首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Advanced acoustic emission analysis, special microscopic examinations and experiments with physical model systems give reasons for the assumption that the tension in the water conducting system of vascular plants is caused by countless minute gas bubbles strongly adhering to the hydrophobic lignin domains of the xylem vessel walls. We ascertained these bubbles for several species of temperate deciduous trees and conifers. It is our hypothesis that the coherent bubble system of the xylem conduits operates as a force-transmitting medium that is capable of transporting water in traveling peristaltic waves. By virtue of the high elasticity of the gas bubbles, the hydro-pneumatic bubble system is capable of cyclic storing and releasing of energy. We consider the abrupt regrouping of the wall adherent bubble system to be the origin of acoustic emissions from plants. For Ulmus glabra, we recorded violent acoustic activity during both transpiration and re-hydration. The frequency spectrum and the waveforms of the detected acoustic emissions contradict traditional assumptions according to which acoustic emissions are caused by cavitation disruption of the stressed water column. We consider negative pressure in terms of the cohesion theory to be mimicked by the tension of the wall adherent bubble system.  相似文献   

2.
In plants, transpiration draws the water upward from the roots to the leaves. However, this flow can be blocked by air bubbles in the xylem conduits, which is called xylem embolism. In this research, we present the design of a biomimetic microfluidic pump/valve based on water transpiration and xylem embolism. This micropump/valve is mainly composed of three parts: the first is a silicon sheet with an array of slit-like micropores to mimic the stomata in a plant leaf; the second is a piece of agarose gel to mimic the mesophyll cells in the sub-cavities of a stoma; the third is a micro-heater which is used to mimic the xylem embolism and its self-repairing. The solution in the microchannels of a microfluidic chip can be driven by the biomimetic “leaf” composed of the silicon sheet and the agarose gel. The halting and flowing of the solution is controlled by the micro-heater. Results have shown that a steady flow rate of 1.12 µl/min can be obtained by using this micropump/valve. The time interval between the turning on/off of the micro-heater and the halt (or flow) of the fluid is only 2∼3 s. This micropump/valve can be used as a “plug and play” fluid-driven unit. It has the potential to be used in many application fields.  相似文献   

3.
Wood sections of eight species of angiosperm and gymnosperm were made and observed under microscope. When a dehydrated section was rewet, the air inside its conduits contracted under the force of surface tension for several seconds to form elongated or spherical bubbles. The elongated bubbles in smaller conduits shortened till vanished. In addition, we also discorved that bubbles in larger conduits extended at first, then collapsed and disappeared; the bubbles outside conduits appeared gradualy or popped up in the field of view one after another; for some samples, they originated mainly from the cross sections of the wood rays. The smaller ones also collapsed and the larger ones grew up gradually. We suspected that air might transfer from the bubbles with short radii to those with large radii, both inside and outside conduits. The calculation of the amount of gas in all bubbles in a field of view supported our hypothesis. There are two possible mechanisms to explain the phenomena. First, based on the capillay equation, air can move from a smaller bubble to a larger one. Another reason is that the dissolving air from smaller bubbles can enter into the adjacent bubbles with larger curvature radii. Gas movement should obey the same rules in living plants. Therefore, we suggest that after cavitation events, instead of air moving from xylem into ambient atmosphere, two mechanisms could induce air to transfer from smaller conduits into larger conduits or the regions with lower pressures, leading the embolized conduits in the smaller conduits to repair. Furthermore, the differnce of values of contact angles in conduits might promote the refilling of embolism at lower xylem pressure.  相似文献   

4.
5.
Epidermal cells from adaxial leaf surfaces of 42 species of Paphiopedilum and 6 species of Phragmipedium were surveyed with the SEM. The surfaces of the cells are flat to papillose and often have various sculpturing patterns. To designate two orders of papilla size the terms 'macropapilla' and 'micropapilla' are proposed. Species exhibiting unornamented flat to macropapillose epidermal cells appear to be correlated with high light environments, whereas those species exhibiting micoropapillae and various degrees of sculpturing appear to be correlated with low light environments. Sculpturing features are often characteristic of a single species, but they may vary considerably between species. Epidermal characters are of some utility in identifying sterile plants which are otherwise indistinguishable.  相似文献   

6.
Plants close their stomata during drought to avoid excessive water loss, but species differ in respect to the drought severity at which stomata close. The stomatal closure point is related to xylem anatomy and vulnerability to embolism, but it also has implications for phloem transport and possibly phloem anatomy to allow sugar transport at low water potentials. Desiccation‐tolerant plants that close their stomata at severe drought should have smaller xylem conduits and/or fewer and smaller interconduit pits to reduce vulnerability to embolism but more phloem tissue and larger phloem conduits compared with plants that avoid desiccation. These anatomical differences could be expected to increase in response to long‐term reduction in precipitation. To test these hypotheses, we used tridimensional synchroton X‐ray microtomograph and light microscope imaging of combined xylem and phloem tissues of 2 coniferous species: one‐seed juniper (Juniperus monosperma) and piñon pine (Pinus edulis) subjected to precipitation manipulation treatments. These species show different xylem vulnerability to embolism, contrasting desiccation tolerance, and stomatal closure points. Our results support the hypothesis that desiccation tolerant plants require higher phloem transport capacity than desiccation avoiding plants, but this can be gained through various anatomical adaptations in addition to changing conduit or tissue size.  相似文献   

7.
Xylem conduction and cavitation in Hevea brasiliensis   总被引:2,自引:0,他引:2  
Clones of Hevea were studied in an attempt to discover the reasonsfor differences in the hydraulic performance of xylem. Differencesbetween clones were determined, including hydraulic conductivityand conduit width and length distributions. However, it hasproved difficult to reconcile anatomical differences with physiologicalperformance for use in future plant breeding programmes. When leaf relative water content (RWC) had been reduced fromabout 95% to 85%, the hydraulic conductivity of petioles decreasedsharply to about 40% of the initial value. This value correspondedwith xylem sap tensions of 1.8–2.0 MPa. Acoustic detectionexperiments revealed that this reduction in hydraulic conductivitycoincided with the greatest occurrence of cavitation. It seemsinescapable that the reduction in hydraulic conductivity wascaused by embolization; thereafter gas bubbles blocked the flowof water inside many of the conduits. There was some indicationthat eventually such bubbles might be dissolved, because thehydraulic conductivity increased again if specimens were fullyrehydrated. Apparently, the incidence of cavitation coincides with the entryof gas bubbles via ultramicroscopic pores into the conduitsthrough the walls according to the air-seeding hypothesis. Whena petiolate leaf is tested in a pressure chamber it is impossibleto make satisfactory measurements of a balancing pressure beyondc. 1.8–2.0 MPa, because air bubbles, mixed with sap andescaping from the conduits, form a persistent froth. Xylem transportin Hevea seems to be disrupted relatively easily under waterstress which is a feature of other tropical species adaptedto rainforest–type environments Key words: Hevea, xylem, cavitation, conduit, hydraulic conductivity  相似文献   

8.
Water transport in xylem conduits with ring thickenings   总被引:2,自引:0,他引:2  
Helical or annular wall thickenings are not only present in protoxylem, but may also he a feature of the tracheids or vessel elements of secondary wood. The frequency of their occurrence tends to be a function of climatic factors and conduit diameter. In order to obtain a functional explanation for these structures, the hydrodynamic behaviour of xylem conduits with various patterns of annular wall thickenings was investigated numerically using a commercial CFD (Computational Fluid Dynamics) package. The fluid flow phenomena are presented in detail. The calculations show that the developing pressure gradient of the structures with corrugated walls is in each case lower than that of a smooth pipe with a diameter corresponding to the distance between two opposite thickenings. Furthermore, complex flow patterns with circulation zones between the thickenings develop which are dependent on the geometry of the wall. It may be hypothesized that these circulation zones influence the lateral water flow. The results are discussed with regard to the relationships between the water conduction function of the xylem and ecological factors.  相似文献   

9.

Premise of the Study

Xylem sap in angiosperms moves under negative pressure in conduits and cell wall pores that are nanometers to micrometers in diameter, so sap is always very close to surfaces. Surfaces matter for water transport because hydrophobic ones favor nucleation of bubbles, and surface chemistry can have strong effects on flow. Vessel walls contain cellulose, hemicellulose, lignin, pectins, proteins, and possibly lipids, but what is the nature of the inner, lumen‐facing surface that is in contact with sap?

Methods

Vessel lumen surfaces of five angiosperms from different lineages were examined via transmission electron microscopy and confocal and fluorescence microscopy, using fluorophores and autofluorescence to detect cell wall components. Elemental composition was studied by energy‐dispersive X‐ray spectroscopy, and treatments with phospholipase C (PLC) were used to test for phospholipids.

Key Results

Vessel surfaces consisted mainly of lignin, with strong cellulose signals confined to pit membranes. Proteins were found mainly in inter‐vessel pits and pectins only on outer rims of pit membranes and in vessel‐parenchyma pits. Continuous layers of lipids were detected on most vessel surfaces and on most pit membranes and were shown by PLC treatment to consist at least partly of phospholipids.

Conclusions

Vessel surfaces appear to be wettable because lignin is not strongly hydrophobic and a coating with amphiphilic lipids would render any surface hydrophilic. New questions arise about these lipids and their possible origins from living xylem cells, especially about their effects on surface tension, surface bubble nucleation, and pit membrane function.  相似文献   

10.
Functional and ecological xylem anatomy   总被引:17,自引:0,他引:17  
Cohesion-tension transport of water is an energetically efficient way to carry large amounts of water from the roots up to the leaves. However, the cohesion-tension mechanism places the xylem water under negative hydrostatic pressure (Px), rendering it susceptible to cavitation. There are conflicts among the structural requirements for minimizing cavitation on the one hand vs maximizing efficiency of transport and construction on the other. Cavitation by freeze-thaw events is triggered by in situ air bubble formation and is much more likely to occur as conduit diameter increases, creating a direct conflict between conducting efficiency and sensitivity to freezing induced xylem failure. Temperate ring-porous trees and vines with wide diameter conduits tend to have a shorter growing season than conifers and diffuse-porous trees with narrow conduits. Cavitation by water stress occurs by air seeding at interconduit pit membranes. Pit membrane structure is at least partially uncoupled from conduit size, leading to a much less pronounced trade-off between conducting efficiency and cavitation by drought than by freezing. Although wider conduits are generally more susceptible to drought-induced cavitation within an organ, across organs or species this trend is very weak. Different trade-offs become apparent at the level of the pit membranes that interconnect neighbouring conduits. Increasing porosity of pit membranes should enhance conductance but also make conduits more susceptible to air seeding. Increasing the size or number of pit membranes would also enhance conductance, but may weaken the strength of the conduit wall against implosion. The need to avoid conduit collapse under negative pressure creates a significant trade-off between cavitation resistance and xylem construction cost, as revealed by relationships between conduit wall strength, wood density and cavitation pressure. Trade-offs involving cavitation resistance may explain the correlations between wood anatomy, cavitation resistance, and the physiological range of negative pressure experienced by species in their native habitats.  相似文献   

11.
The xylem is one of the two long distance transport tissues in plants, providing a low resistance pathway for water movement from roots to leaves. Its properties determine how much water can be transported and transpired and, at the same time, the plant's vulnerability to transport dysfunctions (the formation and propagation of emboli) associated to important stress factors, such as droughts and frost. Both maximum transport efficiency and safety against embolism have classically been attributed to the properties of individual conduits or of the pit membrane connecting them. But this approach overlooks the fact that the conduits of the xylem constitute a network. The topology of this network is likely to affect its overall transport properties, as well as the propagation of embolism through the xylem, since, according to the air-seeding hypothesis, drought-induced embolism propagates as a contact process (i.e., between neighbouring conduits). Here we present a model of the xylem that takes into account its system-level properties, including the connectivity of the xylem network. With the tools of graph theory and assuming steady state and Darcy's flow we calculated the hydraulic conductivity of idealized wood segments at different water potentials. A Monte Carlo approach was adopted, varying the anatomical and topological properties of the segments within biologically reasonable ranges, based on data available from the literature. Our results showed that maximum hydraulic conductivity and vulnerability to embolism increase with the connectivity of the xylem network. This can be explained by the fact that connectivity determines the fraction of all the potential paths or conduits actually available for water transport and spread of embolism. It is concluded that the xylem can no longer be interpreted as the mere sum of its conduits, because the spatial arrangement of those conduits in the xylem network influences the main functional properties of this tissue. This brings new arguments into the long-standing discussion on the efficiency vs. safety trade-off in the plants' xylem.  相似文献   

12.
Quercus ilex L. growing in the southern Mediterranean Basin region is exposed to xylem embolism induced by both winter freezing and summer drought. The distribution of the species in Sicily could be explained in terms of the different vulnerability to embolism of its xylem conduits. Naturally occurring climatic conditions were simulated by: (1) maintaining plants for 3h at ambient temperatures of 0, -1.5, -2.5, -5.0 and -11°C; and (2) allowing plants to dry out to ratios of their minimum diurnal leaf water potentials (Ψ1) to that at the turgor loss point (Ψtlp) of 0.6, 0.9, 1.05, 1.20 and 1.33. The loss of hydraulic conductivity of one-year-old twigs reached 40% at -1.5°C and at Ψ1tlP= 1.05. Recovery from these strains was almost complete 24 h after the release of thermal stress or after one irrigation, respectively. More severe stresses reduced recovery consistently. The percentages of xylem conduits embolized following application of the two stresses, were positively related to xylem conduit diameter. The capability of the xylem conduits to recover from stress was positively related to the conduit diameter in plants subjected to summer drought, but not in the plants subjected to winter freezing stress. The ecological significance of the different vulnerabilities to embolism of xylem conduits under naturally occurring climatic conditions is discussed.  相似文献   

13.
Bordered pits are cavities in the lignified cell walls of xylem conduits (vessels and tracheids) that are essential components in the water-transport system of higher plants. The pit membrane, which lies in the center of each pit, allows water to pass between xylem conduits but limits the spread of embolism and vascular pathogens in the xylem. Averaged across a wide range of species, pits account for > 50% of total xylem hydraulic resistance, indicating that they are an important factor in the overall hydraulic efficiency of plants. The structure of pits varies dramatically across species, with large differences evident in the porosity and thickness of pit membranes. Because greater porosity reduces hydraulic resistance but increases vulnerability to embolism, differences in pit structure are expected to correlate with trade-offs between efficiency and safety of water transport. However, trade-offs in hydraulic function are influenced both by pit-level differences in structure (e.g. average porosity of pit membranes) and by tissue-level changes in conduit allometry (average length, diameter) and the total surface area of pit membranes that connects vessels. In this review we address the impact of variation in pit structure on water transport in plants from the level of individual pits to the whole plant.  相似文献   

14.
Measurements of cavitation occurring in xylem conduits of differentstem parts in whole Chorisia insignis H.B. et. K. plants subjectedto water stress are reported. Pre-stressed plants were shownto undergo cavitation over 10 times greater than watered ones.The most vulnerable parts of plants were one-year-old twigswhere cavitation reached a peak of over 50 acoustic emissions(AE) min–1 while in two-year-old twigs AE min–1were about one half this value. Stem zones were found wherecavitation was typically very low even during water stress:these were one-year-old nodes and junctions where branches meet.Measurements of the inside diameters of xylem conduits and distributionof conduit ends in stem parts where AE were detected, showedthat nodes have a significantly larger percentage of narrowxylem conduits than internodes. Similar ‘constricted zones’were found injunctions with respect to two-year-old twigs. Hereabout 50 per cent of the xylem conduits were as narrow as 20to 50 µm in diameter. The distribution of xylem conduitends show about 3 per cent of them ending in the nodes and 1per cent in the internodes of one-year-old twigs. About 11.6per cent of xylem conduits end in the junctions and about ahalf in two-year-old internodes. Our data would give furtherexperimental evidence to the functional concept of ‘plantsegmentation’ into zones (internodes) more efficient inwater conduction, i.e. with wider xylem conduits but more vulnerableto cavitation and others (nodes and junctions) with oppositecharacteristics. Chorisia insignis, acoustic emissions, water stress, nodes, internodes, xylem conduit size, vessel ends  相似文献   

15.
Measurements of xylem conduit length and width and the distribution of xylem conduit ends were made in inter-nodes (I), nodes (N) and twig junctions (J) of 1-, 2- and 3-year-old twigs of plants of Quercus cerris L. Parallel measurements were also made of the loss of hydraulic conductivity of twigs subjected to pressure differentials across conduit pit membranes, equalling the leaf water potential at the turgor loss point. The loss of theoretical hydraulic conductivity was calculated as the ratio of i esivr4 (where r is the conduit radius) of the non-conducting conduits to that of all the conduits in the outermost wood ring of I, N and J. Stem zones such as 1-year-old nodes and junctions were localized with narrower and shorter xylem conduits and with higher percentages of conduit ends than internodes. Such ‘constricted zonesrsquo; were less vulnerable to embolism than internodes. Latewood conduits were consistently narrower, shorter and less vulnerable to embolism than earlywood ones. A positive relation therefore existed between conduit diameter and length and vulnerability to embolism. The overall vulnerability to embolism of Q. cerris plants is discussed in terms of xylem conduit width and length and of the distribution of conduit ends.  相似文献   

16.
Protoxylem plays an important role in the hydraulic function of vascular systems of both herbaceous and woody plants, but relatively little is known about the processes underlying the maintenance of protoxylem function in long-lived tissues. In this study, embolism repair was investigated in relation to xylem structure in two cushion plant species, Azorella macquariensis and Colobanthus muscoides, in which vascular water transport depends on protoxylem. Their protoxylem vessels consisted of a primary wall with helical thickenings that effectively formed a pit channel, with the primary wall being the pit channel membrane. Stem protoxylem was organized such that the pit channel membranes connected vessels with paratracheal parenchyma or other protoxylem vessels and were not exposed directly to air spaces. Embolism was experimentally induced in excised vascular tissue and detached shoots by exposing them briefly to air. When water was resupplied, embolized vessels refilled within tens of seconds (excised tissue) to a few minutes (detached shoots) with water sourced from either adjacent parenchyma or water-filled vessels. Refilling occurred in two phases: (1) water refilled xylem pit channels, simplifying bubble shape to a rod with two menisci; and (2) the bubble contracted as the resorption front advanced, dissolving air along the way. Physical properties of the protoxylem vessels (namely pit channel membrane porosity, hydrophilic walls, vessel dimensions, and helical thickenings) promoted rapid refilling of embolized conduits independent of root pressure. These results have implications for the maintenance of vascular function in both herbaceous and woody species, because protoxylem plays a major role in the hydraulic systems of leaves, elongating stems, and roots.There is a pressing need to understand how plants manage the maintenance of water transport from roots through leaves under changing environmental conditions (Allen et al., 2010; Choat et al., 2012). The problem arises because water is transported through the xylem under tension (i.e. under negative absolute pressure). As tension increases, conduits become increasingly vulnerable to cavitation, which causes the conduits to lose their ability to transport water. Conduits can become embolized during normal diurnal function as a result of tensions induced by transpiration and in response to environmental conditions such as drought or freezing stress (Zimmermann and Tyree, 2002). Vulnerability to cavitation and embolism formation suggests that plants have mechanisms to regain lost hydraulic capacity, either through the formation of new conduits or by refilling embolized ones.The vulnerability of conduits to embolisms and the capacity for repair are related to the structural diversity of xylem tissue (Zwieniecki and Holbrook, 2009; Lens et al., 2011; Cai et al., 2014). In vascular plants, the classification of xylem tissues depends on the meristem that produced them (Evert and Eichhorn, 2006). Primary xylem is produced by apical meristems and includes both protoxylem and metaxylem conduits, which are distinguished by their wall structure and the timing of their development. Protoxylem matures during organ elongation, which results in loss of function due to stretching in some tissues and species, while in many others, functionality is maintained throughout the life of the organ. In contrast, metaxylem matures in elongated tissue. In herbaceous plants, primary xylem is the major hydraulic system of the roots, stems, and leaves. In woody plants, the primary xylem remains the main hydraulic system of the leaves, while the radial growth of stems occurs through the activity of a vascular cambium, which produces secondary xylem with only metaxylem conduits. As a woody plant grows, the secondary xylem (and hence the metaxylem) thus becomes of increasing importance to stem hydraulic function. However, protoxylem remains an integral component of the plant hydraulic system due to its function in leaves and elongating stems and roots.As discussed in a recent review (Brodersen and McElrone, 2013), refilling of embolized vessels has been shown to depend on the generation of positive pressure by roots in many monocots, herbaceous plants, and a few woody species. However, many species lack root pressure; thus, attention has focused on so-called novel refilling, which involves adjacent living cells in the repair of embolized metaxylem or secondary xylem in stems of mature plants. Novel refilling has been studied with a variety of methods to visualize temporal variation in the presence and subsequent absence of embolized vessels, including cryo-scanning electron microscopy (Cryo-SEM; Canny, 1997; McCully et al., 2014), double staining (Zwieniecki and Holbrook, 1998; Zwieniecki et al., 2000), NMR imaging (Holbrook et al., 2001; Zwieniecki et al., 2013), and high-resolution x-ray computed tomography (Lee and Kim, 2008; Brodersen et al., 2010; Kim and Lee, 2010; Lee et al., 2013; Suuronen et al., 2013). These observations, in combination with other measurements, led to a working hypothesis of an osmotically driven repair mechanism in which sugars pumped into embolized vessels by adjacent paratracheal parenchyma provide the osmotic pressure difference that refills the vessel (Nardini et al., 2011).Little is known about embolism and its repair in protoxylem, which has structural features that make it potentially more vulnerable to embolism than metaxylem in the same plant or tissue (Choat et al., 2005). These include a greater exposed area of the primary cell wall with annular or helical thickenings instead of secondary walls. This could enhance stretching of the primary wall when large pressure differences develop between functional and embolized vessels, thereby decreasing the pressure required for air seeding of bubbles (Choat et al., 2004). Choat et al. (2005) suggested that greater vulnerability of protoxylem to embolism might underpin the roles of petioles, leaves, and small stems in the hydraulic segmentation hypothesis of Zimmermann (1983), in which sacrifice of the most easily replaceable tissues protects the function of the main structure of a plant during water stress. If ease of protoxylem embolism were to contribute to the function of hydraulic fuses during mild water stress, then ease of refilling would be required to rapidly reset the system.This study focuses on embolism repair in two distantly related, vascular species, Azorella macquariensis (Apiaceae) and Colobanthus muscoides (Caryophyllaceae), that depend exclusively on protoxylem for vascular water transport. Both species form cushions, with the former being an endemic, keystone species in the alpine zone of subantarctic Macquarie Island and the latter being a regional endemic that plays a major role in rocky coastal areas often within the supralittoral zone (Selkirk et al., 1990; Orchard, 1993). Both species are of ecological interest, because the subantarctic region is under increasing threat from climate change (Adams, 2009). Specifically, the climate on Macquarie Island is progressively changing from one that is perpetually wet and misty to one with increased exposure to periodic drying (Bergstrom et al., 2015). Dieback of alpine vegetation was first observed in 2008, and by 2010, extensive and unprecedented decline of A. macquariensis led to its listing as critically endangered (Bricher et al., 2013).In this study, protoxylem structure was studied in relation to embolism repair. Refilling of gas-filled vessels was compared between excised tissue and that in intact, detached shoots. The results showed that the physical properties of the protoxylem facilitated refilling by capillary forces and that rapid refilling in detached shoots supplied with water occurred without root pressure.  相似文献   

17.
Loss of hydraulic conductivity occurs in stems when the water in xylem conduits is subjected to sufficiently negative pressure. According to the air-seeding hypothesis, this loss of conductivity occurs when air bubbles are sucked into water-filled conduits through micropores adjacent to air spaces in the stem. Results in this study showed that loss of hydraulic conductivity occurred in stem segments pressurized in a pressure chamber while the xylem water was under positive pressure. Vulnerability curves can be defined as a plot of percentage loss of hydraulic conductivity versus the pressure difference between xylem water and the outside air inducing the loss of conductivity. Vulnerability curves were similar whether loss of conductivity was induced by lowering the xylem water pressure or by raising the external air pressure. These results are consistent with the air-seeding hypothesis of how embolisms are nucleated, but not with the nucleation of embolisms at hydrophobic cracks because the latter requires negative xylem water pressure. The results also call into question some basic underlying assumptions used in the determination of components of tissue water potential using “pressure-volume” analysis.  相似文献   

18.
We discuss the relationship between the dynamically changing tension gradients required to move water rapidly through the xylem conduits of plants and the proportion of conduits lost through embolism as a result of water tension. We consider the implications of this relationship to the water relations of trees. We have compiled quantitative data on the water relations, hydraulic architecture and vulnerability of embolism of four widely different species: Rhizophora mangle, Cassipourea elliptica, Acer saccharum, and Thuja occidentalis. Using these data, we modeled the dynamics of water flow and xylem blockage for these species. The model is specifically focused on the conditions required to generate `runaway embolism,' whereby the blockage of xylem conduits through embolism leads to reduced hydraulic conductance causing increased tension in the remaining vessels and generating more tension in a vicious circle. The model predicted that all species operate near the point of catastrophic xylem failure due to dynamic water stress. The model supports Zimmermann's plant segmentation hypothesis. Zimmermann suggested that plants are designed hydraulically to sacrifice highly vulnerable minor branches and thus improve the water balance of remaining parts. The model results are discussed in terms of the morphology, hydraulic architecture, eco-physiology, and evolution of woody plants.  相似文献   

19.
万贤崇  叶清 《植物学报》2008,25(4):497-506
压力探针技术是一种用来测定微系统中压力大小和变化的新技术。其最初被设计用于直接测定巨型藻类的细胞膨压。随着操作装置的进一步微型化和精密化, 后来被应用于测定普通高等植物细胞膨压及其它水分关系参数。该技术的发展建立在一系列相应的流体物理学理论基础上。通过这些物理学公式的计算, 该技术能测定跨细胞膜或器官的水分运输速度以及它们的水力学导度; 测定溶液中水分和溶质的相对运输速度以及它们之间的相互影响; 还可以测定细胞壁的刚性等。目前压力探针技术已成为植物生理学和生态学领域研究中的多用途技术。它可以在细胞水平上原位测定水分及溶质跨膜运输及分布情况, 这对于阐明水通道功能具有极其重要的意义。此外, 木质部压力探针技术是目前唯一可以直接测定导管或管胞中负压的工具。该技术还可以用于单细胞汁液的样品采集, 结合微电极技术测定导管或其它细胞中的pH值、离子浓度以及细胞膜电位。本文重点介绍该技术使用的基本原理和相应的理论基础, 并详细地描述了操作过程中的技术和技巧。  相似文献   

20.
Wall reinforcement in xylem conduits is thought to prevent wall implosion by negative pressures, but direct observations of xylem geometry during water stress are still largely lacking. In this study, we have analyzed the changes in xylem geometry during water stress in needles of four pine species (Pinus spp.). Dehydrated needles were frozen with liquid nitrogen, and xylem cross sections were observed, still frozen, with a cryo-scanning electron microscope and an epifluorescent microscope. Decrease in xylem pressure during drought provoked a progressive collapse of tracheids below a specific threshold pressure (P(collapse)) that correlates with the onset of cavitation in the stems. P(collapse) was more negative for species with smaller tracheid diameter and thicker walls, suggesting a tradeoff between xylem efficiency, xylem vulnerability to collapse, and the cost of wall stiffening. Upon severe dehydration, tracheid walls were completely collapsed, but lumens still appeared filled with sap. When dehydration proceeded further, tracheids embolized and walls relaxed. Wall collapse in dehydrated needles was rapidly reversed upon rehydration. We discuss the implications of this novel hydraulic trait on the xylem function and on the understanding of pine water relations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号