首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Research of the entry of rare earth elements Eu3+ and La3+ into plant cell   总被引:8,自引:0,他引:8  
Whether rare earth elements can enter into plant cells remains controversial. This article discusses the ultracellular structural localization of lanthanum (La3+) and europium (Eu3+) in the intact plant cells fed by rare earth elements Eu3+ and La3+. Eu-TTA fluorescence analysis of the plasmalemma, cytoplast, and mitochondria showed that Eu3+ fluorescence intensities in such structures significantly increased. Eu3+ can directly enter or be carried by the artificial ion carrier A23187 into plant cells through the calcium ion (Ca2+) channel and then partially resume the synthesis of amaranthin in the Amaranthus caudatus growing in the dark. Locations of rare earth elements La3+ and Eu3+ in all kinds of components of cytoplasmatic organelles were determined with transmission electron microscope, scanning electron microscope, and energy-dispersive X-ray microanalysis. The results of energy-dispersive X-ray microanalysis indicated that Eu3+ and La3+ can be absorbed into plant cells and bind to the membranes of protoplasm, chloroplast, mitochondrion, cytoplast, and karyon. These results provide experimental evidence that rare earth elements can be absorbed into plant cells, which would be the basis for interpreting physiological and biochemical effects of rare earth elements on plant cells.  相似文献   

2.
The concentration of kinetin and kinetinriboside plays an essential role in the induction of amaranthin accumulation in cotyledons ofAmaranthus tricolor during germination. The dose/effect ratio shows that kinetin induced 3- to 3.5-fold more amaranthin than kinetinriboside at the same molecular concentration. Various concentrations of exogenous Ca2+ did not influence the effects of kinetin on the betacyanin synthesis. However, when Ca2+ was applied together with kinetinriboside, the amaranthin production was stimulated. Time-course experiments show a lag phase of 16 h starting from the incubation with kinetin and a distinct increase of amaranthin thereafter. If the seedlings were treated simultaneously with kinetin and Ca2+, the increase of amaranthin started after 12 h. At 16 h of incubation in kinetin/Ca2+, the amount of amaranthin increased significantly compared to controls incubated with kinetin alone. If Ca2+ ions (16 h kinetin/Ca2+ incubation) were removed from the medium after 2 h, 4 h, and up to 14 h, the amaranthin content was enhanced compared to controls without Ca2+. The stimulating effect was highest in the presence of Ca2+ for 8 h. These data show that exogenous Ca2+ stimulated the amaranthin synthesis mainly during the first 12 h of incubation. The Ca2+ antagonists EGTA, chlorotetracycline, and CoCl2 reduced the amaranthin content up to 80%. The calmodulin antagonists chloropromazine and trifluoperazine inhibited the betacyanin accumulation up to 97% when applied at the beginning of the incubation. Neither Co2+ nor trifluoperazine after 12 h of preincubation in kinetin had inhibiting effects on the amaranthin production. Therefore, we presume that a specific period of competence is required for calmodulin-mediated Ca2+ effects on the accumulation of amaranthin induced by cytokinins in the seedlings ofAmaranthus tricolor.  相似文献   

3.
H. Liß  E. W. Weiler 《Planta》1994,194(2):169-180
Procedures have been developed which allow the preparation of highly pure endoplasmic reticulum and plasma membrane from tendrils ofBryonia dioica. These and further membrane fractions were used to study vanadate-sensitive ATPase activity as well as Mg2+ATP-driven transport of45Ca2+. Calcium-translocating ATPases were detected in the endoplasmic reticulum, the plasma membrane and the mitochondrial fraction and characterized kinetically and with respect to the effects of various inhibitors. The endoplasmic-reticulum Ca2+-translocating ATPase was stimulated by KCl and was calmodulin-dependent. The plasma-membrane enzyme was not affected by these agents. These, as well as the inhibitor data, show that the Ca2+-translocating ATPases of the endoplasmic reticulum and the plasma membrane are distinctly different enzymes. Upon mechanical stimulation, the activities of the vanadate-sensitive K+, Mg2+-ATPase and the Ca2+-translocating ATPase(s) increased rapidly and transiently, indicating that increasing transmembrane proton and calcium fluxes are involved in the early stages of tendril coiling.Abbreviations CAM calmodulin - CCCP carbonylcyanidem-chlorophenylhydrazone - IC50 concentration giving 50% inhibition - PM plasma membrane - rER rough endoplasmic reticulum - sER smooth endoplasmic reticulum - FC fusicoccin - U3+U3 the two PM-rich upper phases obtained after phase partitioning of microsomal membranes The authors wish to thank the Deutsche Forschungsgemeinschaft, Bonn, Germany, and the Fonds der Chemischen Industrie, Frankfurt, Germany (literature provision) for financial support.  相似文献   

4.
Regulation of cardiac sarcoplasmic reticulum (Ca2+ + Mg2+)-ATPase   总被引:2,自引:0,他引:2  
Summary The two high affinity calcium binding sites of the cardiac (Ca2+ + Mg2+)-ATPase have been identified with the use of Eu3+. Eu3+ competes for the two high affinity calcium sites on the enzyme. With the use of laser-pulsed fluorescent spectroscopy, the environment of the two sites appear to be heterogeneous and contain different numbers of H2O molecules coordinated to the ion. The ion appears to be occluded even further in the presence of ATP. Using non-radiative energy transfer studies, we were able to estimate the distance between the two Ca2+ sites to be between 9.4 to 10.2 A in the presence of ATP. Finally, from the assumption that the calcium site must contain four carboxylic side chains to provide the 6–8 ligands needed to coordinate calcium, and based on our recently published data, we predict the peptidic backbone of the two sites.  相似文献   

5.
Scanning electron microscopic and energy-dispersive X-ray analyses were used to study the distributions of different types of elements in the epidermis, exodermis, endodermis, and vascular cylinder of the fracture face in the Lathyrus sativus L. roots in the presence or absence of Eu3+. Some index of the biological activity related to the elements binding with protein were determined also. The results showed that the tissular distributions of elements in the fracture face are different in the presence and absence of Eu3+. The atomic percentages of P, S, Ca, and Mn were influenced more than those of other elements. Eu3+ promoted the biological activities of various kinds of element. The one possible mechanism changing the biological activities was that the reaction of Eu3+ Eu2+ would influence the electron capture or transport in elements of binding protein. Another mechanism was that CaM-Ca2+ becoming CaM-Eu3+ through Eu3+ instead of Ca2+ would affect the biological activity of elements by regulating the Ca2+ level in the plant cell.  相似文献   

6.
The mechanism underlying the generation of cytosolic free Ca2+ ([Ca2+i) oscillations by bombesin, a receptor agonist activating phospholipase C, in insulin secreting HIT-T15 cells was investigated. At 25 μM, 61% of cells displayed [Ca2+]i oscillations with variable patterns. The bombesin-induced [Ca2+]i oscillations could last more than 1 h and glucose was required for maintaining these [Ca2+ fluctuations. Bombesin-evoked [Ca2+]i oscillations were dependent on extracellular Ca2+ entry and were attenuated by membrane hype rpolarization or by L-type Ca2+ channel blockers. These [Ca2+]i oscillations were apparently not associated with fluctuations in plasma membrane Ca2+ permeability as monitored by the Mn2+ quenching technique. 2,5-di-(tert-butyl)-1,4-benzohydroquinone (tBuBHQ) and 4-chloro-m-cresol, which interfere with intracellular Ca2+ stores, respectively, by inhibiting Ca2+-ATPase of endoplasmic reticulum and by affecting Ca2+-induced Ca2+ release, disrupted bombesin-induced [Ca2+]i oscillations. 4-chloro-m-resol raised [Ca2+]i by mobilizing an intracellular Ca2+ pool, an effect not altered by ryanodine. Caffeine exerted complex actions on [Ca2+]i It raised [Ca2+]i by promoting Ca2+ entry while inhibiting bombesin-elicited [Ca2+]i oscillations. Our results suggest that in bombesin-elicited [Ca2+]i oscillations in HIT-T15 cells: (i) the oscillations originate primarily from intracellular Ca2+ stores; and (ii) the Ca2+ influx required for maintaining the oscillations is in part membrane potential-sensitive and not coordinated with [Ca2+]i oscillations. The interplay between intracellular Ca2+ stores and voltage-sensitive and voltage-insensitive extracellular Ca2+ entry determines the [Ca2+]i oscillations evoked by bombesin.  相似文献   

7.
Summary Plasma membrane vesicles, which are mostly right side-out, were isolated from corn leaves by aqueous two-phase partitioning method. Characteristics of Ca2+ transport were investigated after preparing inside-out vesicles by Triton X-100 treatment.45Ca2+ transport was assayed by membrane filtration technique. Results showed that Ca2+ transport into the plasma membrane vesicles was Mg-ATP dependent. The active Ca2+ transport system had a high affinity for Ca2+(K m (Ca2+)=0.4 m) and ATP(K m (ATP)=3.9 m), and showed pH optimum at 7.5. ATP-dependent Ca2+ uptake in the plasma membrane vesicles was stimulated in the presence of Cl or NO 3 . Quenching of quinacrine fluorescence showed that these anions also induced H+ transport into the vesicles. The Ca2+ uptake stimulated by Cl was dependent on the activity of H+ transport into the vesicles. However, carbonylcyanidem-chlorophenylhydrazone (CCCP) and VO 4 3– which is known to inhibit the H+ pump associated with the plasma membrane, canceled almost all of the Cl-stimulated Ca2+ uptake. Furthermore, artificially imposed pH gradient (acid inside) caused Ca2+ uptake into the vesicles. These results suggest that the Cl-stimulated Ca2+ uptake is caused by the efflux of H+ from the vesicles by the operation of Ca2+/H+ antiport system in the plasma membrane. In Cl-free medium, H+ transport into the vesicles scarcely occurred and the addition of CCCP caused only a slight inhibition of the active Ca2+ uptake into the vesicles. These results suggest that two Ca2+ transport systems are operating in the plasma membrane from corn leaves, i.e., one is an ATP-dependent active Ca2+ transport system (Ca2+ pump) and the other is a Ca2+/H+ antiport system. Little difference in characteristics of Ca2+ transport was observed between the plasma membranes isolated from etiolated and green corn leaves.  相似文献   

8.
The alteration of the plasma membrane (Ca2+-Mg2+)-ATPase activity in the liver of rats administered orally carbon tetrachloride (CCl4) solution was investigated. Rats received a single oral administration of CCl4 (10, 25 and 50%, 1.0 ml/100 g body weight), and 3 or 24 h later they were sacrificed. CCl4 administration caused a remarkable elevation of liver calcium content and a corresponding increase in liver plasma membrane (Ca2+-Mg2+)-ATPase activity, indicating that the increased Ca2+ pump activity is partly involved in calcium accumulation in liver cells. Moreover, the participation in regucalcin, which is an intracellular activating factor on the enzyme, was examined by using anti-regucalcin IgG. The plasma membrane (Ca2+-Mg2+)-ATPase activity increased by CCl4 administration was not entirely inhibited by the presence of anti-regucalcin IgG (1.0 and 2.5 ug/ml) in the enzyme reaction mixture. However, the effect of regucalcin (0.25–1.0 uM) to activate (Ca2+-Mg2+)-ATPase in the liver plasma membranes of normal rats was not revealed in the liver plasma membranes obtained from CCl4-administered rats. Also, the effect of regucalcin was not seen when the plasma membranes were washed with 1.0 mM EGTA, indicating that the disappearance of regucalcin effect is not dependent on calcium binding to the plasma membranes due to liver calcium accumulation. Now, the presence of dithiothreitol (5 mM) or heparin (20 ug/ml) caused a remarkable elevation of the plasma membrane (Ca2+-Mg2+)-ATPase activity in the liver obtained from CCl4-administered rats. Thus, the regucalcin effect differed from that of dithiothreitol or heparin. The present study suggests that the impairment of regucalcin effect on Ca2+ pump activity in liver plasma membranes is partly contribute to hepatic calcium accumulation induced by liver injury with CCl4 administration.  相似文献   

9.
10.
Summary The presence of a coupled Na+/Ca2+ exchange system has been demonstrated in plasma membrane vesicles from rat pancreatic acinar cells. Na+/Ca2+ exchange was investigated by measuring45Ca2+ uptake and45Ca2+ efflux in the presence of sodium gradients and at different electrical potential differences across the membrane (=) in the presence of sodium. Plasma membranes were prepared by a MgCl2 precipitation method and characterized by marker enzyme distribution. When compared to the total homogenate, the typical marker for the plasma membrane, (Na++K+)-ATPase was enriched by 23-fold. Markers for the endoplasmic reticulum, such as RNA and NADPH cytochromec reductase, as well as for mitochondria, the cytochromec oxidase, were reduced by twofold, threefold and 10-fold, respectively. For the Na+/Ca2+ countertransport system, the Ca2+ uptake after 1 min of incubation was half-maximal at 0.62 mol/liter Ca2+ and at 20 mmol/liter Na+ concentration and maximal at 10 mol/liter Ca2+ and 150 mmol/liter Na+ concentration, respecitively. When Na+ was replaced by Li+, maximal Ca2+ uptake was 75% as compared to that in the presence of Na+. Amiloride (10–3 mol/liter) at 200 mmol/liter Na+ did not inhibit Na+/Ca2+ countertransport, whereas at low Na+ concentration (25 mmol/liter) amiloride exhibited dose-dependent inhibition to be 62% at 10–2 mol/liter. CFCCP (10–5 mol/liter) did not influence Na+/Ca2+ countertransport. Monensin inhibited dose dependently; at a concentration of 5×10–6 mol/liter inhibition was 80%. A SCN or K+ diffusion potential (=), being positive at the vesicle inside, stimulated calcium uptake in the presence of sodium suggesting that Na+/Ca2+ countertransport operates electrogenically, i.e. with a stoichiometry higher than 2 Na+ for 1 Ca2+. In the absence of Na+, did not promote Ca2+ uptake. We conclude that in addition to ATP-dependent Ca2+ outward transport as characterized previously (E. Bayerdörffer, L. Eckhardt, W. Haase & 1. Schulz, 1985,J. Membrane Biol. 84:45–60) the Na+/Ca2+ countertransport system, as characterized in this study, represents a second transport system for the extrusion of calcium from the cell. Furthermore, the high affinity for calcium suggests that this system might participate in the regulation of the cytosolic free Ca2+ level.  相似文献   

11.
We here demonstrate the presence of a plasma membrane-associated phospholipase A2 (EC 3.1.1.4; PLA2) activity in spinach (Spinacia oleracea) leaves. The pH profile of the spinach plasma membrane PLA2 activity revealed two peaks, one at pH 4.4 and one at pH 5.5. The activity at pH 5.5 had an absolute requirement of Ca2+, with full enzyme activity at 10 μmol/L Ca2+. The Ca2+-dependent PLA2 activity was both heat sensitive and stimulated by diacylglycerol, whereas ATP completely inhibited the activity. Thus, the spinach plasma membrane contains a Ca2+-dependent PLA2 activity, which has not previously been characterised in plants. Cold acclimation of spinach resulted in a 2.2-fold higher plasma membrane PLA2 activity whereas the plasma membrane phospholipase D activity remained unaffected. Taken together, our data suggest a role of PLA2 in cold acclimation in plants.  相似文献   

12.
The proton pumping activity of phase-partitioning purified plasma membrane fraction from spinach leaves was tested in vitro in the presence of exogenous indole-3-acetic acid. The sensitivity of the H+ pumping activity to the auxin was changed after flowering induction. We investigated the effect of whole spinach leaf treatments with substances affecting the phosphatidylinositol diphosphate transduction pathway on the in vitro sensitivity modification by photoperiodic induction. A role of calcium ions was supported by studies on leaves treated with a specific Ca2+ chelator (EGTA), a synthetic Ca2+ ionophore (A23187) or with calcium channel blokers (verapamil, lanthan chloride). An experiment using the transduction pathway inhibitor, lithium chloride, indicated that the intracellular concentration of Ca2+ was increased by inositol triphosphate.  相似文献   

13.
An increase in the intracellular calcium ion concentration ([Ca2+]) impacts a diverse range of cell functions, including adhesion, motility, gene expression and proliferation. Elevation of intracellular calcium ion (Ca2+) regulates various cellular events after the stimulation of cells. Initial increase in Ca2+ comes from the endoplasmic reticulum (ER), intracellular storage space. However, the continuous influx of extracellular Ca2+ is required to maintain the increased level of Ca2+ inside cells. Store-operated Ca2+ entry (SOCE) manages this process, and STIM1, a newly discovered molecule, has a unique and essential role in SOCE. STIM1 can sense the exhaustion of Ca2+ in the ER, and activate the SOC channel in the plasma membrane, leading to the continuous influx of extracellular Ca2+. STIM1 senses the status of the intracellular Ca2+ stores via a luminal N-terminal Ca2+-binding EF-hand domain. Dissociation of Ca2+ from this domain induces the clustering of STIM1 to regions of the ER that lie close to the plasma membrane, where it regulates the activity of the store-operated Ca2+ channels/entry (calcium-release-activated calcium channels/entry). In this review, we summarize the mechanism by which STIM1 regulates SOCE, and also its role in the control of mast cell functions and allergic responses.  相似文献   

14.
The present study aimed to clarify the existence of a Na+/Ca2+ antiport device in kidney tubular epithelial cells discussed in the literature to represent the predominant mechanistic device for Ca2+ reabsorption in the kidney. (1) Inside-out oriented plasma membrane vesicles from tubular epithelial cells of guinea-pig kidney showed an ATP-driven Ca2+ transport machinery similar to that known to reside in the plasma membrane of numerous cell types. It was not affected by digitalis compounds which otherwise are well-documented inhibitors of Ca2+ reabsorption. (2) The vesicle preparation contained high, digitalis-sensitive (Na++K+-ATPase activities indicating its origin from the basolateral portion of plasma membrane. (3) The operation of Na+/Ca2+ antiport device was excluded by the findings that steep Ca2+ gradients formed by ATP-dependent Ca2+ accumulation in the vesicles were not discharged by extravesicular Na+, and did not drive 45Ca2+ uptake into the vesicles via a Ca2+-45Ca2+ exchange. (4) The ATP-dependent Ca2+ uptake into the vesicles became increasingly depressed with time by extravesicular Na+. This was not due to an impairment of the Ca2+ pump itself, but caused by Na+/Ca2+ competition for binding sites on the intravesicular membrane surface shown to be important for high Ca2+ accumulation in the vesicles. (5) Earlier observations on Na+-induced release of Ca2+ from vesicles pre-equilibrated with Ca2+, seemingly favoring the existence of a Na+/Ca2+ antiporter in the basolateral plasma membrane, were likewise explained by the occurrence of Na+/Ca2+ competition for binding sites. The weight of our findings disfavors the transcellular pathway of Ca2+ reabsorption through tubule epithelium essentially depending on the operation of a Na+/Ca2+ antiport device.  相似文献   

15.
Summary 45Ca fluxes and free-cytosolic Ca2+ ([Ca2+] i ) measurements were used to study the effect of Ca2+-mobilizing hormones on plasma membrane Ca2+ permeability and the plasma membrane Ca2+ pump of pancreatic acinar cells. We showed before (Pandol, S.J., et al., 1987.J. Biol. Chem. 262:16963–16968) that hormone stimulation of pancreatic acinar cells activated a plasma membrane Ca2+ entry pathway, which remains activated for as long as the intracellular stores are not loaded with Ca2+. In the present study, we show that activation of this pathway increases the plasma membrane Ca2+ permeability by approximately sevenfold. Despite that, the cells reduce [Ca2+]i back to near resting levels. To compensate for the increased plasma membrane Ca2+ permeability, a plasma membrane Ca2+ efflux mechanism is also activated by the hormones. This mechanism is likely to be the plasma membrane Ca2+ pump. Activation of the plasma membrane Ca2+ pump by the hormones is time dependent and 1.5–2 min of cell stimulation are required for maximal Ca2+ pump activation. From the effect of protein kinase inhibitors on hormone-mediated activation of the pump and the effect of the phorbol ester 12-0-tetradecanoyl phorbol, 13-acetate (TPA) on plasma membrane Ca+ efflux, it is suggested that stimulation of protein kinase C is required for the hormone-dependent activation of the plasma membrane Ca2+ pump.  相似文献   

16.
Summary The relative contributions of the Na+/Ca2+ exchange and the plasma membrane Ca2+ pump to active Ca2+ efflux from stimulated rat pancreatic acini were studied. Na+ gradients across the plasma membrane were manipulated by loading the cells with Na+ or suspending the cells in Na+-free media. The rates of Ca2+ efflux were estimated from measurements of [Ca2+] i using the Ca2+-sensitive fluorescent dye Fura 2 and45Ca efflux. During the first 3 min of cell stimulation, the pattern of Ca2+ efflux is described by a single exponential function under control, Na+-loaded, and Na+-depleted conditions. Manipulation of Na+ gradients had no effect on the hormone-induced increase in [Ca2+] i . The results indicate that Ca2+ efflux from stimulated pancreatic acinar cells is mediated by the plasma membrane Ca2+ pump. The effects of several cations, which were used to substitute for Na+, on cellular activity were also studied. Choline+ and tetramethylammonium+ (TMA+) released Ca2+ from intracellular stores of pancreatic acinar, gastric parietal and peptic cells. These cations also stimulated enzyme and acid secretion from the cells. All effects of these cations were blocked by atropine. Measurements of cholecystokinin-octapeptide (CCK-OP)-stimulated amylase release from pancreatic acini, suspended in Na+, TMA+, choline+, or N-methyl-d-glucamine+ (NMG+) media containing atropine, were used to evaluate the effect of the cations on cellular function. NMG+, choline+, and TMA+ inhibited amylase release by 55, 40 and 14%, respectively. NMG+ also increased the Ca2+ permeability of the plasma membrane. Thus, to study Na+ dependency of cellular function, TMA+ is the preferred cation to substitute for Na+. The stimulatory effect of TMA+ can be blocked by atropine.  相似文献   

17.
Modulation of calcium signalling by mitochondria   总被引:1,自引:0,他引:1  
Ciara Walsh 《BBA》2009,1787(11):1374-1382
In this review we will attempt to summarise the complex and sometimes contradictory effects that mitochondria have on different forms of calcium signalling. Mitochondria can influence Ca2+ signalling indirectly by changing the concentration of ATP, NAD(P)H, pyruvate and reactive oxygen species — which in turn modulate components of the Ca2+ signalling machinery i.e. buffering, release from internal stores, influx from the extracellular solution, uptake into cellular organelles and extrusion by plasma membrane Ca2+ pumps. Mitochondria can directly influence the calcium concentration in the cytosol of the cell by importing Ca2+ via the mitochondrial Ca2+ uniporter or transporting Ca2+ from the interior of the organelle into the cytosol by means of Na+/Ca2+ or H+/Ca2+ exchangers. Considerable progress in understanding the relationship between Ca2+ signalling cascades and mitochondrial physiology has been accumulated over the last few years due to the development of more advanced optical techniques and electrophysiological approaches.  相似文献   

18.
Intracellular Ca2+ levels in Paramecium must be tightly controlled, yet little is understood about the mechanisms of control. We describe here indirect evidence that a phosphoenzyme intermediate is the calmodulin-regulated plasma membrane Ca2+ pump and that a Ca2+-ATPase activity in pellicles (the complex of cell body surface membranes) is the enzyme correlate of the plasma membrane pump protein. A change in Ca2+ pump activity has been implicated in the chemoresponse of paramecia to some attractant stimuli. Indirect support for this is demonstrated using mutants with different modifications of calmodulin to correlate defects in chemoresponse with altered Ca2+ homeostasis and pump activity.Abbreviations EGTA ethyleneglycol tetra-acetate - ER endoplasmic reticulum - IBMX isobutyl methylxanthine - I che index of chemokinesis - Mops 3-[N-morpholino] propanesulfonic acid - PEI phosphoenzyme intermediate - STEN sucrose, TRIS, EDTA, sodium chloride - TCA trichloroacetic acid - TRIS tris[hydroxymethyl] aminomethane  相似文献   

19.
Cardiac plasma membrane Ca2+/Mg2+ ecto-ATPase (myoglein) requires millimolar concentrations of either Ca2+ or Mg2+ for maximal activity. In this paper, we report its localization by employing an antiserum raised against the purified rat cardiac Ca2+/Mg2+ ATPase. As assessed by Western blot analysis, the antiserum and the purified immunoglobulin were specific for Ca2+/Mg2+ ecto-ATPase; no cross reaction was observed towards other membrane bound enzymes such as cardiac sarcoplasmic reticulum Ca2+-pump ATPase or sarcolemmal Ca2+-pump ATPase. On the other hand, the cardiac Ca2+/Mg2+ ecto-ATPase was not recognized by antibodies specific for either cardiac sarcoplasmic reticulum Ca2+-pump ATPase or plasma membrane Ca2+-pump ATPase. Furthermore, the immune serum inhibited the Ca2+/Mg2+ ecto-ATPase activity of the purified enzyme preparation. Immunofluorescence of cardiac tissue sections and neonatal cultured cardiomyocytes with the Ca2+/Mg2+ ecto-ATPase antibodies indicated the localization of Ca2+/Mg2+ ecto-ATPase in association with the plasma membrane of myocytes, in areas of cell-matrix or cell-cell contact. Staining for the Ca2+/Mg2+ ecto-ATPase was not cardiac specific since the antibodies detected the presence of membrane proteins in sections from skeletal muscle, brain, liver and kidney. The results indicate that Ca2+/Mg2+ ecto-ATPase is localized to the plasma membranes of cardiomyocytes as well as other tissues such as brain, liver, kidney and skeletal muscle.  相似文献   

20.
A pH-sensitive electrode was applied to measure activity of H+ ions in the medium surrounding excitable cells of pumpkin (Cucurbita pepo L.) seedlings during cooling-induced generation of action potential (AP). Reversible alkalization shifts were found to occur synchronously with AP, which could be due to the influx of H+ ions from external medium into excitable cells. Ethacrynic acid (an anion channel blocker) reduced the AP amplitude but had no effect on the transient alkalization of the medium. An inhibitor of plasma membrane H+-ATPase, N,N’-dicyclohexylcarbodiimide suppressed both the AP amplitude and the extent of alkalization. In experiments with plasma membrane vesicles, the hydrolytic H+-ATPase activity was subjected to inhibition by Ca2+ concentrations in the range characteristic of cytosolic changes during AP generation. The addition of a calcium channel blocker verapamil and a chelating agent EGTA to inhibit Ca2+ influx from the medium eliminated the AP spike and diminished reversible alkalization of the external solution. An inhibitor of protein kinase, H-7 alleviated the inhibitory effect of Ca2+ on hydrolytic H+-ATPase activity in plasma membrane vesicles and suppressed the reversible alkalization of the medium during AP generation. The results provide evidence that the depolarization phase of AP is associated not only with activation of chloride channels and Cl? efflux but also with temporary suppression of plasma membrane H+-ATPase manifested as H+ influx. The Ca2+-induced inhibition of the plasma membrane H+-ATPase is supposedly mediated by protein kinases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号