases in that it links to the 3' ends of the broken DNA strands. Like calf thymus DNA topoisomerase I, the neuron topoisomerase can be selectively inhibited by poly(dG) but not by other homopolymerical deoxyribonucleotides.  相似文献   

20.
Type I restriction enzymes cleave DNA at non-specific sites far from their recognition sequence as a consequence of ATP-dependent DNA translocation past the enzyme. During this reaction, the enzyme remains bound to the recognition sequence and translocates DNA towards itself simultaneously from both directions, generating DNA loops, which appear to be supercoiled when visualised by electron microscopy. To further investigate the mechanism of DNA translocation by type I restriction enzymes, we have probed the reaction intermediates with DNA topoisomerases. A DNA cleavage-deficient mutant of EcoAI, which has normal DNA translocation and ATPase activities, was used in these DNA supercoiling assays. In the presence of eubacterial DNA topoisomerase I, which specifically removes negative supercoils, the EcoAI mutant introduced positive supercoils into relaxed plasmid DNA substrate in a reaction dependent on ATP hydrolysis. The same DNA supercoiling activity followed by DNA cleavage was observed with the wild-type EcoAI endonuclease. Positive supercoils were not seen when eubacterial DNA topoisomerase I was replaced by eukaryotic DNA topoisomerase I, which removes both positive and negative supercoils. Furthermore, addition of eukaryotic DNA topoisomerase I to the product of the supercoiling reaction resulted in its rapid relaxation. These results are consistent with a model in which EcoAI translocation along the helical path of closed circular DNA duplex simultaneously generates positive supercoils ahead and negative supercoils behind the moving complex in the contracting and expanding DNA loops, respectively. In addition, we show that the highly positively supercoiled DNA generated by the EcoAI mutant is cleaved by EcoAI wild-type endonuclease much more slowly than relaxed DNA. This suggests that the topological changes in the DNA substrate associated with DNA translocation by type I restriction enzymes do not appear to be the trigger for DNA cleavage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号