首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ecological consequences of climate change have been recognized in numerous species, with perhaps phenology being the most well‐documented change. Phenological changes may have negative consequences when organisms within different trophic levels respond to environmental changes at different rates, potentially leading to phenological mismatches between predators and their prey. This may be especially apparent in the Arctic, which has been affected more by climate change than other regions, resulting in earlier, warmer, and longer summers. During a 7‐year study near Utqia?vik (formerly Barrow), Alaska, we estimated phenological mismatch in relation to food availability and chick growth in a community of Arctic‐breeding shorebirds experiencing advancement of environmental conditions (i.e., snowmelt). Our results indicate that Arctic‐breeding shorebirds have experienced increased phenological mismatch with earlier snowmelt conditions. However, the degree of phenological mismatch was not a good predictor of food availability, as weather conditions after snowmelt made invertebrate availability highly unpredictable. As a result, the food available to shorebird chicks that were 2–10 days old was highly variable among years (ranging from 6.2 to 28.8 mg trap?1 day?1 among years in eight species), and was often inadequate for average growth (only 20%–54% of Dunlin and Pectoral Sandpiper broods on average had adequate food across a 4‐year period). Although weather conditions vary among years, shorebirds that nested earlier in relation to snowmelt generally had more food available during brood rearing, and thus, greater chick growth rates. Despite the strong selective pressure to nest early, advancement of nesting is likely limited by the amount of plasticity in the start and progression of migration. Therefore, long‐term climatic changes resulting in earlier snowmelt have the potential to greatly affect shorebird populations, especially if shorebirds are unable to advance nest initiation sufficiently to keep pace with seasonal advancement of their invertebrate prey.  相似文献   

2.
Marking wild birds is an integral part of many field studies. However, if marks affect the vital rates or behavior of marked individuals, any conclusions reached by a study might be biased relative to the general population. Leg bands have rarely been found to have negative effects on birds and are frequently used to mark individuals. Leg flags, which are larger, heavier, and might produce more drag than bands, are commonly used on shorebirds and can help improve resighting rates. However, no one to date has assessed the possible effects of leg flags on the demographic performance of shorebirds. At seven sites in Arctic Alaska and western Canada, we marked individuals and monitored nest survival of four species of Arctic‐breeding shorebirds, including Semipalmated Sandpipers (Calidris pusilla), Western Sandpipers (C. mauri), Red‐necked Phalaropes (Phalaropus lobatus), and Red Phalaropes (P. fulicarius). We used a daily nest survival model in a Bayesian framework to test for effects of leg flags, relative to birds with only bands, on daily survival rates of 1952 nests. We found no evidence of a difference in nest survival between birds with flags and those with only bands. Our results suggest, therefore, that leg flags have little effect on the nest success of Arctic‐breeding sandpipers and phalaropes. Additional studies are needed, however, to evaluate the possible effects of flags on shorebirds that use other habitats and on survival rates of adults and chicks.  相似文献   

3.
Invasive predators pose a significant risk to bird populations worldwide. Humans have a long history of removing predators from ecosystems; current island restoration actions typically focus on the removal of invasive predators, such as non-native rodents, from seabird breeding islands. While not overly abundant, the results of predator removal studies provide valuable information on the demographic response of birds, and can assist conservation practitioners with prioritizing invasive predator removal projects. We review such studies focusing on observed demographic responses of bird populations to predator removal campaigns and whether ecological factors are useful in predicting those responses. From the 800+ predator removal programs indentified, a small fraction (n = 112) reported demographic responses of bird populations. Change in productivity was the most commonly reported response, which on average increased by 25.3% (2.5 SE) with predator removal. The best supported model for predicting the change in productivity from predator removal incorporated bird body mass, egg mass, predator type, nest type and an interaction term for body mass and nest type (AICc weight = 0.457). The predicted percent increase in productivity resulting from hypothetical predator removal ranged from 16.9 to 63.0% (mean = 45.0, 5.6 SE), and was lowest for large, surface nesting birds such as albatrosses. The predicted increase in productivity resulting from predator removal alone was insufficient to reverse the predicted population decline for 30–67% of bird species considered, suggesting that in many cases, removal of predators must be performed in combination with other conservation actions in order to ensure a stable or increasing population.  相似文献   

4.
The Arctic is undergoing rapid and accelerating change in response to global warming, altering biodiversity patterns, and ecosystem function across the region. For Arctic endemic species, our understanding of the consequences of such change remains limited. Spectacled eiders (Somateria fischeri), a large Arctic sea duck, use remote regions in the Bering Sea, Arctic Russia, and Alaska throughout the annual cycle making it difficult to conduct comprehensive surveys or demographic studies. Listed as Threatened under the U.S. Endangered Species Act, understanding the species response to climate change is critical for effective conservation policy and planning. Here, we developed an integrated population model to describe spectacled eider population dynamics using capture–mark–recapture, breeding population survey, nest survey, and environmental data collected between 1992 and 2014. Our intent was to estimate abundance, population growth, and demographic rates, and quantify how changes in the environment influenced population dynamics. Abundance of spectacled eiders breeding in western Alaska has increased since listing in 1993 and responded more strongly to annual variation in first‐year survival than adult survival or productivity. We found both adult survival and nest success were highest in years following intermediate sea ice conditions during the wintering period, and both demographic rates declined when sea ice conditions were above or below average. In recent years, sea ice extent has reached new record lows and has remained below average throughout the winter for multiple years in a row. Sea ice persistence is expected to further decline in the Bering Sea. Our results indicate spectacled eiders may be vulnerable to climate change and the increasingly variable sea ice conditions throughout their wintering range with potentially deleterious effects on population dynamics. Importantly, we identified that different demographic rates responded similarly to changes in sea ice conditions, emphasizing the need for integrated analyses to understand population dynamics.  相似文献   

5.
The breeding success of endangered colonial nesting species is important for their conservation. Many species of Gyps vultures form large breeding colonies that are the foci of conservation efforts. The Cape Vulture is a globally threatened species that is endemic to southern Africa and has seen a major reduction in its population size (≥ 50% over 48 years). There is evidence that breeding colonies are prone to desertion as a result of human disturbance. Factors that influence the occupancy and breeding success of individual nest‐sites is not fully understood for any African vulture species. We investigated cliff characteristics and neighbour requirements of the Msikaba Cape Vulture colony, a major breeding colony in the southern node of the population in the Eastern Cape, South Africa, together with their nest‐site occupation and breeding success over 13 years. In total, 1767 breeding attempts were recorded. Nest‐sites that had a higher elevation, smaller ledge depth, greater total productivity and were surrounded by conspecifics were more likely to be occupied, although the amount of overhang above the nest was not an important predictor of occupancy. In accordance with occupation, nest‐sites with a smaller ledge depth had higher breeding success; however, nests with a greater overhang were also more successful and height of the nest‐site was not an important predictor of breeding success. The breeding success of a nest‐site in a given year was positively influenced by the number of direct nest neighbours, and nests in the middle of high‐density areas had greater breeding success. This suggests that maintaining a high nest density may be an important consideration if declines of reproducing adults continue. Breeding success declined over the study period, highlighting the effects of a temporal variation or observer bias. Our results identified optimal nest‐site locations (ledge depths of 1 m, at a height of 180 m) and their effects on breeding success. This information can be used for planning reintroduction efforts of the endangered Cape Vulture and for their ongoing conservation.  相似文献   

6.
The Arctic is experiencing rapidly warming conditions, increasing predator abundance, and diminishing population cycles of keystone species such as lemmings. However, it is still not known how many Arctic animals will respond to a changing climate with altered trophic interactions. We studied clutch size, incubation duration and nest survival of 17 taxa of Arctic‐breeding shorebirds at 16 field sites over 7 years. We predicted that physiological benefits of higher temperatures and earlier snowmelt would increase reproductive effort and nest survival, and we expected increasing predator abundance and decreasing abundance of alternative prey (arvicoline rodents) to have a negative effect on reproduction. Although we observed wide ranges of conditions during our study, we found no effects of covariates on reproductive traits in 12 of 17 taxa. In the remaining taxa, most relationships agreed with our predictions. Earlier snowmelt increased the probability of laying a full clutch from 0.61 to 0.91 for Western Sandpipers, and shortened incubation by 1.42 days for arcticola Dunlin and 0.77 days for Red Phalaropes. Higher temperatures increased the probability of a full clutch from 0.60 to 0.93 for Western Sandpipers and from 0.76 to 0.97 for Red‐necked Phalaropes, and increased daily nest survival rates from 0.9634 to 0.9890 for Semipalmated Sandpipers and 0.9546 to 0.9880 for Western Sandpipers. Higher abundance of predators (foxes) reduced daily nest survival rates only in Western Sandpipers (0.9821–0.9031). In contrast to our predictions, the probability of a full clutch was lowest (0.83) for Semipalmated Sandpipers at moderate abundance of alternative prey, rather than low abundance (0.90). Our findings suggest that in the short‐term, climate warming may have neutral or positive effects on the nesting cycle of most Arctic‐breeding shorebirds.  相似文献   

7.
Millions of birds migrate to and from the Arctic each year, but rapid climate change in the High North could strongly affect where species are able to breed, disrupting migratory connections globally. We modelled the climatically suitable breeding conditions of 24 Arctic specialist shorebirds and projected them to 2070 and to the mid‐Holocene climatic optimum, the world's last major warming event ~6000 years ago. We show that climatically suitable breeding conditions could shift, contract and decline over the next 70 years, with 66–83% of species losing the majority of currently suitable area. This exceeds, in rate and magnitude, the impact of the mid‐Holocene climatic optimum. Suitable climatic conditions are predicted to decline acutely in the most species rich region, Beringia (western Alaska and eastern Russia), and become concentrated in the Eurasian and Canadian Arctic islands. These predicted spatial shifts of breeding grounds could affect the species composition of the world's major flyways. Encouragingly, protected area coverage of current and future climatically suitable breeding conditions generally meets target levels; however, there is a lack of protected areas within the Canadian Arctic where resource exploitation is a growing threat. Given that already there are rapid declines of many populations of Arctic migratory birds, our results emphasize the urgency of mitigating climate change and protecting Arctic biodiversity.  相似文献   

8.
Understanding how environmental factors affect ecological parameters is important to understanding and predicting impacts of environmental change. Given evidence and anticipated impacts of climate variability, this is especially true with respect to sea ice and its role in animal life history in northern regions. We examined relationships between the extent of consolidated spring ice cover (pack and landfast), nest initiation and clutch size in common eiders (Somateria mollissima) in northern Labrador, a sub-Arctic region on the east coast of Canada. Our initial prediction was that eiders would delay nesting and have smaller clutches in years with more extensive spring ice cover. Between 1998 and 2003, we surveyed coastal islands for breeding eiders and collected information on nest age and clutch size. For those years, we estimated ice cover based on Radarsat-1 images supplied by the Canadian Ice Service during the spring period (approximately June 7–12). We found that spring ice cover was a significant positive predictor of nest initiation date, and the regression equation indicated that if the average extent of ice cover around nesting islands increased by 18 ha, average nesting date was delayed by approximately 1 day. Nest initiation date was a significant negative predictor of clutch size, and the regression equation indicated that a 20 day delay in nesting reduced average clutch size by approximately 1 egg. However, ice cover itself was not a significant predictor of clutch size. Our findings suggest that eiders breed when ice is present, but ice extent may negatively influence aspects of their breeding ecology.  相似文献   

9.
Habitat availability might be the most important determinant of success for a species reintroduction programme, making investigation of the quality and quantity of habitat needed to produce self‐sustaining populations a research priority for reintroduction ecologists. We used a stochastic model of population dynamics to predict whether attempts to improve existing breeding territories using artificial nest platforms improved the population growth rate and persistence of a reintroduced population of Northern Aplomado Falcons Falco femoralis septentrionalis in South Texas. We further assessed whether the creation of new territories, i.e. conversion of entire areas to suitable habitat and not simply the erection of nest platforms, would lead to a subsequent increase in the nesting population. Our model was able to reproduce several characteristics of the wild population and predicted the number of breeding pairs per year strikingly well (R2 = 0.97). Simulations revealed that the addition of nest platforms improved productivity such that the population would decline to extinction without them but is stable since their installation. Moreover, the model predicted that the increase in productivity due to nest platforms would cause the population to saturate available breeding territories, at which point the population would contain a moderate proportion of non‐territorial birds that could occupy territories if new ones become available. Population size would therefore be proportional to the increase in available territories. Our study demonstrates that artificial nest‐sites can be an effective tool for the management of reintroduced species.  相似文献   

10.
Population structure in many Arctic marine mammal species reflects a dynamic interplay between physical isolating mechanisms and the extent to which dispersal opportunities are met. We examined variation within mtDNA and eight microsatellite markers to investigate population structure and demographic history in beluga whales in the North Atlantic. Genetic heterogeneity was observed between Svalbard and West Greenland that reveals limited gene flow over ecological time scales. Differentiation was also recorded between Atlantic belugas and two previously studied populations in the North Pacific, the Beaufort Sea and Gulf of Alaska. However, Bayesian cluster analysis of the nDNA data identified two population clusters that did not correspond to the respective ocean basins, as predicted, but to: (1) Arctic (Svalbard–White Sea–Greenland–Beaufort Sea) and (2) Subarctic (Gulf of Alaska) regions. Similarly, the deepest phylogeographic signal was between the Arctic populations and the Gulf of Alaska. Fitting an isolation-with-migration model yielded genetic abundance estimates that match census estimates and revealed that Svalbard and the Beaufort Sea likely diverged 7,600–35,400 years ago but have experienced recurrent periods with gene flow since then, most likely via the Russian Arctic during subsequent warm periods. Considering current projections of continued sea ice losses in the Arctic, this study identified likely routes of future contact among extant beluga populations, and other mobile marine species, which have implications for genetic introgression, health, ecology and behavior.  相似文献   

11.
Habitat suitability models (HSM) based on remotely sensed data are useful tools in conservation work. However, they typically use species occurrence data rather than robust demographic variables, and their predictive power is rarely evaluated. These shortcomings can result in misleading guidance for conservation. Here, we develop and evaluate a HSM based on correlates of long‐term breeding success of an open nest building boreal forest bird, the Siberian jay. In our study site in northern Sweden, nest failure of this permanent resident species is driven mainly by visually hunting corvids that are associated with human settlements. Parents rely on understory nesting cover as protection against these predators. Accordingly, our HSM includes a light detection and ranging (LiDAR) based metric of understory density around the nest and the distance of the nest to the closest human settlement to predict breeding success. It reveals that a high understory density 15–80 m around nests is associated with increased breeding success in territories close to settlements (<1.5 km). Farther away from human settlements breeding success is highest at nest sites with a more open understory providing a favorable warmer microclimate. We validated this HSM by comparing the predicted breeding success with landscape‐wide census data on Siberian jay occurrence. The correlation between breeding success and occurrence was strong up to 40 km around the study site. However, the HSM appears to overestimate breeding success in regions with a milder climate and therefore higher corvid numbers. Our findings suggest that maintaining patches of small diameter trees may provide a cost‐effective way to restore the breeding habitat for Siberian jays up to 1.5 km from human settlements. This distance is expected to increase in the warmer, southern, and coastal range of the Siberian jay where the presence of other corvids is to a lesser extent restricted to settlements.  相似文献   

12.
Identifying factors influencing nest survival among sympatric species is important for understanding and managing sources of variation in population dynamics of individual species. Three species of loons nest sympatrically in northern Alaska and differ in body size, life history characteristics, and population trends. We tested the effects of competition, nest site selection, and water level variations on nest survival of Pacific Gavia pacifica, yellow‐billed G. adamsii, and red‐throated loons G. stellata on the Arctic Coastal Plain in Alaska. Although overall nest survival rates did not differ between species, the factors influencing nest survival varied. Nest site selection influenced nest survival for Pacific and yellow‐billed loons, with both species having high nest survival when nesting on islands and peninsulas, likely due to a reduction in access by terrestrial predators. However, on mainland shorelines, Pacific loons had lower nest survival than yellow‐billed loons, and used a higher proportion of vegetation mats for nest sites suggesting that their smaller body size makes them less adept at nest defense. Nest site selection did not influence nest survival of red‐throated loons corresponding to our result of no nest site preferences by this species. Initiation date had a strong influence on nest survival for Pacific and yellow‐billed loons with nests laid earlier having higher survival. Pacific and yellow‐billed loon nests were susceptible to flooding due to precipitation, which contrasted with red‐throated loons that nest on smaller lakes with lower water level variations. Competition did not affect nest survival for any of the species likely due to most territorial encounters occurring prior to incubation. The only influence we found on red‐throated loon nest survival was differences among years. Our results indicate that loons chose nest sites based on predation risk and that factors influencing breeding success of closely related species may differ under similar breeding conditions.  相似文献   

13.
Selås V  Kålås JA 《Oecologia》2007,153(3):555-561
Two recent studies on territory occupancy rates of goshawk Accipiter gentilis and gyrfalcon Falco rusticolus report a 2–3-year-delayed numerical response to grouse numbers, which is a requirement for a hypothesis of predator-generated grouse cycles. The time lags were assumed to reflect the average age of sexual maturity in the raptor species. In southern Norway, however, subadult (two-year-old) goshawk hens occupied only 18–25% of territories where occupancy was not recorded in the preceding year, and there was no significant relationship between the proportion of subadults among recruits and grouse indices two years earlier. We argue that territory occupancy rates are not appropriate indices of total raptor population levels, but rather reflect the proportion of territorial pairs that attempt to nest. Because this depends on the body condition of the hens, fluctuations in other important winter resident prey species (most important for the goshawk) and winter weather (most important for the gyrfalcon) should also be addressed. During 1988–2006, the annual proportion of goshawk territories with recorded nesting attempts in southern Norway was most closely related to the preceding autumn’s population indices of black grouse Tetrao tetrix and mountain hare Lepus timidus, whereas the annual proportion of gyrfalcon territories with observations of falcons or with confirmed breeding attempts in central Norway were best explained by population indices of willow grouse Lagopus lagopus and ptarmigan L. mutus from the previous autumn, and by December temperatures. Hence, our studies do not support the predation hypothesis for grouse cycles.  相似文献   

14.
We studied the nest site selection and distribution pattern at landscape level of the German Osprey population, and demonstrated how to test the predictions of the ideal free distribution theory and its derivatives on such an expanding population. Information about the location and breeding success of each Osprey nest site between 1995 and 2005 was collected through a long-term monitoring programme. Data of land cover types were acquired from the administrations of each federal state and the CORINE Land Cover database. The results showed that Ospreys preferred landscapes with more water bodies and forests. Such sites were also occupied earlier and had higher local population density. However, in the study period of 11 years, there was a gradual shift from forest-dominated landscapes to agricultural land-dominated landscapes. The breeding success increased over time, with no difference in the breeding success between pairs nesting on trees and poles, whereas there was higher breeding success at nest sites surrounded by more agricultural land and less forest. The more efficient foraging in eutrophic lakes in agricultural landscapes was the most likely cause for the higher breeding success. The distribution pattern of the Ospreys did not match the resource allocation, which deviated from the models tested. We suggested that the proximate cues used for nest site selection mismatched site quality due to anthropogenic environmental changes.  相似文献   

15.
Cameras are important tools used to determine nest fate, identify predators and evaluate behaviour; however, they may impact the parameters they are used to measure, thereby biasing results. We evaluated the impact of cameras ? 10 m from the nest on shorebird nest survival at the Canning River Delta, Alaska, 2017–2018 (ncontrol = 122, ncamera = 109) using a much larger sample size than in previous studies conducted in the Arctic and random assignments at nest discovery. We found no effect of camera presence at the nest on daily nest survival (model-averaged daily survival rate (DSR) 85% confidence interval (CI); control: 0.971–0.983, camera: 0.969–0.982). We suggest that nest survival studies of tundra-nesting birds should consider the use of cameras to minimize researcher disturbance, increase the accuracy of fate assignments, and broaden the ecological data collected (e.g. incubation behaviour, predator identification and non-anthropogenic non-predation disruption such as by caribou).  相似文献   

16.
Understanding breeding phenology and success can elucidate population dynamics, which is especially important for species in need of conservation. We describe the factors affecting the breeding biology of American Oystercatchers (Haematopus palliatus frazari) at El Rancho Island, a critical site that contains ~ 7% of the total estimated population, on the coast of Sinaloa, Mexico. We monitored 192 nests over four years (2016–2019). The breeding season lasted from March to June and mean laying dates differed among years, with the mean laying date in 2019 an average of 20 days earlier than in 2016. Clutch sizes decreased as the breeding season progressed. Both breeding success and productivity differed among years, with the lowest values in 2016 (30% hatching success and 0.6 chicks/nest) and the highest in 2019 (66% hatching success and 1.2 chicks/nest). Hatching success was affected by year, laying date, type of habitat, and distance to the high tide line. American Oystercatchers that laid eggs earlier in the season, used mixed marsh and dune habitat, and with nests relatively close to the waterline (< 50 m) had greater breeding success. Overall, however, the breeding success of American Oystercatchers was low and influenced by a combination of several intrinsic and extrinsic factors. Management measures may be required to increase breeding success and ensure the conservation of this subspecies.  相似文献   

17.
Species ranges often change in relation to multiple environmental and demographic factors. Innovative behaviors may affect these changes by facilitating the use of novel habitats, although this idea has been little explored. Here, we investigate the importance of behavior during range change, using a 25‐year population expansion of Bonelli's eagle in southern Portugal. This unique population is almost exclusively tree nesting, while all other populations in western Europe are predominantly cliff nesting. During 1991–2014, we surveyed nest sites and estimated the year when each breeding territory was established. We approximated the boundaries of 84 territories using Dirichlet tessellation and mapped topography, land cover, and the density of human infrastructures in buffers (250, 500, and 1,000 m) around nest and random sites. We then compared environmental conditions at matching nest and random sites within territories using conditional logistic regression, and used quantile regression to estimate trends in nesting habitats in relation to the year of territory establishment. Most nests (>85%, n = 197) were in eucalypts, maritime pines, and cork oaks. Nest sites were farther from the nests of neighboring territories than random points, and they were in areas with higher terrain roughness, lower cover by agricultural and built‐up areas, and lower road and powerline densities. Nesting habitat selection varied little with year of territory establishment, although nesting in eucalypts increased, while cliff nesting and cork oak nesting, and terrain roughness declined. Our results suggest that the observed expansion of Bonelli's eagles was facilitated by the tree nesting behavior, which allowed the colonization of areas without cliffs. However, all but a very few breeding pairs settled in habitats comparable to those of the initial population nucleus, suggesting that after an initial trigger possibly facilitated by tree nesting, the habitat selection remained largely conservative. Overall, our study supports recent calls to incorporate information on behavior for understanding and predicting species range shifts.  相似文献   

18.
Arctic amplification, the accelerated climate warming in the polar regions, is causing a more rapid advancement of the onset of spring in the Arctic than in temperate regions. Consequently, the arrival of many migratory birds in the Arctic is thought to become increasingly mismatched with the onset of local spring, consequently reducing individual fitness and potentially even population levels. We used a dynamic state variable model to study whether Arctic long‐distance migrants can advance their migratory schedules under climate warming scenarios which include Arctic amplification, and whether such an advancement is constrained by fuel accumulation or the ability to anticipate climatic changes. Our model predicts that barnacle geese Branta leucopsis suffer from considerably reduced reproductive success with increasing Arctic amplification through mistimed arrival, when they cannot anticipate a more rapid progress of Arctic spring from their wintering grounds. When geese are able to anticipate a more rapid progress of Arctic spring, they are predicted to advance their spring arrival under Arctic amplification up to 44 days without any reproductive costs in terms of optimal condition or timing of breeding. Negative effects of mistimed arrival on reproduction are predicted to be somewhat mitigated by increasing summer length under warming in the Arctic, as late arriving geese can still breed successfully. We conclude that adaptation to Arctic amplification may rather be constrained by the (un)predictability of changes in the Arctic spring than by the time available for fuel accumulation. Social migrants like geese tend to have a high behavioural plasticity regarding stopover site choice and migration schedule, giving them the potential to adapt to future climate changes on their flyway.  相似文献   

19.
The Sabine’s gull (Xema sabini) is a small seabird that breeds in select locations across the circumpolar Arctic, but there have been few studies on its breeding biology, particularly from the high Arctic. We studied nesting phenology, breeding effort, and breeding success of Sabine’s gulls over 5 years at a colony on a small island (Nasaruvaalik) in the Canadian high Arctic. Compared to studies in the low Arctic, nest initiation dates and adult body mass were more consistent across years, and reproductive success was typically higher at Nasaruvaalik Island. These differences may be related to the more predictable food sources available in the nearby polynya upon arrival from migration, as well as the lower predation pressure at our site.  相似文献   

20.
Climate warming can result in both abiotic (e.g., permafrost thaw) and biotic (e.g., microbial functional genes) changes in Arctic tundra. Recent research has incorporated dynamic permafrost thaw in Earth system models (ESMs) and indicates that Arctic tundra could be a significant future carbon (C) source due to the enhanced decomposition of thawed deep soil C. However, warming‐induced biotic changes may influence biologically related parameters and the consequent projections in ESMs. How model parameters associated with biotic responses will change under warming and to what extent these changes affect projected C budgets have not been carefully examined. In this study, we synthesized six data sets over 5 years from a soil warming experiment at the Eight Mile Lake, Alaska, into the Terrestrial ECOsystem (TECO) model with a probabilistic inversion approach. The TECO model used multiple soil layers to track dynamics of thawed soil under different treatments. Our results show that warming increased light use efficiency of vegetation photosynthesis but decreased baseline (i.e., environment‐corrected) turnover rates of SOC in both the fast and slow pools in comparison with those under control. Moreover, the parameter changes generally amplified over time, suggesting processes of gradual physiological acclimation and functional gene shifts of both plants and microbes. The TECO model predicted that field warming from 2009 to 2013 resulted in cumulative C losses of 224 or 87 g/m2, respectively, without or with changes in those parameters. Thus, warming‐induced parameter changes reduced predicted soil C loss by 61%. Our study suggests that it is critical to incorporate biotic changes in ESMs to improve the model performance in predicting C dynamics in permafrost regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号