首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The location of retention in the channel can influence invertebrate assemblage and breakdown processes associated with a litter particle in heterogeneous streams. We previously identified four types of litter patches that formed on riffles or different locations in pools (middle, edge, alcove), and demonstrated that middle patches had higher litter processing rates than the other patches. In this study, we examined differences in retention on the four patch types among leaves, woody materials and small litter particles, and among leaves of different sizes, by sampling natural and manipulated litter particles that were newly retained. Proportionally more woody materials, leaf pieces (16–50 mm) and particulate organic matter (1–16 mm) than leaves (>50 mm) were retained on middle patches, while proportionally more leaves than the other litter particles were retained on riffle and edge patches. The retention pattern of leaf species with different leaf sizes and a released experiment of leaf particles revealed that proportionally more leaf particles with smaller sizes were retained on middle patches. The flexibility, shape and dryness of litter particles also seem to affect the location of retention in the channel. These results suggest that the morphology of litter particles have the potential to affect the biological use and breakdown of litter particles through determining the location of retention within the channel. The size of leaves and processes that alter leaf size may have important roles on the breakdown and utilisation by invertebrates in these heterogeneous streams.  相似文献   

2.
We examined physical constraints on the colonization of leaf patches by shredder individuals by comparing the colonizations of artificially standardized leaf patches placed at different locations within a stream reach (i.e., riffles, middles and edges of pools). Stonefly taxa (Nemoura, Protonemura) colonized riffle patches 2–10 times more often than pool (middle, edge) patches, whereas caddisfly taxa (two species of Lepidostoma, Nothopsyche) almost exclusively colonized pool patches. Colonization also differed between the middle and edge patches in pools for most taxa; it was 2–5 times greater in edge patches for Nemoura and in middle patches for Lepidostoma. The abilities of species to cope with low oxygen circulation and high shear stress appear to determine differences in colonization between riffle and pool patches, whereas species-specific dispersion behavior (e.g., return time from drift) may differentiate colonization between middle and edge patches in pools. Our results suggest that changes in leaf distribution within a reach can affect the suitability of stream reaches in terms of food acquisition for shredder individuals.  相似文献   

3.
在北方寒冷区,凋落物于秋季大量输入溪流,是水生生物越冬生存的关键。河床凋落物的堆积和组成会直接影响凋落叶分解等关键生态过程,但目前国内关于北方地区溪流河床凋落物分布特征的研究匮乏。在长白山地区一条源头溪流,采用原位取样的方法,探究了溪流河床凋落物的分布特征及季节动态。结果表明:深潭型凋落物斑块的堆积面积和水深显著大于浅滩型凋落物斑块和倒木型凋落物斑块,流速则显著低于其他两种凋落物斑块;倒木型凋落物斑块的堆积厚度显著大于其他两种凋落物斑块。浅滩型凋落物斑块和倒木型凋落物斑块的组成以叶片为主,碎叶片次之,树枝树干最少;深潭型凋落物斑块的组成以碎叶片和树枝树干为主,叶片较少,但秋季和冬季冻结初期除外。冬季雪融期凋落物斑块的堆积厚度显著大于其他时期;春季凋落物斑块的堆积面积显著小于其他时期,水深显著大于其他时期。随着季节变化,浅滩型凋落物斑块中的叶片比例逐渐减少,碎叶片比例逐渐增加;深潭型凋落物斑块中的树枝树干比例逐渐增加。水深与浅滩型凋落物斑块中碎叶片的干重呈显著负相关。溪流内凋落物的分布具有时空差异性,可为寒冷区溪流生态过程后续的研究提供基础数据。  相似文献   

4.
1. Few studies have evaluated the effectiveness of riparian buffers in the tropics, despite their potential to reduce the impacts of deforestation on stream communities. We examined macroinvertebrate assemblages and stream habitat characteristics in small lowland streams in southeastern Costa Rica to assess the impacts of deforestation on benthic communities and the influence of riparian forest buffers on these effects. Three different stream reach types were compared in the study: (i) forested reference reaches, (ii) stream reaches adjacent to pasture with a riparian forest buffer at least 15 m in width on both banks and (iii) stream reaches adjacent to pasture without a riparian forest buffer. 2. Comparisons between forest and pasture reaches suggest that deforestation, even at a very local scale, can alter the taxonomic composition of benthic macroinvertebrate assemblages, reduce macroinvertebrate diversity and eliminate the most sensitive taxa. The presence of a riparian forest buffer appeared to significantly reduce the effects of deforestation on benthic communities, as macroinvertebrate diversity and assemblage structure in forest buffer reaches were generally very similar to those in forested reference reaches. One forest buffer reach was clearly an exception to this pattern, despite the presence of a wide riparian buffer. 3. The taxonomic structure of macroinvertebrate assemblages differed between pool and riffle habitats, but contrasts among the three reach types in our study were consistent across the two habitats. Differences among reach types also persisted across three sampling periods during our 15‐month study. 4. Among the environmental variables we measured, only stream water temperature varied significantly among reach types, but trends in periphyton abundance and stream sedimentation may have contributed to observed differences in macroinvertebrate assemblage structure. 5. Forest cover was high in all of our study catchments, and more research is needed to determine whether riparian forest buffers will sustain similar functions in more extensively deforested landscapes. Nevertheless, our results provide support for Costa Rican regulations protecting riparian forests and suggest that proper riparian management could significantly reduce the impacts of deforestation on benthic communities in tropical streams.  相似文献   

5.
Abstract Early dry season fires are a common land management regime employed across the tropical savannas of northern Australia. The rationale is that this reduces fuel loads and so reduces fire risk in the latter part of the dry season. Despite the acceptance of fire as a major management tool the ecological effects of fire remain uncertain. Vegetation patches and their associated macroinvertebrates play a critical role in the capture and recycling of water and nutrients. The aim of this study was to examine the responses of soil macroinvertebrates, within different types of vegetation patches, to early dry season fires in tropical savanna woodland in northern Australia. The abundance of major macroinvertebrate taxa and functional groups, and taxon richness were quantified in three vegetation patch types 2 weeks before and 2 weeks after burning. Termites dominated the soil macroinvertebrate assemblage sampled. Fire led to significant decreases in ant and spider abundances and overall taxon richness. Functional group analyses showed significant overall declines in the abundances of macropredators and litter transformers. There were also interactions between fire and patch type; in tree patches, fire significantly reduced total macroinvertebrate abundance, as well as the abundance of termites and ecosystem engineers. These changes in soil macroinvertebrates will potentially influence patch functionality, with important implications for soil processes and landscape health.  相似文献   

6.
1. Detecting hot spots of litter decomposition will promote understanding of litter processing in a heterogeneous system. To identify hot spots of leaf breakdown within a headwater stream reach, we examined the difference in leaf breakdown rate among four types of litter patches, one that formed in riffles and three that formed in pools (middle, alcove, edge), in different seasons. 2. Middle patches showed the highest breakdown rate in some seasons; the rate in middle patches was 1.5–4 times higher than in the other patches. Thus middle patches can be regarded as hot spots of leaf breakdown in the study reach. This result contrasted with other studies showing higher breakdown rate in riffles than in pools. 3. Significant relationships between abundance of caddisfly shredders and breakdown rate were observed in seasons when the rate differed among patch types. Greater abundance of Lepidostoma seems to be responsible for middle patches being hot spots of leaf breakdown. 4. It is expected that when the proportion of leaves retained in middle patches within a reach is higher, the breakdown rate of the entire reach will be increased. Clarifying how the proportion of leaves retained on middle patches within a reach varies temporally and spatially would improve our understanding of leaf breakdown in headwater streams.  相似文献   

7.
1. Detection of impairment in macroinvertebrate communities using rapid biological assessment depends on the ability to compare sites, with confidence that differences obtained result from water quality. However, collections from more than one habitat type may introduce variation that can potentially mask water quality differences among sites. Data were collected from the riffle, edge, pool-rock and macrophyte habitats at reference (minimally disturbed) and test (disturbed) stream sites throughout the Australian Capital Territory. The effect of habitat-specific sampling on predictive models for detecting impairment in macroinvertebrate communities was determined. Four models were used: riffle only, edge only, each habitat as an individual object, and all habitats sampled at a site considered as a composite sample. 2. Macroinvertebrates from individual habitats generally clustered into separate groups because collections from the same habitat at different sites were more similar than collections from different habitats within a site. Thus, in the habitats as individual objects model, the taxa predicted to occur at a test site may be an indication of habitat type rather than water quality. The outputs of the composite habitats and riffle and edge models were similar. However, the variable number of habitats included at each site in the composite model may confound the detection of biological impairment because of unequal sampling effort. The riffle and edge models were the most robust because they were less confounded by inter-habitat variation and were based on comparisons made between equivalent environmental units. 3. Comparison of observed/expected taxa ratios for test sites showed that each model could detect biological impairment, indicating considerable data redundancy was introduced by sampling several habitats. In particular, the pool-rock and macrophyte habitats contributed no information with regard to macroinvertebrate taxon occurrence or detection of biological impairment that could not be obtained from either the riffle or edge habitats within the study area.  相似文献   

8.
We compared the abundance of litter categories (coarse particulate organic matter 1–16 mm, leaves >16 mm, and small woody detritus 16–100 mm) and macroinvertebrate assemblages between natural litter patches in pools and riffles in a headwater stream. Litter patches in pools were formed under conditions of almost no current (<6 cm s−1), but in riffles they were formed under variable current velocities (13–89 cm s−1). Although the abundance of each litter category exhibited seasonal change, leaves were more abundant in riffles, and coarse particulate organic matter and small woody detritus were more abundant in pools throughout the study period. Macroinvertebrate assemblages in pools and riffles also changed seasonally but distinctly differed from each other. Shredders, collector-gatherers, and predators were the dominant functional groups in abundance in both pools and riffles, but the dominant shredders were caddisflies in pools and stoneflies in riffles. It is considered that the hydraulic conditions affected macroinvertebrate assemblages directly and indirectly through influences on the characteristics of litter retained in the patches. Our results suggest that the relative abundance of litter patches in pools and riffles largely affects the macroinvertebrate community structure of the headwater stream. Received: July 19, 2001 / Accepted: December 19, 2001  相似文献   

9.
This study describes the pattern of invertebrate species richness in a river reach with large differences in habitat complexity at two, hierarchically nested, spatial scales. The aim was to determine whether the mass effect was likely to be increasing invertebrate species richness in epilithic microhabitats in this river. The mass effect is the process by which the species richness of a patch is increased when it acts as a ‘sink’ for species generated by ‘source’ patches. Microhabitat patch types in Mountain River, Tasmania, were distinguished on the basis of physical structure and orientation on the river bed. They were nested within two types of riffle with contrasting structural complexity: bedrock and boulder-cobble riffles. It was hypothesized that microhabitats with high species richness would act as source patches, contributing species to other microhabitats (sinks) and thereby increasing their species richness. Microhabitat sampling was carried out in four consecutive seasons and rarefaction was used to estimate riffle-scale species richness. Analysis of variance ( ANOVA ) was used to compare the identical microhabitats present in the contrasting riffle types, to detect evidence of the mass effect in either riffle type. The more structurally complex boulder-cobble riffles had higher species richness than did bedrock riffles. Amongst the microhabitats, the spaces beneath the cobbles had the most species. Microhabitats accounted for a higher percentage of the variation in species richness than did differences between riffles of the same type. No evidence was found for the operation of the mass effect in either riffle type. The majority of species found only in boulder-cobble riffles were unique to the beneath-cobble microhabitat and appeared to be unable to colonize other microhabitats, even as transients. In Mountain River, small-scale habitat characteristics appeared to be more important than larger-scale effects in determining microhabitat species richness.  相似文献   

10.
This study has investigated the taxon‐specific responses of fauna to patch edges, and how these relate to patch attributes (patch size, seagrass biomass and water depth), and hydrodynamics in the seagrass habitat. Faunal abundances were sampled at the edge, 2 m in from the edge, and in the middle of 10 seagrass patches of variable size in Port Phillip Bay, Australia. Five of nine taxa showed edge effects. There were higher abundances at the edge compared with the middle for porcellid harpacticoids, and an increase in abundance from the edge to the middle of the patches for tanaids and isopods. For caprellid and gammarid amphipods, the edge effect varied across patches. Changes in current within the patch and patch size were related to the variability in the edge effect pattern of caprellids. None of the measured environmental variables (seagrass biomass, current and water depth) or patch size had a role in the variable edge effect pattern of gammarid amphipods. At the patch level, the distribution of six of nine taxa in this study, namely isopods, polychaetes, ‘other harpacticoids’, porcellid harpacticoids, cumaceans and gammarid amphipods, was related to differences in average water depth, average seagrass biomass and patch size. Our study indicates that the faunal response to edges cannot be generalized across seagrass habitat, and the implications of habitat area loss will vary depending on the taxon under consideration.  相似文献   

11.
1. The effect of channel drying on macroinvertebrate production was studied at the habitat and reach scale in a catchment drained by intermittent streams in Maine, U.S.A. The catchment includes two first‐order streams and their second‐order confluence. Six reaches were selected for study based on differences in channel slope and habitat cover (bedrock, riffle/run, debris dam and pool). Stream water in each reach was acidic and oligotrophic. 2. The study reaches had different degrees of channel drying. In the first‐order reaches, surface flow ceased earlier in the season and for longer periods than second‐order reaches. Regardless of reach, pool and debris dam habitats retained water longer than riffle/runs and bedrock. Unlike other habitats, debris dams retained moisture for relatively long periods following cessation of surface flow. 3. Reach‐specific macroinvertebrate production ranged from approximately 1.7 to 2.9 g AFDM m−2 year−1 which are among the lowest values ever reported. Habitat‐specific production ranged from approximately 0.5 to 5.0 g AFDM m−2 year−1 (bedrock and debris dams, respectively). 4. At the reach scale, quantities of stored benthic organic matter (range approximately 200–600 g AFDM−2) decreased in a downstream direction. 5. A combination of differences in the timing and duration of channel drying, habitat structure and detritus standing stocks appeared to influence levels of invertebrate production among the study reaches. 6. Our interpretation of a canonical correspondence analysis indicates that drying is more important than habitat in affecting macroinvertebrate production in this intermittent stream system.  相似文献   

12.
Benthic macroinvertebrate assemblages, water chemistry variables and environmental degradation were investigated in an Atlantic Forest region in Brazil. Seven sites of the Guapimirim river basin were studied during three sampling periods based on the rain regime: end of wet season (May 1998), dry season (August 1998), and wet season (January 1999). Four substrates were collected at each site: sand, stony substrates, litter in pool areas and litter in riffle areas. Relationships between macroinvertebrate assemblages, water chemistry variables and environmental degradation were examined using canonical correspondence analysis (CCA). According to CCA, concentrations of dissolved oxygen and chloride, and the environmental degradation, measured by the Riparian Channel Environment index, exhibited the strongest relationship to macroinvertebrate assemblages. Overall, the loss of community diversity measured by the Shannon Index along the degradation gradient was observed. Some taxa were shown to be sensitive to water pollution, especially among Plecoptera, Trichoptera, Coleoptera and some Ephemeroptera, while others such as Simuliidae, Odonata and molluscs were tolerant to moderate levels of pollutants. The Chironomidae were the only group tolerant to a high level of pollutants and degradation.  相似文献   

13.
1. We examined the effects of prey abundance on patch selection by a benthic fish, the mottled sculpin ( Cottus bairdi ), in a fourth order, southern Appalachian stream (North Carolina, U.S.A.). This habitat is a mosaic of small (i.e. < 0.5 m2), relatively discrete patches.
2. Patches were characterized in terms of physical habitat variables, detritus (coarse particulate organic matter, CPOM) and macroinvertebrate abundance (number and biomass). We quantified patch selection by comparing the characteristics of patches utilized by sculpin with those of locally available patches. Locally available patches were selected using a constrained random sampling design (i.e. randomly selected within a 2 m radius from each fish). We also examined the relationship between macroinvertebrate abundance, CPOM and the physical characteristics of available patches.
3. Patches selected by sculpin contained significantly higher macroinvertebrate abundances (both number and biomass) than locally available patches in five out of six seasonal samples. Sculpin also occupied patches with significantly higher amounts of CPOM in three out of five seasonal samples. Patches utilized by sculpin, however, could not be consistently differentiated from locally available patches on the basis of physical variables. In addition, macroinvertebrate abundance was not consistently related to physical habitat variables or CPOM during the course of the study.
4. Our results suggest that sculpin are able to assess patch quality on the basis of prey abundance and select patches that potentially maximize energy gain. This behaviour may produce an increase in individual fitness, especially when prey distributions are not consistently related to habitat variables. Quantifying patch use in relation to prey abundance may help elucidate the causal factors determining habitat use by benthic fishes in other lotic systems.  相似文献   

14.
1. We examined the effects of prey abundance on patch selection by a benthic fish, the mottled sculpin ( Cottus bairdi ), in a fourth order, southern Appalachian stream (North Carolina, U.S.A.). This habitat is a mosaic of small (i.e. < 0.5 m2), relatively discrete patches.
2. Patches were characterized in terms of physical habitat variables, detritus (coarse particulate organic matter, CPOM) and macroinvertebrate abundance (number and biomass). We quantified patch selection by comparing the characteristics of patches utilized by sculpin with those of locally available patches. Locally available patches were selected using a constrained random sampling design (i.e. randomly selected within a 2 m radius from each fish). We also examined the relationship between macroinvertebrate abundance, CPOM and the physical characteristics of available patches.
3. Patches selected by sculpin contained significantly higher macroinvertebrate abundances (both number and biomass) than locally available patches in five out of six seasonal samples. Sculpin also occupied patches with significantly higher amounts of CPOM in three out of five seasonal samples. Patches utilized by sculpin, however, could not be consistently differentiated from locally available patches on the basis of physical variables. In addition, macroinvertebrate abundance was not consistently related to physical habitat variables or CPOM during the course of the study.
4. Our results suggest that sculpin are able to assess patch quality on the basis of prey abundance and select patches that potentially maximize energy gain. This behaviour may produce an increase in individual fitness, especially when prey distributions are not consistently related to habitat variables. Quantifying patch use in relation to prey abundance may help elucidate the causal factors determining habitat use by benthic fishes in other lotic systems.  相似文献   

15.
Patch based predation in a southern Appalachian stream   总被引:1,自引:0,他引:1  
Streams are characterized by high degrees of patchiness that could influence the role of predators in these systems. Here we assess the impact of predatory benthic fishes on benthic macroinvertebrate density, biomass, and community structure at the patch scale in a fourth order stream in the southern Appalachians. We tested the role of predation in two different patch types: patches inhabited by adult mottled sculpin ( Cottus bairdi ) and random patches. We placed 30 basket pairs (one open to fish predation, and one from which fish predators were excluded) in the streambed at each patch type. We also tested for potential basket effects by setting up a basket control area. Although there was some evidence of basket artifacts on macroinvertebrate density in sculpin patches, these artifacts were not consistent and we do not feel that they affected our results because predators did not affect macroinvertebrate density. In random patches, predation did not significantly affect macroinvertebrate density or biomass. Predators significantly reduced macroinvertebrate biomass in sculpin patches but did not affect prey density. When the data-set was size-limited to exclude macroinvertebrates too large for consumption by sculpin, macroinvertebrate biomass did not differ significantly between exclusion and open baskets. This suggests that sculpin can reduce macroinvertebrate biomass through a combination of consumption and by predator-induced emigration of large macroinvertebrates into areas that are protected from sculpin. In addition, invertebrate predator biomass was higher in predator exclusion baskets in sculpin patches indicating that predation pressure remained high in the exclusion baskets despite fish exclusion. These results illustrate the heterogeneity of streams and the effect of small-scale differences (e.g. location of predators' territories) on local processes. Experiments that utilize these differences can provide insights into these stream processes.  相似文献   

16.
The Mediterranean landscape is characterized by a heterogeneous structure: a mosaic of woody plants (trees or shrubs) with scattered patches of herbaceous vegetation. Although the herbaceous and woody patches are adjacent to each other, plant species composition in them is substantially different. This could be attributed to either differences in environmental conditions between patch types (i.e., abiotic filters), or to dispersal limitations caused by the woody plants acting as dispersal filters. In this article, we focus on the relative impact of woody plants, applying these two filter types, in determining plant species composition in Mediterranean woodland. We experimentally manipulated shade and litter cover and examined the effect of each of these factors on plant species composition. We used seed-traps to evaluate seed arrival in the patches, and experimentally removed the shrub canopy to study the effect of the shrub as a physical barrier to seed entry. Results showed that plant species number and composition were not significantly affected by shade and litter manipulation. The number of trapped seeds were significantly higher in the open patches than in the woody patches, and removal of woody plants increased the number of trapped seeds in both open and woody patches, as a result of eliminating the physical obstacle to free seed movement. Our findings show that woody plants affect the herbaceous plant community by influencing seed dispersal, and highlight that they affect other organisms not only by modifying resource availability but also through the creation of a new landscape structure.  相似文献   

17.
1. To evaluate the effect of habitat patch heterogeneity on abundance and growth of macroinvertebrates in arctic lakes, macroinvertebrate abundance, individual biomass, and potential food resources were studied in three patch types in two arctic lakes on the Alaskan North Slope near the Toolik Lake Field Station. An experiment was conducted to determine which sediment patch type supported higher growth rates for Chironomus sp., a commonly occurring macroinvertebrate. 2. Potential organic matter (OM) resources were significantly higher in both rock and macrophyte patches than in open‐mud patches. Total macroinvertebrate densities in both lakes were highest in rock patches, intermediate in macrophytes and lowest in open‐mud. The open‐mud patches also had lower species richness compared with other patch types. Additionally, individual biomass for one clam species and two chironomid species was significantly greater in rock patches than in open‐mud. 3. In a laboratory experiment, Chironomus showed two to three times greater mass increase in sediments from macrophyte and rock patches than from open‐mud patches. Rock and macrophyte experimental sediments had at least 1.5 × the percentage OM as open‐mud sediments. 4. Chlorophyll a appeared to be the best predictor for invertebrate abundances across all patch types measured, whereas OM content appeared to be the variable most closely associated with Chironomus growth. 5. Our results combined with previous studies show that the relationships between macroinvertebrate community structure, individual growth, and habitat heterogeneity are complex, reflecting the interaction of multiple resources, and biotic interactions, such as the presence or absence of a selective vertebrate predator (lake trout, Salvelinus namaycush).  相似文献   

18.
The effects of habitat fragmentation may include the loss of species from isolated fragments or changes in species abundances among habitats that differ in area, structure, or edge characteristics. We measured the species richness and abundance of ground‐dwelling insects in a 1.14‐ha old field that was mowed to produce patches of unmowed vegetation which differed in size, degree of isolation, and the amount of habitat edge. Four treatments – ranging from unfragmented (169‐m2) to highly fragmented (1‐m2) patches – were replicated four times in a Latin square design, and insects were sampled twice during 1995 using 177 pitfall traps. Species richness showed a non‐monotonic response to fragmentation, with the fewest species occurring in the slightly fragmented treatment. Responses of rove beetles and ants, the most species‐rich and abundant taxa, respectively, were similar to the overall insect community but ants had a stronger and more consistent treatment effect in both sample months. Ordinations of ant and rove‐beetle assemblages using nonmetric multidimensional scaling showed that the slightly fragmented treatment differed from other treatments in species occurrence and abundance. The lower species richness in the slightly fragmented treatment was primarily due to a subset of ant and rove beetle species that showed a lower abundance than in other treatments, possibly because this treatment had the greatest amount of habitat edge. We hypothesize that the non‐monotonic species response to fragmentation was due to the differential effects of habitat edge on species movements across the habitat boundary between unmowed patches and mowed areas. A greater effect due to the amount of habitat edge rather than total patch area, at least among the range of patch sizes studied, suggests that the length of habitat edge may be quite important to the distribution and abundance of ground‐dwelling animals in fragmented habitats.  相似文献   

19.
Soil resource heterogeneity has clear effects on plant root development and overall plant performance. Here we test whether contrasting vegetation types have similar or different responses to soil patches of differing resource availability. We examined the fine root responses of grassland and forest vegetation at the northern edge of the Great Plains to transplanted patches of resource-poor and resource-rich soils, using rhizotron imaging. Every aspect of measured root behavior, including root length, production, mortality, turnover, variability and size distribution, varied significantly between patch types, and most aspects also varied between vegetation types. Most importantly, differential responses to patches between grassland and forest were shown by significant interactions between patch type and vegetation for two response variables. First, root length variability was significantly lower in resource-rich compared to resource-poor patches in forest but not grassland. Second, the proportion of very fine roots was significantly greater in resource-rich than resource-poor patches in forests but not grassland. Thus, compared to grassland, forest more fully occupied resource-rich patches relative to resource-poor patches by allocating more growth to very fine roots. We report the first example of significant differences between vegetation types (grassland and forest) in root responses to soil resource heterogeneity measured in a field experiment. The relatively high ability of forest roots to more fully occupy resource-rich patches is consistent with the global expansion of woody vegetation and associated increases in soil heterogeneity.  相似文献   

20.
We test the hypothesis that secondary succession in Tropical Montane Cloud Forest (TMCF) in Mexico is accompanied by an increase in the spatial structuring of litter resources, soil nutrient concentrations and the soil macroinvertebrate community at a within-plot scale (5–25 m). This increased spatial structuring is expected because secondary succession in these forests is associated with an increase in the diversity of trees that dominate the canopy. If each tree species generates a particular soil environment under its canopy, then under a diverse tree community, soil properties will be spatially very heterogeneous. Tree censuses and grid sampling were performed in four successional stages of a secondary chronosequence of TMCF. Variography was used to analyse spatial patterns in continuous variables such as nutrient concentrations, while Spatial Analysis by Distance Indices (SADIE) was applied to determine patchiness in the distribution of soil macroinvertebrate taxa. Secondary succession was found to be accompanied by the predicted increase in the spatial structuring of litter resources and the macroinvertebrate community at the within-plot scale. Spatial patterns in the macroinvertebrate community only became evident for all taxa in the oldest forest (100 years old). Patches with low Ca and Mg concentrations in early successional soils were associated with patches where pine litter was most abundant while those with low P concentrations in late successional stages were associated with patches where oak litter was most abundant. Results suggest that anthropogenic disturbance aboveground promotes a more homogeneous resource environment in the surface soil, which compared to older forests, sustains a less diverse and less spatially structured macroinvertebrate community.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号