首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The production of recombinant protein in Escherichia coli is often hampered by low expression levels and low solubility. A variety of methodologies have been developed including protein production at low temperature, and fusion protein expression using soluble protein tags. Here, we present the novel cold-shock vector pCold-GST for high-level expression of soluble proteins in E. coli. This vector is a modified pCold I cold-shock vector that includes the glutathione S-transferase (GST) tag. The pCold-GST expression system developed was applied to 10 proteins that could not be expressed using conventional E. coli expression methodologies, and nine of these proteins were successfully obtained in the soluble fraction. The expression and purification of two unstable protein fragments were also demonstrated by employing a C-terminal hexa-histidine tag for purification purposes. The purified proteins were amenable to NMR analyses. These data suggest that the pCold-GST expression system can be utilized to improve the expression and purification of various proteins.  相似文献   

2.
A novel recombinant expression system in Escherichia coli was developed using conger eel galectin, namely, congerin II, as an affinity tag. This system was applied for the functional expression of myotoxic lysine-49-phospholipase A2 ([Lys49]PLA2), termed BPII and obtained from Protobothrops flavoviridis (Pf) venom. Recombinant Pf BPII fused with a congerin tag has been successfully expressed as a soluble fraction and showed better quantitative yield when folded correctly. The solubility of the recombinant congerin II-tagged BPII increased up to >90% in E. coli strain JM109 when coexpressed with the molecular chaperones GroEL, GroES, and trigger factor (Tf). The tag protein was cleaved by digestion with restriction protease, such as α-thrombin or Microbacterium liquefaciens protease (MLP), to obtain completely active recombinant BPII. Thus, the congerin-tagged fusion systems containing the cleavage recognition site for α-thrombin or MLP were demonstrated to be highly efficient and useful for producing proteins of desired solubility and activity.  相似文献   

3.
Improper protein-folding often results in inclusion-body formation in a protein expression system using Escherichia coli. To express such proteins in the soluble fraction of E. coli cytoplasm, we developed an expression system by fusing the target protein with an archaeal FK506 binding protein (FKBP). It has been reported that an archaeal FKBP from a hyperthermophilic archaeon, Thermococcus sp. KS-1 (TcFKBP18), possesses not only peptidyl–prolyl cis–trans isomerase activity, but also chaperone-like activity to enhance the refolding yield of an unfolded protein by suppressing irreversible protein aggregation. To study the effect of this fusion strategy with FKBP on the expression of foreign protein in E. coli, a putative rhodanese (thiosulfate sulfurtransferase) from a hyperthermophilic archaeon and two mouse antibody fragments were used as model target proteins. When they were expressed alone in E. coli, they formed insoluble aggregates. Their genes were designed to be expressed as a fusion protein by connecting them to the C-terminal end of TcFKBP18 with an oligopeptide containing a thrombin cleavage site. By fusing TcFKBP18, the expression of the target protein in the soluble fraction was significantly increased. The percentage of the soluble form in the expressed protein reached 10–28% of the host soluble proteins. After purification and protease digestion of the expressed antibody fragment–TcFKBP18 fusion protein, the cleaved antibody fragment (single-chain Fv) showed specific binding to the antigen in ELISA. This indicated that the expressed antibody fragment properly folded to the active form.  相似文献   

4.
The chemokines RANTES (regulated on activation, normal T cell expressed and secreted) and SDF-1α (stromal cell-derived factor-1α) are important regulators of leukocyte trafficking and homing. Chemokines form insoluble inclusion bodies when expressed in Escherichia coli (E. coli), resulting in low yields of soluble protein. We have developed a novel chemokine expression system that generates a high amount of soluble protein and uses a simple purification scheme. We cloned different types of RANTES and SDF-1α fused to either maltose binding protein (MBP) or glutathione-S-transferase (GST) and expressed the fusion proteins in E. coli under various conditions. We found that the yield of soluble chemokine is influenced by the type of fusion partner. Fusion to MBP resulted in a higher yield of total and soluble chemokine compared to GST. Under optimized conditions, the yield of soluble MBP–RANTES and MBP–SDF-1α was 2.5- and 4.5-fold higher than that of the corresponding GST-fusion protein, respectively. Recombinant chemokine fusion proteins exhibited specific binding activity to chemokine receptors. These results demonstrate that the use of MBP-fusion proteins may provide an approach to generating high yields of soluble and functional chemokines, such as RANTES and SDF-1α.  相似文献   

5.
细菌脲酶能分解尿素为氨,在瘤胃尿素氮代谢中发挥重要作用.为了表达纯化并研究蛋白脲酶复合物UreABC,通过PCR扩增脲酶基因簇的结构基因ureA、ureB、ureC,将ureB构建在含有N端His标签的pet28a+载体,ureA、ureC基因共同构建在含有N端His标签的表达载体pETDuet-1,经酶切及测序鉴定得...  相似文献   

6.
The preparation of stable isotope-labeled proteins is necessary for the application of a wide variety of NMR methods, to study the structures and dynamics of proteins and protein complexes. The E. coli expression system is generally used for the production of isotope-labeled proteins, because of the advantages of ease of handling, rapid growth, high-level protein production, and low cost for isotope-labeling. However, many eukaryotic proteins are not functionally expressed in E. coli, due to problems related to disulfide bond formation, post-translational modifications, and folding. In such cases, other expression systems are required for producing proteins for biomolecular NMR analyses. In this paper, we review the recent advances in expression systems for isotopically labeled heterologous proteins, utilizing non-E. coli prokaryotic and eukaryotic cells.  相似文献   

7.
To establish the overexpression and one-step purification system of Bacillus subtilis elongation factor-Tu (EF-Tu), the EF-Tu gene was amplified with or without own ribosome binding site (rbs) by PCR and the only PCR product without rbs was subcloned successfully. For the expression of the EF-Tu gene cloned after PCR amplification, a constitutive expression system and inducible expression system with His6 tag at N-terminus or C-terminus, or glutathione-S-transferase (GST) fusion system were examined in E. coli and B. subtilis. Except GST fusion system in E. coli, however, all other trials were unsuccessful at the step of plasmid construction for the EF-Tu expression. The GST/EF-Tu fusion proteins were highly expressed by IPTG induction and obtained as both soluble and insoluble form. From the soluble GST/EF-Tu fusion protein, EF-Tu was obtained to near homogeneity by one-step purification with glutathione-sepharose affinity column chromatography followed by factor Xa treatment. The purified EF-Tu showed high GDP binding activity. These results indicate that the GST/EF-Tu fusion system is favorable to overexpression and purification of B. subtilis EF-Tu.  相似文献   

8.
An expression vector, pUBEX, was constructed for extracellular production of heterologous proteins in Bacillus subtilis using a polyhistidine tag on the C-terminal sequence, providing an efficient and easy purification of the protein. A CII protein, a member of Bowman–Birk protease inhibitors, which was expressed as an inactive protein in Escherichia coli, was successfully expressed in Bacillus subtilis using the pUBEX vector and was purified to 6.4 mg l–1 by the immobilized metal affinity chromatography.  相似文献   

9.
A fusion protein expression system is described that allows for production of eukaryotic integral membrane proteins in Escherichia coli (E. coli). The eukaryotic membrane protein targets are fused to the C terminus of the highly expressed E. coli inner membrane protein, GlpF (the glycerol-conducting channel protein). The generic utility of this system for heterologous membrane-protein expression is demonstrated by the expression and insertion into the E. coli cell membrane of the human membrane proteins: occludin, claudin 4, duodenal ferric reductase and a J-type inwardly rectifying potassium channel. The proteins are produced with C-terminal hexahistidine tags (to permit purification of the expressed fusion proteins using immobilized metal affinity chromatography) and a peptidase cleavage site (to allow recovery of the unfused eukaryotic protein).  相似文献   

10.
Interleukin-30 (IL-30), or IL-27p28, is the α subunit of IL-27 constructed by Epstein–Barr virus-induced gene 3 (EBI3) and IL-27p28 binding via noncovalent bonds. IL-30 can be independently secreted and function independently of IL-27. Recent studies demonstrated IL-30 could concurrently antagonize T helper 1 (Th1) and Th17 responses and might have therapeutic implications for controlling autoimmune diseases. However, no reports have stated an efficient method to generate a relatively large quantity of IL-30. In this study, an Escherichia coli expression system for the rapid expression of the mouse IL-30 is developed. For the first time, IL-30 was expressed in a form of soluble fusion protein and purified using a method of simple affinity chromatography. In order to avoid the impact of minor codons on expressing eukaryotic protein in E. coli and to improve the expression quantity, the nucleotide sequence of IL-30 was optimized. The optimized gene sequence was then subcloned into the pET-44a(+) vector, which allowed expression of IL-30 with a fusion tag, NusA. The vector was transformed into E. coli and the expressed fusion protein, NusA-IL-30, was purified by Ni chromatography. Then the fusion tag was removed by cleavage with thrombin. The purity of purified IL-30 was identified using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) as well as high-performance liquid chromatography (HPLC) and the purity was up to about 92%. The yield of IL-30 was 8.95 mg from 1 L of bacterial culture. Western blot confirmed the identity of the purified protein. The recombinant IL-30 showed its biological activity by inhibiting Th17 differentiating from naive CD4+ T cells. Therefore, this method of express and purifying IL-30 provides novel procedures to facilitate structural and functions studies of IL-30.  相似文献   

11.
Severe acute respiratory syndrome coronavirus (SARS-CoV) membrane protein and 5-lipoxygenase-activating protein (FLAP) are among a large number of membrane proteins that are poorly expressed when traditional expression systems and methods are employed. Therefore to efficiently express difficult membrane proteins, molecular biologists will have to develop novel or innovative expression systems. To this end, we have expressed the SARS-CoV M and FLAP proteins in Escherichia coli by utilizing a novel gene fusion expression system that takes advantage of the natural chaperoning properties of the SUMO (small ubiquitin-related modifier) tag. These chaperoning properties facilitate proper protein folding, which enhances the solubility and biological activity of the purified protein. In addition to these advantages, we found that SUMO Protease 1, can cleave the SUMO fusion high specificity to generate native protein. Herein, we demonstrate that the expression of FLAP and SARS-CoV membrane proteins are greatly enhanced by SUMO fusions in E. coli.  相似文献   

12.
A common obstacle to NMR studies of proteins is sample preparation. In many cases, proteins targeted for NMR studies are poorly expressed and/or expressed in insoluble forms. Here, we describe a novel approach to overcome these problems. In the protein S tag-intein (PSTI) technology, two tandem 92-residue N-terminal domains of protein S (PrS2) from Myxococcus xanthus is fused at the N-terminal end of a protein to enhance its expression and solubility. Using intein technology, the isotope-labeled PrS2-tag is replaced with non-isotope labeled PrS2-tag, silencing the NMR signals from PrS2-tag in isotope-filtered 1H-detected NMR experiments. This method was applied to the E. coli ribosome binding factor A (RbfA), which aggregates and precipitates in the absence of a solubilization tag unless the C-terminal 25-residue segment is deleted (RbfAΔ25). Using the PrS2-tag, full-length well-behaved RbfA samples could be successfully prepared for NMR studies. PrS2 (non-labeled)-tagged RbfA (isotope-labeled) was produced with the use of the intein approach. The well-resolved TROSY-HSQC spectrum of full-length PrS2-tagged RbfA superimposes with the TROSY-HSQC spectrum of RbfAΔ25, indicating that PrS2-tag does not affect the structure of the protein to which it is fused. Using a smaller PrS-tag, consisting of a single N-terminal domain of protein S, triple resonance experiments were performed, and most of the backbone 1H, 15N and 13C resonance assignments for full-length E. coli RbfA were determined. Analysis of these chemical shift data with the Chemical Shift Index and heteronuclear 1H–15N NOE measurements reveal the dynamic nature of the C-terminal segment of the full-length RbfA protein, which could not be inferred using the truncated RbfAΔ25 construct. CS-Rosetta calculations also demonstrate that the core structure of full-length RbfA is similar to that of the RbfAΔ25 construct.  相似文献   

13.
The Escherichia coli host system is an advantageous choice for simple and inexpensive recombinant protein production but it still presents bottlenecks at expressing soluble proteins from other organisms. Several efforts have been taken to overcome E. coli limitations, including the use of fusion partners that improve protein expression and solubility. New fusion technologies are emerging to complement the traditional solutions. This work evaluates two novel fusion partners, the Fh8 tag (8 kDa) and the H tag (1 kDa), as solubility enhancing tags in E. coli and their comparison to commonly used fusion partners. A broad range comparison was conducted in a small-scale screening and subsequently scaled-up. Six difficult-to-express target proteins (RVS167, SPO14, YPK1, YPK2, Frutalin and CP12) were fused to eight fusion tags (His, Trx, GST, MBP, NusA, SUMO, H and Fh8). The resulting protein expression and solubility levels were evaluated by sodium dodecyl sulfate polyacrylamide gel electrophoresis before and after protein purification and after tag removal. The Fh8 partner improved protein expression and solubility as the well-known Trx, NusA or MBP fusion partners. The H partner did not function as a solubility tag. Cleaved proteins from Fh8 fusions were soluble and obtained in similar or higher amounts than proteins from the cleavage of other partners as Trx, NusA or MBP. The Fh8 fusion tag therefore acts as an effective solubility enhancer, and its low molecular weight potentially gives it an advantage over larger solubility tags by offering a more reliable assessment of the target protein solubility when expressed as a fusion protein.  相似文献   

14.
High level expression of many eukaryotic proteins for structural analysis is likely to require a eukaryotic host since many proteins are either insoluble or lack essential post-translational modifications when expressed in E. coli. The well-studied eukaryote Saccharomyces cerevisiae possesses several attributes of a good expression host: it is simple and inexpensive to culture, has proven genetic tractability, and has excellent recombinant DNA tools. We demonstrate here that this yeast exhibits three additional characteristics that are desirable in a eukaryotic expression host. First, expression in yeast significantly improves the solubility of proteins that are expressed but insoluble in E. coli. The expression and solubility of 83 Leishmania major ORFs were compared in S. cerevisiae and in E. coli, with the result that 42 of the 64 ORFs with good expression and poor solubility in E. coli are highly soluble in S. cerevisiae. Second, the yield and purity of heterologous proteins expressed in yeast is sufficient for structural analysis, as demonstrated with both small scale purifications of 21 highly expressed proteins and large scale purifications of 2 proteins, which yield highly homogeneous preparations. Third, protein expression can be improved by altering codon usage, based on the observation that a codon-optimized construct of one ORF yields three-fold more protein. Thus, these results provide direct verification that high level expression and purification of heterologous proteins in S. cerevisiae is feasible and likely to improve expression of proteins whose solubility in E. coli is poor.  相似文献   

15.
The cold-shock response, characterized by a specific pattern of gene expression, is induced upon a downshift in temperature and in the presence of inhibitors of ribosomal function. Here, we demonstrate that RbfA of Escherichia coli, considered to be involved in ribosomal maturation and/or initiation of translation, is a cold-shock protein. Shifting the rbfA mutant to a lower temperature resulted in a constitutive induction of the cold-shock response accompanied by slower growth at low temperatures, while shifting the rbfA mutant that overproduces wild-type RbfA resulted in an increase in total protein synthesis accompanied by faster growth adaptation to the lower temperature. Furthermore, the cold-shock response was also constitutively induced in a cold-sensitive 16S rRNA mutant at low temperatures. Accompanying the transient induction of the cold-shock response, we also report that shifting E. coli from 37°C to 15°C resulted in a temporary inhibition of initiation of translation, as evidenced by the transient decrease in polysomes accompanied by the transient increase in 70S monosomes. The accumulative data indicate that the inducing signal for the cold-shock response is the increase in the level of cold-unadapted non-translatable ribo-somes which are converted to cold-adapted translatable ribosomes by the association of cold-shock proteins such as RbfA. Therefore, the expression of the cold-shock response, and thus cellular adaptation to low temperature, is regulated at the level of translation. The data also indicate that cold-shock proteins can be translated by ribosomes under conditions that are not translatable for most mRNAs.  相似文献   

16.
The formation of inclusion bodies (IBs) in recombinant protein biotechnology has become one of the most frequent undesirable occurrences in both research and industrial applications. So far, the pET System is the most powerful system developed for the production of recombinant proteins when Escherichia coli is used as the microbial cell factory. Also, using fusion tags to facilitate detection and purification of the target protein is a commonly used tactic. However, there is still a large fraction of proteins that cannot be produced in E. coli in a soluble (and hence functional) form. Intensive research efforts have tried to address this issue, and numerous parameters have been modulated to avoid the formation of inclusion bodies. However, hardly anyone has noticed that adding fusion tags to the recombinant protein to facilitate purification is a key factor that affects the formation of inclusion bodies. To test this idea, the industrial biocatalysts uridine phosphorylase from Aeropyrum pernix K1 and (+)-γ-lactamase and (?)-γ-lactamase from Bradyrhizobium japonicum USDA 6 were expressed in E. coli by using the pET System and then examined. We found that using a histidine tag as a fusion partner for protein expression did affect the formation of inclusion bodies in these examples, suggesting that removing the fusion tag can promote the solubility of heterologous proteins. The production of soluble and highly active uridine phosphorylase, (+)-γ-lactamase, and (?)-γ-lactamase in our results shows that the traditional process needs to be reconsidered. Accordingly, a simple and efficient structure-based strategy for the production of valuable soluble recombinant proteins in E. coli is proposed.  相似文献   

17.
Human granulocyte-macrophage colony stimulating factor (hGMCSF) is an important therapeutic cytokine. As a novel attempt to purify hGMCSF protein, without the enzymatic cleavage of the affinity tag, an intein-based system was used. The gene was fused by overlap extension PCR to the intein sequence at its N-terminal in pTYB11 vector. The hGMCSF was expressed as a fusion protein in E. coli BL21(DE3), and E. coli GJ1158. In the former, the protein was expressed as inclusion bodies and upon purification the yield was 7 mg/l with a specific activity of 0.5 × 107 IU/mg. In salt-inducible E. coli GJ1158, hGMCSF was expressed in a soluble form at 20 mg/l and a specific activity of 0.9 × 107 IU/mg. The intein-hGMCSF was purified on a chitin affinity column by cleaving intein with 50 mM DTT resulting in a highly pure 14.7 kDa hGMCSF.  相似文献   

18.
Cyanovirin-N (CVN) is a promising antiviral candidate that has an extremely low sequence homology with any other known proteins. The efficient and soluble expression of biologically functional recombinant CVN (rCVN) is still an obstacle due to insufficient yield, aggregation, and abnormal modification. Here, we describe an improved approach to preparing native rCVN from Escherichia coli more efficiently. A fusion gene consisting of cvn and sumo (small ubiquitin-related modifier) and a hexahistidine tag was constructed according to the codon bias of the host cell. This small ubiquitin-related modifier (SUMO)-fused CVN is expressed in the cytoplasm of E. coli in a folded and soluble form (>30% of the total soluble protein), yielding 3 to 4 mg of native rCVN from 1 g of wet cells to a purity up to 97.6%. Matrix-assisted laser desorption ionization coupled to time-of-flight mass spectrometry and reverse-phase high-performance liquid chromatographic analysis showed that the purified rCVN was an intact and homogeneous protein with a molecular weight of 11,016.68 Da. Potent antiviral activity of rCVN against herpes simplex virus type 1 and human immunodeficiency virus type 1/IIIB was confirmed in a dose-dependent manner at nanomolar concentrations. Thus, the His-SUMO double-fused CVN provides an efficient approach for the soluble expression of rCVN in the cytoplasm of E. coli, allowing an alternative system to develop bioprocess for the large-scale production of this antiviral candidate.  相似文献   

19.
The cold-shock response — a hot topic   总被引:4,自引:2,他引:2  
  相似文献   

20.
The mercury transporter, merT, from Cupriavidus metallidurans was cloned into pRSET-C and expressed in various E. coli hosts. Expression of merT gene failed in common expression hosts like E. coli BL21(DE3), E. coli BL21(DE3)pLysS and E. coli GJ1158 due to expression induced toxicity. The protein was successfully expressed in E. coli C43(DE3) as inclusion bodies. The inclusion bodies were solubilized with Triton X-100 detergent. The detergent solubilized protein with N-terminal His-tag was purified in a single-step by immobilized metal affinity chromatography with a yield of 8 mg l−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号